
Machine Learning, 37, 297–336 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Improved Boosting Algorithms
Using Confidence-rated Predictions

ROBERT E. SCHAPIRE schapire@research.att.com
AT&T Labs, Shannon Laboratory, 180 Park Avenue, Room A279, Florham Park, NJ 07932-0971, USA

YORAM SINGER∗ singer@research.att.com
AT&T Labs, Shannon Laboratory, 180 Park Avenue, Room A277, Florham Park, NJ 07932-0971, USA

Editors: Jonathan Baxter and Nicol`o Cesa-Bianchi

Abstract. We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particu-
larly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified
analysis of AdaBoost in this setting, and we show how this analysis can be used to find improved parameter settings
as well as a refined criterion for training weak hypotheses. We give a specific method for assigning confidences
to the predictions of decision trees, a method closely related to one used by Quinlan. This method also suggests a
technique for growing decision trees which turns out to be identical to one proposed by Kearns and Mansour. We
focus next on how to apply the new boosting algorithms to multiclass classification problems, particularly to the
multi-label case in which each example may belong to more than one class. We give two boosting methods for
this problem, plus a third method based on output coding. One of these leads to a new method for handling the
single-label case which is simpler but as effective as techniques suggested by Freund and Schapire. Finally, we
give some experimental results comparing a few of the algorithms discussed in this paper.

Keywords: boosting algorithms, multiclass classification, output coding, decision trees

1. Introduction

Boosting is a method of finding a highly accurate hypothesis (classification rule) by com-
bining many “weak” hypotheses, each of which is only moderately accurate. Typically, each
weak hypothesis is a simple rule which can be used to generate a predicted classification
for any instance. In this paper, we study boosting in an extended framework in which each
weak hypothesis generates not only predicted classifications, but also self-rated confidence
scores which estimate the reliability of each of its predictions.

There are two essential questions which arise in studying this problem in the boosting
paradigm. First, how do we modify known boosting algorithms designed to handle only
simple predictions to use confidence-rated predictions in the most effective manner possible?
Second, how should we design weak learners whose predictions are confidence-rated in the
manner described above? In this paper, we give answers to both of these questions. The
result is a powerful set of boosting methods for handling more expressive weak hypotheses,

∗current affiliation: Institute of Computer Science, The Hebrew University, Jerusalem 91905, Israel. Email:
singer@cs.huji.ac.il

298 SCHAPIRE AND SINGER

as well as an advanced methodology for designing weak learners appropriate for use with
boosting algorithms.

We base our work on Freund and Schapire’s (1997) AdaBoost algorithm which has
received extensive empirical and theoretical study (Bauer & Kohavi, to appear; Breiman,
1998; Dietterich, to appear; Dietterich & Bakiri, 1995; Drucker & Cortes, 1996; Freund &
Schapire, 1996; Maclin & Opitz, 1997; Margineantu & Dietterich, 1997; Quinlan, 1996;
Schapire, 1997; Schapire et al., 1998; Schwenk & Bengio, 1998). To boost using confidence-
rated predictions, we propose a generalization of AdaBoost in which the main parameters
αt are tuned using one of a number of methods that we describe in detail. Intuitively, theαt ’s
control the influence of each of the weak hypotheses. To determine the proper tuning of these
parameters, we begin by presenting a streamlined version of Freund and Schapire’s analysis
which provides a clean upper bound on the training error of AdaBoost when the parameters
αt are left unspecified. For the purposes of minimizing training error, this analysis provides
an immediate clarification of the criterion that should be used in settingαt . As discussed
below, this analysis also provides the criterion that should be used by the weak learner in
formulating its weak hypotheses.

Based on this analysis, we give a number of methods for choosingαt . We show that the
optimal tuning (with respect to our criterion) ofαt can be found numerically in general, and
we give exact methods of settingαt in special cases.

Freund and Schapire also considered the case in which the individual predictions of the
weak hypotheses are allowed to carry a confidence. However, we show that their setting of
αt is only an approximation of the optimal tuning which can be found using our techniques.

We next discuss methods for designing weak learners with confidence-rated predictions
using the criterion provided by our analysis. For weak hypotheses which partition the in-
stance space into a small number of equivalent prediction regions, such as decision trees, we
present and analyze a simple method for automatically assigning a level of confidence to the
predictions which are made within each region. This method turns out to be closely related
to a heuristic method proposed by Quinlan (1996) for boosting decision trees. Our analysis
can be viewed as a partial theoretical justification for his experimentally successful method.

