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“Part of our knowledge we obtain direct; and part by argument. The theory of prob-
ability is concerned with that part which we obtain by argument, and it treats of the
different degrees in which the results so obtained are conclusive or inconclusive.”

Keynes, 1929, p. 3.

Abstract. The Logical Uncertainty Principle is re-examined from the point of classical logic. Two interpretations
are given, an objective one in terms of an axiomatic theory of information, and a subjective one based on Ramsey’s
theory of probability.
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Introduction

In classical logic, arguments aim at demonstrating certainty, as Keynes (1929) would have
it, thus they claim to be conclusive. There is no doubt that most arguments are inconclusive
and that classical logic only has a limited role to play in most contexts. This is especially
true of arguments in law, for example, when establishing conclusions beyond reasonable
doubt, or when the balance of the probabilities are in favour of the conclusion.1 The same
is true in information retrieval; for example, we only establish the relevance of a document
to a degree or probability.

The early models in information retrieval have created the illusion that retrieval is an exact
science. A decision to retrieve is based on the success of a match, or in logical terms the suc-
cessful interpretation of a query in a document. Thus if a query such as (A∧ B) ∨ C is spec-
ified using terms A, B, C then all those documents that contain A and B, or C are retrieved.
If a document representation is thought of as a possible interpretation of the query, then all
those interpretations which make the query true are retrieved, that is, all the models. Alter-
natively we can describe this as retrieving all the documents which prove the query. Thus
stated, the role of logic is explicit, and the underlying matching process can be interpreted as
the application of simple deduction. This works because we identify the presence of a term
with its achieving truth in the document, i.e. we define a simple semantics for index terms.

The limitations of this classical approach are immediately apparent, or after a little
thought, once one has tried to use systems based on it. When users use IR systems they seek
documents relevant to their information need, or documents about topics they describe in
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their queries. To assume that such documents can be found by exact matching, or through
classical logic, is to miss the point. Many documents that fail to imply the query deductively
will turn out to be relevant. Relevance is a matter of degree. The central problem of IR is
how to model and measure that degree of relevance.

There are two extreme approaches possible. The first is to have a crude model of retrieval
but to involve a user in the retrieval process as part of a feedback loop. The second is to
have a refined model of retrieval that delivers relevant documents with little interaction.
There is no doubt that the first approach is currently more attractive especially now that the
technology is able to support it adequately. The model of retrieval must be such that the
user can grasp its meaning and the way it functions. The model should be seen as a tool
with which a user explores the store of information. Such a tool can be based on deductive
logic but as shown above that is not enough.2

To step outside classical logic we must consider the role ofevidencein IR. Another way
of looking at retrieval is as a form of inference or argumentation where evidence allows us
to derive conclusions with a degree of certainty. If one thinks of a query as a hypothesis of
what each document in the system might be about, then each document provides evidence
in support of that hypothesis to a different degree. There is a long tradition how this form
of plausible inference might be described within a logical framework e.g. degree of partial
entailment, degree of inferential soundness (Waismann 1930). In a way, they all assume
that provability, entailment, soundness etc. is a matter of degree. In the past there has
been considerable controversy about this. Here, the approach to this form of plausible
inference will be to express it using standard theoretical tools such as Probability Theory
and Information Theory but in relation to classical limits. By this is meant that in thelimit
my analysis behaves in a classical way but that it deviates from it in a well controlled
manner. This will become clearer as we proceed.

As an example, let us take a classical law of inference Modus Ponens

A,A ⊃ B⇒ B MP

This is an accepted law of logic, it states that from A and A⊃ B one can infer B. It says
nothing about the prior truth of A or A⊃ B. To use it we need to establish the truth (or
certainty) of A and A⊃ B and hence derive the truth (or certainty) of B. To present MP
in this way is somewhat misleading in that often, in practice, we only know A and wish to
infer B. In such a situation we seek to establish A⊃ B so that we can indeed infer B. So far
this view of the matter is entirely classical.

In most familiar situations of reasoning neither A nor A⊃ B is known with certainty,
instead we only know them with a degree of certainty. To simplify the discussion we will
concentrate initially on uncertainty associated with the conditional information. How to
express this? Traditionally we express it by a conditional probability, namely p= P(B|A),
which reads given A the probability of B is p. The assumption here is that A is known with
certainty and that B may be hypothetical. We can now claim that P(B|A) is a measure of
the certainty of the inference A⇒ B. To see this consider the following

P(B|A) = P(A⊃ B |A)
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Because P(A⊃ B |A) = P(¬A ∨ B | A) = P((¬A ∨ B) ∧ A)/P(A)

= P(B ∧ A)/P(A) by distribution

= P(B | A)

In the case of MP we assume A and A⊃ B with certainty. But as we mentioned before
we usually do not know these with certainty, so a less extreme case is when we know A
with certainty and have a probability P(A⊃ B |A) measuring the certainty of A⊃ B given
A.3 As it happens this is the same as P(B|A) and so it seems reasonable to assume that
P(B|A) is a measure of the certainty of the partial entailment A⇒ B. Note that what we
have done here, to infer B from A, is to import some conditional information the measure
of which we associate with the degree of partial entailment.

This way of looking at things once again demonstrates that we are arguing from the
limiting case given by classical logic. To drive this point home consider the following
definition given by Popper (1968):

A ⇒ B iff ∀X P(B | A, X) = 1

This constitutes a kind of terminating condition for inferring B from some information,
namely, we continue to augment the antecedent until any further addition stabilises the
probability. In the limiting case, when A⇒ B it is clear that the information content of B is
included in that of A. But when P(B| A) = p, a measure of how much of the information is
not included in A is given by 1−p. Later, it will be argued that a measure of the augmenting
premises X1, X2, . . .Xn such that P(B|A, X1, X2, . . .Xn) = 1 is a measure of the certainty
of A⇒ B.

Let us now return to the situation where the antecedent A itself is uncertain. The first
thing to realise here is that when using Bayes’ Theorem to compute P(B|A) there is a
probability associated with A but that this is the prior probability and that at the point of
inference P(A| A) = 1, i.e. A is known with certainty (given). The situation we are in is
one in which A (typically the evidence) is not known with certainty itself, the simplest case
of this would be if A itself was conditional on another event E which was known so that

P(B | E)= P(B | A, E)P(A | E)+ P(B | ¬A, E)P(¬A | E)

But it is not always possible to find such a certain event E. Hence we must consider the
case where thepassage of experience(Jeffrey 1983) gives rise to a new probability function
P∗ which is a revision of P in the light of such non-propositional experience (instead of
E) and for which P∗(A) 6= 1 in general. Now to measure the uncertainty of the inference
A⇒ B when A itself is uncertain I would propose the Jeffrey conditional

P∗(B) = P(B | A)P∗(A) + P(B | ¬A)P∗(¬A).

Clearly when P∗(A) = 1 we are back in the situation where A is certain. The interpretation
of P(B|A) and P(B| ¬A) are now somewhat problematical because they are, as it were,
probabilities of subjunctives. We interpret P(B|A) as P(A→ B) where ‘→’ is now not
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the material conditional. Such a conditional would be logically stronger than the material
conditional, i.e. A→ B only if A ⊃ B, and since it is logical stronger more informative.

The logic of uncertainty

In the above a pattern emerges: to evaluate the uncertainty of an inference leading from
premises to conclusions we measure the extent to which we need to augment the premises
to infer the conclusion with certainty. We can describe this as measuring the strength of ar-
gument leading from premises to conclusion, or as the extent to which premises (evidence)
entail the conclusion. Furthermore the information we add to the premises is typically in the
form of conditional information. Hence it is critical that we evaluate the uncertainty of a con-
ditional statement appropriately; the case for this was first made in Van Rijsbergen (1986).

First let us consider the case without probabilities. To analyse this case we will need to
introduce possible world semantics. An intuitive understanding of a possible world is that
it is a complete specification of how things are, or might be, down to the finest semantically
relevant details. For our purposes, we identify documents with possible worlds.

Let s be a partial description of a document—this might be a set of sentences, or just a
single index term—q being a request. In deciding whether to retrieve a document we would
need to evaluates→ q, that is whethers→ q is true or not. Ifs is true in a document
d thens→ q is true providingq is true. If s is not true in a document then we go to the
nearest documentd′ to d in which it is true and consider whetherq is true. Ifq is true ind′

thens→ q is true ind, otherwise false. This is a simple example of evaluating what is now
commonly known as a Stalnaker conditional originally formulated by Stalnaker (1970) and
has been the subject of extensive research ever since, see for example the excellent collection
of papers edited by Eells and Skyrms (1994).