Our technique also leads to a modified criterion for selecting such domain-partitioning
weak hypotheses. In other words, rather than the weak learner simply choosing a weak
hypothesis with low training error as has usually been done in the past, we show that,
theoretically, our methods work best when combined with a weak learner which minimizes
an alternative measure of “badness.” For growing decision trees, this measure turns out to
be identical to one earlier proposed by Kearns and Mansour (1996).

Although we primarily focus on minimizing training error, we also outline methods that
can be used to analyze generalization error as well.

Next, we show how to extend the methods described above for binary classification
problems to the multiclass case, and, more generally, to themulti-labelcase in which each
example may belong to more than one class. Such problems arise naturally, for instance, in
text categorization problems where the same document (say, a news article) may easily be
relevant to more than one topic (such as politics, sports, etc.).

Freund and Schapire (1997) gave two algorithms for boosting multiclass problems, but
neither was designed to handle the multi-label case. In this paper, we present two new

IMPROVED BOOSTING ALGORITHMS 299

extensions of AdaBoost for multi-label problems. In both cases, we show how to apply the
results presented in the first half of the paper to these new extensions.

In the first extension, the learned hypothesis is evaluated in terms of its ability to predict a
good approximation of the set of labels associated with a given instance. As a special case,
we obtain a novel boosting algorithm for multiclass problems in the more conventional
single-label case. This algorithm is simpler but apparently as effective as the methods
given by Freund and Schapire. In addition, we propose and analyze a modification of
this method which combines these techniques with Dietterich and Bakiri’s (1995) output-
coding method. (Another method of combining boosting and output coding was proposed
by Schapire (1997). Although superficially similar, his method is in fact quite different from
what is presented here.)

In the second extension to multi-label problems, the learned hypothesis instead predicts,
for a given instance, a ranking of the labels, and it is evaluated based on its ability to place
the correct labels high in this ranking. Freund and Schapire’s AdaBoost.M2 is a special
case of this method for single-label problems.

Although the primary focus of this paper is on theoretical issues, we give some ex-
perimental results comparing a few of the new algorithms. We obtain especially dramatic
improvements in performance when a fairly large amount of data is available, such as large
text categorization problems.

2. A generalized analysis of Adaboost

Let S= 〈(x1, y1), . . . , (xm, ym)〉 be a sequence of training examples where eachinstance
xi belongs to adomainor instance spaceX , and eachlabel yi belongs to a finitelabel space
Y. For now, we focus on binary classification problems in whichY = {−1,+1}.

We assume access to aweakorbaselearning algorithm which accepts as input a sequence
of training examplesSalong with a distributionD over{1, . . . ,m}, i.e., over the indices of
S. Given such input, the weak learner computes aweak(or base) hypothesis h. In general,
h has the formh :X → R. We interpret the sign ofh(x) as the predicted label (−1 or
+1) to be assigned to instancex, and the magnitude|h(x)| as the “confidence” in this
prediction. Thus, ifh(x) is close to or far from zero, it is interpreted as a low or high
confidence prediction. Although the range ofh may generally include all real numbers, we
will sometimes restrict this range.

The idea of boosting is to use the weak learner to form a highly accurate prediction rule
by calling the weak learner repeatedly on different distributions over the training examples.
A slightly generalized version of Freund and Schapire’s AdaBoost algorithm is shown in
figure 1. The main effect of AdaBoost’s update rule, assumingαt > 0, is to decrease
or increase the weight of training examples classified correctly or incorrectly byht (i.e.,
examplesi for which yi andht (xi) agree or disagree in sign).

Our version differs from Freund and Schapire’s in that (1) weak hypotheses can have range
over all ofR rather than the restricted range [−1,+1] assumed by Freund and Schapire;
and (2) whereas Freund and Schapire prescribe a specific choice ofαt , we leave this choice
unspecified and discuss various tunings below. Despite these differences, we continue to
refer to the algorithm of figure 1 as “AdaBoost.”