To give a simple example,s might be an index term,q the same or a different index
term. If s = q, then s → q is true follows trivially for those documents in whichq
occurs. The more interesting case is whens 6= q. In that case, to establishs → q in d
find the nearestd′ in which s occurs and check for the occurrence ofq. If the semantics
is more complex and allows relationships between index terms, then we can handle more
complicated inferences, perhaps via a thesaurus. For example, let s= FORTRAN, q=
PROGRAMMING LANGUAGE and for argument sake let FORTRAN be false ind but
true in d′ the nearest such document. Ifq, that is PROGRAMMING LANGUAGE now
evaluates to true ind′, which it will because Fortran is a programming language, then
s → q (in d). More examples are given in Lalmas (1998) and Ounis (1998). The above
process illustrates what is now widely known as theRamsey test, recent work on it may
be found in Lindstr¨om and Rabinowicz (1992), whereas the original statement by Ramsey
appears in Mellor (1976). It might be summarised as follows:

To evaluate a conditional, first hypothetically make the minimal revision of your stock
of beliefs required to assume the antecedent. Then evaluate the acceptability of the
consequent on the basis of this revised body of beliefs.

In document retrieval we are often faced with the situation wheres→ q is assumed false
becauses does not logically implyq. That is, assuming the truth of the sentences (index
terms) in a document we cannot arrive atq. Boolean retrieval is an excellent example: given
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a truth valuation for the terms describing a document, we retrieve those documents which
imply q (makeq true for that valuation), and do not retrieve ifq evaluates false. On the other
hand, Ramsey’s belief revision approach to evaluating a conditional suggests that a given
document should be revised in a minimal way that makess true. If, after that revision,q is
true, thens→ q is true andd should be retrieved. There are a number of ways of making
this revision. One could restrict the revision to selecting a nearest document in whichs
is true, in which case no interaction from the user would be required. Or, one could involve
the user in expanding the information contained in the document under consideration. Or,
finally, one could do document expansion automatically using information already stored
in the system, perhaps with the aid of a thesaurus as illustrated above. We will return to this
notion ofminimal revisionand discuss it in information-theoretic terms later.

The possible world semantics and the Ramsey test motivate a generalisation for appli-
cation to Information Retrieval. This new principle was called the Logical Uncertainty
Principle and was first introduced in more detail by Van Rijsbergen (1986); that paper is
reproduced in Crestani et al. (1998) together with a number of closely related papers. The
reader is referred to the latter book for a thorough discussion. The Principle states:

Given any two sentencesx and y; a measure of the uncertainty ofy → x relative
to a given data set is determined by the minimal extent to which we have to add
information to the data set, to establish the truth ofy→ x.

In this principle ‘→’ is left unspecified, it might be interpreted as ‘answers’ or ‘infer’. A
classical interpretation would be that ‘⊃’ is the material conditional, and then establishing
the truth ofy ⊃ x through the Deduction Theorem would allow us to inferx from y. There
is then also a straight forward interpretation of minimal information to be added. It turns
out thaty ⊃ x is the logical weakest parcel of extra information that together withy will
yield x via the use of Modus Ponens. So here we have an example of adding information
to a minimal extent (Van Rijsbergen 1989).

Extra information revisited

Let us now examine the concept of extra information a little more closely. To do this we
first cast the analysis in terms of information carried by evidenced about a hypothesisq.
The intention is that we think of a document description as providing evidence through
its relative information content for or against a query. An axiomatic definition of such
a measure I〈d |q〉 was given by Hilpinen (1970). Not all the details of the measure are
reproduced here, for that the reader should consult Hilpinen’s original paper. Moreover the
measure is merely illustrative, proofs are not given, and it is very likely that other measures
could be used; its main purpose is to give an example of how “additional information” can
be connected to probability. For readability’s sake, the angle brackets are used in I〈.|.〉 the
information measure and the round brackets in P(.|.) the probablity measure.