300 SCHAPIRE AND SINGER

Given:(x1, y1), . . . , (xm, ym); xi ∈ X , yi ∈ {−1,+1}
Initialize D1(i) = 1/m.
For t = 1, . . . , T :

• Train weak learner using distributionDt .
• Get weak hypothesisht :X → R.
• Chooseαt ∈ R.
• Update:

Dt+1(i) = Dt (i) exp(−αt yi ht (xi))

Zt

whereZt is a normalization factor (chosen so thatDt+1 will be a distribution).

Output the final hypothesis:

H(x) = sign

(
T∑

t=1

αt ht (x)

)
.

Figure 1. A generalized version of AdaBoost.

As discussed below, when the range of eachht is restricted to [−1,+1], we can choose
αt appropriately to obtain Freund and Schapire’s original AdaBoost algorithm (ignoring
superficial differences in notation). Here, we give a simplified analysis of the algorithm in
whichαt is left unspecified. This analysis yields an improved and more general method for
choosingαt .

Let

f (x) =
T∑

t=1

αt ht (x)

so thatH(x) = sign(f (x)). Also, for any predicateπ , let [[π]] be 1 if π holds and 0
otherwise. We can prove the following bound on the training error ofH .

Theorem 1. Assuming the notation of figure 1, the following bound holds on the training
error of H:

1

m
|{i : H(xi) 6= yi }| ≤

T∏
t=1

Zt .

Proof: By unraveling the update rule, we have that

DT+1(i) =
exp

(−∑t αt yi ht (xi)
)

m
∏

t Zt

= exp(−yi f (xi))

m
∏

t Zt
. (1)

IMPROVED BOOSTING ALGORITHMS 301

Moreover, ifH(xi) 6= yi thenyi f (xi) ≤ 0 implying that exp(−yi f (xi)) ≥ 1. Thus,

[[H(xi) 6= yi]] ≤ exp(−yi f (xi)). (2)

Combining Eqs. (1) and (2) gives the stated bound on training error since

1

m

∑
i

[[H(xi) 6= yi]] ≤ 1

m

∑
i

exp(−yi f (xi))

=
∑

i

(∏
t

Zt

)
DT+1(i)

=
∏

t

Zt .
2

The important consequence of Theorem 1 is that, in order to minimize training error,
a reasonable approach might be to greedily minimize the bound given in the theorem by
minimizing Zt on each round of boosting. We can apply this idea both in the choice ofαt

and as a general criterion for the choice of weak hypothesisht .
Before proceeding with a discussion of how to apply this principle, however, we digress

momentarily to give a slightly different view of AdaBoost. LetH = {g1, . . . , gN} be the
space of all possible weak hypotheses, which, for simplicity, we assume for the moment
to be finite. Then AdaBoost attempts to find a linear threshold of these weak hypotheses
which gives good predictions, i.e., a function of the form

H(x) = sign

(
N∑

j=1

aj gj (x)

)
.

By the same argument used in Theorem 1, it can be seen that the number of training mistakes
of H is at most

m∑
i=1

exp

(
−yi

N∑
j=1

aj gj (xi)

)
. (3)

AdaBoost can be viewed as a method for minimizing the expression in Eq. (3) over the
coefficientsaj by a greedy coordinate-wise search: On each roundt , a coordinatej is chosen
corresponding toht , that is,ht = gj . Next, the value of the coefficientaj is modified by
addingαt to it; all other coefficients are left unchanged. It can be verified that the quantity
Zt measures exactly the ratio of the new to the old value of the exponential sum in Eq. (3) so
that

∏
t Zt is the final value of this expression (assuming we start with allaj ’s set to zero).

See Friedman, Hastie and Tibshirani (1998) for further discussion of the rationale for
minimizing Eq. (3), including a connection to logistic regression. See also Appendix A for
further comments on how to minimize expressions of this form.

302 SCHAPIRE AND SINGER

3. Choosingαt

To simplify notation, let us fixt and letui = yi ht (xi), Z = Zt , D = Dt , h = ht and
α = αt . In the following discussion, we assume without loss of generality thatD(i) 6= 0
for all i . Our goal is to findα which minimizes or approximately minimizesZ as a function
of α. We describe a number of methods for this purpose.