Q1: If ` d ≡ d′ and ` q ≡ q′, then I〈d | q〉 = I〈d′ | q〉 and I〈d | q〉 = I〈d | q′〉.
Q2: 0≤ I〈d | q〉 ≤ 1.
Q3: If ` d ⊃ q then I〈d | q〉 = 1.
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Q4: If ` d ∨ d′ ∨ q then I〈d ∧ d′ | q〉 = I〈d | q〉 + I〈d′ | q〉.
Q5: I〈d ∨ d′ | q〉 = I〈d | q〉I〈d′ | q ∨ d〉.

I〈d |q〉 is defined as a quantitative measure; it is a function of arguments which are
sentences of a language. I〈d | q〉 is assumed to have a value only forq that is not logically
true; this is plausible since our evidence will have nothing to say about tautologies. The
plausibility of these axioms derive from the theorems they entail and the extent to which
these match our intuitions about information. There is no claim intended that this measure
is in some sense unique; it is an example of a measure of information that will enable us to
give computational bite to the Logical Uncertainty Principle.

I will now briefly discuss these axioms; a more detailed discussion can be found in
Crestani et al. (1998). Q1 says that logically equivalent sentences carry the same information
about a hypothesis, and one piece of evidence carries the same information about different
hypotheses. It is reasonable to assume that, if` d4 then I〈d | q〉 = min., i.e. tautologies
contain no information; also, if̀ d ⊃ q then I〈d |q〉 = max., i.e.d contains all the
information inq.

From this we derive that

If ` d ⊃ q but not ` d′ ⊃ q′ then I〈d | q〉 ≥ I〈d′ | q′〉.

By convention we take max. as 1 and min. as 0, hence our axioms Q2 and Q3. Under
some conditions information is simply additive. To make this precise we need the notion of
‘information in common’. Traditionally this is presented by a disjunction; so,d∨d′ carries
the information common tod andd′ although each may carry more. Ifd∨d′ ∨q is a logical
truth5 thend andd′ contain no information in common aboutq as Hilpinen (1970) put it,
hence axiom Q4. If on the other handd′ andd do convey common information aboutq
then

I〈d ∧ d′ | q〉 = I〈d | q〉 + I〈d′ | q〉 − I〈d ∨ d′ | q〉

Keynes (1929) in his Theory of Probability presented a formulation of ‘the weight of an
argument’ which increased with the accumulation of evidence. We can express this here as

I〈d ∧ d′ | q〉 ≥ I〈d | q〉

Another way of putting this is to say that the information carried increases with the
strength of argument,

If ` d ⊃ d′ then I〈d | q〉 ≥ I〈d′ | q〉,

or the information decreases with the weakening of the argument,

I〈d ∨ d′ | q〉 ≤ I〈d | q〉.
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It turns out that the above is implied by Q2 and Q4. The following theorems also follow
from Q1–Q5:

I〈¬d | q〉 = 1− I〈d | q〉, and

If ` q ⊃ d then I〈d ∨ d′ | q〉 = I〈d | q〉I〈d′ | d〉
The above axioms define a relative measure of information. It is possible to define an

absolute measure by re-expressing the axioms of I, replacingq everywhere with a logically
false hypothesisf :

F1: If ` d ≡ d′ then I〈d | f 〉 = I〈d′ | f 〉
F2: 0≤ I〈d | f 〉 ≤ 1
F3: If ` ¬d then I〈d | f 〉 = 1
F4: If ` d ∨ d′ then I〈d ∧ d′ | f 〉 = I〈d | f 〉 + I〈d′ | f 〉
F5: I〈d ∨ d′ | f 〉 = I〈d | f 〉I〈d′ | d〉

These axioms are satisfied by other well-known measures of information. Moreover
1− I〈d | f 〉 satisfies the axioms of the probability calculus, so we can define

P(d) = 1− I〈d | f 〉
The distinction between absolute and relative information is highlighted by

I〈d | q〉 = I〈d ∨ q | f 〉
I〈q | f 〉

or in words the information carried byd relative toq is equal to the ratio of the absolute
information in common betweend andq and the absolute information carried byq, i.e. the
proportion of the information carried byd in common withq. The information I〈d | f 〉 is
often called thetransmittedinformation. It is also straight forward to show that

I〈d | q〉 = 1− P(q ∨ d)

1− P(q)

= 1− P(d)
1− P(q | d)

1− P(q)
= P(¬d | ¬q)

Thus by defining a measure of information we have recovered a probability function. In
many ways a concept of information is more fundamental to the development of a model
for IR than probability (Van Rijsbergen and Lalmas 1996).

Given the axiomatic definition of I〈.|.〉 can we use it to formulate the Logical Uncertainty
Principle?6 The answer is Yes, I think! It goes as follows. If I〈d | q〉 6= 1, that is not the
case that̀ d ⊃ q, then according to LUP we need to augmentd by d′ in such a way that
I〈d ∧ d′ | q〉 = 1. By the additivity axiom when

` d ∨ d′ ∨ q we have that

1= I〈d ∧ d′ | q〉 = I〈d | q〉 + I〈d′ | q〉
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Hence I〈d′ | q〉 is a measure of the uncertainty associated withd ` q. We can of course
give this a probabilistic expression since

I〈d′ | q〉 = 1− I〈d | q〉
= P(d)

1− P(q | d)
1− P(q)

= P(d | ¬q)

The details of this relation are not important except that it involves the conditional proba-
bility relatingd andq, which earlier I identified as being illustrative of measuring the extra
information needed to make an inconclusive inference go through. One way of looking
at this analysis is that we have identified a concept of information that in the context of
inference leads to a logical probability.

A subjective interpretation of LUP

There are other ways of proceeding. For example a subjective concept of probability is
generated by betting odds. If the LUP is of universal applicability it should also capture
that view of probability. Let us see if it does. I illustrate with an example taken directly
from Ramsey (Mellor 1976, especiallycirca pp. 76–77). Ifd is a proposition about which
we have a degree of belief sayp = m/n,q might be a statement about which is the right
way at a cross-roads. Let us suppose that arriving at the right destination has a rewardr and
arriving at the wrong destination a rewardw. We, furthermore, assume that the total reward
resulting from that decision will be

e= npr + n(1− p)w = nw + np(r − w)

Now let us assume that at some distance from the cross-roads there is a truthful source.
The cost of consulting this source isf (x) wherex is the distance from the cross-roads.
Knowing the way, the total reward will be

nr − n f (x)

Clearly deciding to consult the source is attractive provide

f (x) ≤ (r − w)(1− p)

in fact one will consult up to a distanced such that

f (d) = (r − w)(1− p).

This relationship defines the degree of belief, or probability

p = 1− f (d)

r − w
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Analysing this in terms of the LUP, without consultation we have an expectation,e,
which involves an unknown uncertainty, that is,p. To determine this uncertainty we allow
for information to be added, a measure of which isf (x). There is a pointd beyond which
f (d) would exceed the expected gain without consultation. The measure of uncertainty,
or degree of belief ind is defined in terms of this extremal point. Or as Ramsey put it, “I
propose therefore to use the distance I would be prepared to go to ask, as a measure of the
confidence of my opinion”.

This analogy should not be stretched too far but it seems clear that in defining the
probabilityp in this way we again allow for the evidence to be added in so that the inference
(which way to go) is certain. It is the cost of this information balanced against the expected
gain that determines the probability of the statementd.

Conclusion

In this paper I have motivated the Logical Uncertainty Principle and interpreted it in two
distinct ways. Firstly, through defining information axiomatically and showing how this
notion of information leads to a measure of uncertainty for the inference deriving a query
from a document. Secondly by showing a subjective interpretation of the Principle based
on Ramsey’s theory of probability.
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Notes

1. There is an extensive discussion of this approach to evidential reasoning in Schum’s recent treatise on the
subject.

2. There is a third way in which the retrieval process is rather complex, and possibly mysterious to the user, but
which achieves its results through the ease with which feedback can be accomplished.

3. This case where the major premise A is true but the minor premise A⊃ B is uncertain or unkown is similar
to the classical syllogism enthymemes. As Anderson and Belnap (1961) would put it, “Asked whether the
enthymatic inference is valid (. . . ), we may answer either ‘No, your premises are simply insufficient for the
conclusion’ or, ‘Yes, provided you mean to be using the obviously required premise [minor premise] (which
we grant that you are, we being in a tolerant mood.

4. It is not obvious how best to interpret thislimit, one can think of it as setting a lower limit to the information
measure, or, another way is to think of it as` d ⊃ T, where T is the truth sentence.

5. This can also be formulated as` ¬(d ∨ d′) ⊃ q (with thanks to the referee).
6. I will abbreviate Logical Uncertainty Principle with LUP from here on.
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