3.1. Deriving Freund and Schapire’s choice ofαt

We begin by showing how Freund and Schapire’s (1997) version of AdaBoost can be derived
as a special case of our new version. For weak hypothesesh with range [−1,+1], their
choice ofα can be obtained by approximatingZ as follows:

Z =
∑

i

D(i) e−αui

≤
∑

i

D(i)

(
1+ ui

2
e−α + 1− ui

2
eα
)
. (4)

This upper bound is valid sinceui ∈ [−1,+1], and is in fact exact ifh has range{−1,+1}
(so thatui ∈ {−1,+1}). (A proof of the bound follows immediately from the convexity of
e−αx for any constantα ∈ R.) Next, we can analytically chooseα to minimize the right
hand side of Eq. (4) giving

α = 1

2
ln

(
1+ r

1− r

)
wherer =∑i D(i)ui . Plugging into Eq. (4), this choice gives the upper bound

Z ≤
√

1− r 2.

We have thus proved the following corollary of Theorem 1 which is equivalent to Freund
and Schapire’s (1997) Theorem 6:

Corollary 1 (Freund & Schapire, 1997). Using the notation of figure 1, assume each ht

has range[−1,+1] and that we choose

αt = 1

2
ln

(
1+ rt

1− rt

)
where

rt =
∑

i

Dt (i)yi ht (xi) = Ei∼Dt [yi ht (xi)].

IMPROVED BOOSTING ALGORITHMS 303

Then the training error of H is at most

T∏
t=1

√
1− r 2

t .

Thus, with this setting ofαt , it is reasonable to try to findht that maximizes|rt | on each
round of boosting. This quantityrt is a natural measure of the correlation of the predictions
of ht and the labelsyi with respect to the distributionDt . It is closely related to ordinary
error since, ifht has range{−1,+1} then

Pri∼Dt [ht (xi) 6= yi] = 1− rt

2

so maximizingrt is equivalent to minimizing error. More generally, ifht has range [−1,+1]
then(1− rt)/2 is equivalent to the definition of error used by Freund and Schapire (εt in
their notation).

The approximation used in Eq. (4) is essentially a linear upper bound of the functione−αx

on the rangex ∈ [−1,+1]. Clearly, other upper bounds which give a tighter approximation
could be used instead, such as a quadratic or piecewise-linear approximation.

3.2. A numerical method for the general case

We next give a general numerical method for exactly minimizingZ with respect toα. Recall
that our goal is to findα which minimizes

Z(α) = Z =
∑

i

D(i) e−αui .

The first derivative ofZ is

Z′(α) = d Z

dα
= −

∑
i

D(i)ui e−αui

= −Z
∑

i

Dt+1(i)ui

by definition of Dt+1. Thus, if Dt+1 is formed using the value ofαt which minimizesZt

(so thatZ′(α) = 0), then we will have that∑
i

Dt+1(i)ui = Ei∼Dt+1[yi ht (xi)] = 0.

In words, this means that, with respect to distributionDt+1, the weak hypothesisht will be
exactly uncorrelated with the labelsyi .

It can easily be verified thatZ′′(α) = d2Z/dα2 is strictly positive for allα ∈ R (ignoring
the trivial case thatui = 0 for all i). Therefore,Z′(α) can have at most one zero. (See also
Appendix A.)

304 SCHAPIRE AND SINGER

Moreover, if there existsi such thatui < 0 then Z′(α)→∞ as α→∞. Similarly,
Z′(α)→−∞ asα→−∞ if ui > 0 for somei . This means thatZ′(α) has at least one
root, except in the degenerate case that all non-zeroui ’s are of the same sign. Furthermore,
becauseZ′(α) is strictly increasing, we can numerically find the unique minimum ofZ(α)
by a simple binary search, or more sophisticated numerical methods.

Summarizing, we have argued the following:

Theorem 2.
1. Assume the set{yi ht (xi): i = 1, . . . ,m} includes both positive and negative values. Then

there exists a unique choice ofαt which minimizes Zt .

2. For this choice ofαt , we have that

Ei∼Dt+1[yi ht (xi)] = 0.

3.3. An analytic method for weak hypotheses that abstain

We next consider a natural special case in which the choice ofαt can be computed analyti-
cally rather than numerically.

Suppose that the range of each weak hypothesisht is now restricted to{−1, 0,+1}. In
other words, a weak hypothesis can make a definitive prediction that the label is−1 or+1,
or it can “abstain” by predicting 0. No other levels of confidence are allowed. By allowing
the weak hypothesis to effectively say “I don’t know,” we introduce a model analogous to
the “specialist” model of Blum (1997), studied further by Freund et al. (1997).

For fixedt , let W0, W−1, W+1 be defined by

Wb =
∑

i : ui=b

D(i)

for b ∈ {−1, 0,+1}, where, as before,ui = yi ht (xi), and where we continue to omit the
subscriptt when clear from context. Also, for readability of notation, we will often abbre-
viate subscripts+1 and−1 by the symbols+ and− so thatW+1 is writtenW+, andW−1

is writtenW−. We can calculateZ as:

Z =
∑

i

D(i) e−αu

=
∑

b∈{−1,0,+1}

∑
i : ui=b

D(i) e−αb

= W0+W− eα +W+ e−α.

It can easily be verified thatZ is minimized when

α = 1

2
ln

(
W+
W−

)
.

IMPROVED BOOSTING ALGORITHMS 305

For this setting ofα, we have

Z = W0+ 2
√

W−W+. (5)

For this case, Freund and Schapire’s original AdaBoost algorithm would instead have
made the more conservative choice

α = 1

2
ln

(
W+ + 1

2W0

W− + 1
2W0

)
giving a value ofZ which is necessarily inferior to Eq. (5), but which Freund and Schapire
(1997) are able to upper bound by

Z ≤ 2

√(
W− + 1

2
W0

)(
W+ + 1

2
W0

)
. (6)

If W0 = 0 (so thath has range{−1,+1}), then the choices ofα and resulting values ofZ
are identical.

4. A criterion for finding weak hypotheses

So far, we have only discussed using Theorem 1 to chooseαt . In general, however, this
theorem can be applied more broadly to guide us in the design of weak learning algorithms
which can be combined more powerfully with boosting.

In the past, it has been assumed that the goal of the weak learning algorithm should be to
find a weak hypothesisht with a small number of errors with respect to the given distribution
Dt over training samples. The results above suggest, however, that a different criterion can
be used. In particular, we can attempt to greedily minimize the upper bound on training
error given in Theorem 1 by minimizingZt on each round. Thus, the weak learner should
attempt to find a weak hypothesisht which minimizes

Zt =
∑

i

Dt (i) exp(−αt yi ht (xi)).

This expression can be simplified by foldingαt intoht , in other words, by assuming without
loss of generality that the weak learner can freely scale any weak hypothesish by any
constant factorα ∈ R. Then (omittingt subscripts), the weak learner’s goal now is to
minimize

Z =
∑

i

D(i) exp(−yi h(xi)). (7)

For some algorithms, it may be possible to make appropriate modifications to handle such
a “loss” function directly. For instance, gradient-based algorithms, such as backprop, can
easily be modified to minimize Eq. (7) rather than the more traditional mean squared error.

306 SCHAPIRE AND SINGER

We show how decision-tree algorithms can be modified based on the new criterion for
finding good weak hypotheses.

4.1. Domain-partitioning weak hypotheses

We focus now on weak hypotheses which make their predictions based on a partitioning of
the domainX . To be more specific, each such weak hypothesis is associated with a partition
of X into disjoint blocksX1, . . . , XN which cover all ofX and for whichh(x) = h(x′)
for all x, x′ ∈ X j . In other words,h’s prediction depends only on which blockX j a given
instance falls into. A prime example of such a hypothesis is a decision tree whose leaves
define a partition of the domain.

Suppose thatD = Dt and that we have already found a partitionX1, . . . , XN of the space.
What predictions should be made for each block of the partition? In other words, how do we
find a functionh :X → Rwhich respects the given partition and which minimizes Eq. (7)?

Let cj = h(x) for x ∈ X j . Our goal is to find appropriate choices forcj . For eachj and
for b ∈ {−1,+1}, let

W j
b =

∑
i : xi∈X j∧yi=b

D(i) = Pri∼D[xi ∈ X j ∧ yi = b]

be the weighted fraction of examples which fall in blockj with labelb. Then Eq. (7) can
be rewritten

Z =
∑

j

∑
i : xi∈X j

D(i) exp(−yi cj)

(8)=
∑

j

(W j
+ e−cj +W j

− ecj).

Using standard calculus, we see that this is minimized when

cj = 1

2
ln

(
W j
+

W j
−

)
. (9)

Plugging into Eq. (8), this choice gives

Z = 2
∑

j

√
W j
+W j
−. (10)

Note that the sign ofcj is equal to the (weighted) majority class within blockj . Moreover,
cj will be close to zero (a low confidence prediction) if there is a roughly equal split of
positive and negative examples in blockj . Likewise,cj will be far from zero if one label
strongly predominates.

A similar scheme was previously proposed by Quinlan (1996) for assigning confidences
to the predictions made at the leaves of a decision tree. Although his scheme differed in the
details, we feel that our new theory provides some partial justification for his method.

IMPROVED BOOSTING ALGORITHMS 307

The criterion given by Eq. (10) can also be used as a splitting criterion in growing
a decision tree, rather than the Gini index or an entropic function. In other words, the
decision tree could be built by greedily choosing the split which causes the greatest drop
in the value of the function given in Eq. (10). In fact, exactly this splitting criterion was
proposed by Kearns and Mansour (1996). Furthermore, if one wants to boost more than one
decision tree then each tree can be built using the splitting criterion given by Eq. (10) while
the predictions at the leaves of the boosted trees are given by Eq. (9).

4.2. Smoothing the predictions

The scheme presented above requires that we predict as in Eq. (9) on blockj . It may well
happen thatW j

− or W j
+ is very small or even zero, in which casecj will be very large or

infinite in magnitude. In practice, such large predictions may cause numerical problems. In
addition, there may be theoretical reasons to suspect that large, overly confident predictions
will increase the tendency to overfit.

To limit the magnitudes of the predictions, we suggest using instead the “smoothed”
values

cj = 1

2
ln

(
W j
+ + ε

W j
− + ε

)

for some appropriately small positive value ofε. BecauseW j
− andW j

+ are both bounded
between 0 and 1, this has the effect of bounding|cj | by

1

2
ln

(
1+ ε
ε

)
≈ 1

2
ln

(
1

ε

)
.

Moreover, this smoothing only slightly weakens the value ofZ since, plugging into Eq. (8)
gives

Z =
∑

j

W j
+

√√√√W j
− + ε

W j
+ + ε

+W j
−

√√√√W j
+ + ε

W j
− + ε


≤
∑

j

(√
(W j
− + ε)W j

+ +
√
(W j
+ + ε)W j

−

)

≤
∑

j

(
2
√

W j
−W j
+ +

√
εW j
+ +

√
εW j
−

)

≤ 2
∑

j

√
W j
−W j
+ +
√

2Nε. (11)

308 SCHAPIRE AND SINGER

In the second inequality, we used the inequality
√

x + y ≤ √x + √y for nonnegativex
andy. In the last inequality, we used the fact that∑

j

(
W j
− +W j

+
) = 1,

which implies∑
j

(√
W j
− +

√
W j
+

)
≤
√

2N.

(Recall thatN is the number of blocks in the partition.) Thus, comparing Eqs. (11) and (10),
we see thatZ will not be greatly degraded by smoothing if we chooseε ¿ 1/(2N). In
our experiments, we have typically usedε on the order of 1/m wherem is the number of
training examples.

5. Generalization error

So far, we have only focused on the training error, even though our primary objective is to
achieve low generalization error.

Two methods of analyzing the generalization error of AdaBoost have been proposed.
The first, given by Freund and Schapire (1997), uses standard VC-theory to bound the
generalization error of the final hypothesis in terms of its training error and an additional
term which is a function of the VC-dimension of the final hypothesis class and the number
of training examples. The VC-dimension of the final hypothesis class can be computed
using the methods of Baum and Haussler (1989). Interpretting the derived upper bound as
a qualitative prediction of behavior, this analysis suggests that AdaBoost is more likely to
overfit if run for too many rounds.

Schapire et al. (1998) proposed an alternative analysis to explain AdaBoost’s empirically
observed resistance to overfitting. Following the work of Bartlett (1998), this method is
based on the “margins” achieved by the final hypothesis on the training examples. The
margin is a measure of the “confidence” of the prediction. Schapire et al. show that larger
margins imply lower generalization error—regardless of the number of rounds. Moreover,
they show that AdaBoost tends to increase the margins of the training examples.

To a large extent, their analysis can be carried over to the current context, which is the
focus of this section. As a first step in applying their theory, we assume that each weak
hypothesisht has bounded range. Recall that the final hypothesis has the form

H(x) = sign(f (x))

where

f (x) =
∑

t

αt ht (x).

Since theht ’s are bounded and since we only care about the sign off , we can rescale
theht ’s and normalize theαt ’s allowing us to assume without loss of generality that each

IMPROVED BOOSTING ALGORITHMS 309

ht :X → [−1,+1], eachαt ∈ [0, 1] and
∑

t αt = 1. Let us also assume that eachht

belongs to a hypothesis spaceH.
Schapire et al. define themarginof a labeled example(x, y) to be y f (x). The margin

then is in [−1,+1], and is positive if and only ifH makes a correct prediction on this
example. We further regard the magnitude of the margin as a measure of the confidence of
H ’s prediction.

Schapire et al.’s results can be applied directly in the present context only in the special
case that eachh ∈ H has range{−1,+1}. This case is not of much interest, however,
since our focus is on weak hypotheses with real-valued predictions. To extend the margins
theory, then, let us defined to be thepseudodimensionof H (for definitions, see, for
instance, Haussler (1992)). Then using the method sketched in Section 2.4 of Schapire et al.
together with Haussler and Long’s (1995) Lemma 13, we can prove the following upper
bound on generalization error which holds with probability 1− δ for all θ >0 and for all f
of the form above:

PrS[y f (x) ≤ θ] + O

(
1√
m

(
d log2(m/d)

θ2
+ log

(
1

δ

))1/2
)
.

Here, PrS denotes probability with respect to choosing an example(x, y) uniformly at
random from the training set. Thus, the first term is the fraction of training examples with
margin at mostθ . A proof outline of this bound was communicated to us by Peter Bartlett
and is provided in Appendix B.

Note that, as mentioned in Section 4.2, this margin-based analysis suggests that it may
be a bad idea to allow weak hypotheses which sometimes make predictions that are very
large in magnitude. If|ht (x)| is very large for somex, then rescalinght leads to a very large
coefficientαt which, in turn, may overwhelm the other coefficients and so may dramatically
reduce the margins of some of the training examples. This, in turn, according to our theory,
can have a detrimental effect on the generalization error.

It remains to be seen if this theoretical effect will be observed in practice, or, alternatively,
if an improved theory can be developed.

6. Multiclass, multi-label classification problems

We next show how some of these methods can be extended to the multiclass case in which
there may be more than two possible labels or classes. Moreover, we will consider the more
generalmulti-labelcase in which a single example may belong to any number of classes.

Formally, we letY be a finite set of labels or classes, and letk = |Y|. In the traditional
classification setting, each examplex ∈ X is assigned a single classy ∈ Y (possibly via a
stochastic process) so that labeled examples are pairs(x, y). The goal then, typically, is to
find a hypothesisH :X → Y which minimizes the probability thaty 6= H(x) on a newly
observed example(x, y).

In the multi-label case, each instancex ∈ X may belong to multiple labels inY. Thus,
a labeled example is a pair(x,Y) whereY ⊆ Y is the set of labels assigned tox. The
single-label case is clearly a special case in which|Y| = 1 for all observations.

310 SCHAPIRE AND SINGER

It is unclear in this setting precisely how to formalize the goal of a learning algorithm,
and, in general, the “right” formalization may well depend on the problem at hand. One
possibility is to seek a hypothesis which attempts to predict just one of the labels assigned to
an example. In other words, the goal is to findH :X → Y which minimizes the probability
that H(x) 6∈ Y on a new observation(x,Y). We call this measure theone-errorof hypo-
thesisH since it measures the probability of not getting even one of the labels correct. We
denote the one-error of a hypothesish with respect to a distributionD over observations
(x,Y) by one-errD(H). That is,

one-errD(H) = Pr(x,Y)∼D[H(x) 6∈ Y].

Note that, for single-label classification problems, the one-error is identical to ordinary
error. In the following sections, we will introduce other loss measures that can be used in the
multi-label setting, namely, Hamming loss and ranking loss. We also discuss modifications
to AdaBoost appropriate to each case.

7. Using Hamming loss for multiclass problems

Suppose now that the goal is to predict all and only all of the correct labels. In other
words, the learning algorithm generates a hypothesis which predicts sets of labels, and
the loss depends on how this predicted set differs from the one that was observed. Thus,
H :X → 2Y and, with respect to a distributionD, the loss is

1

k
E(x,Y)∼D[|h(x)1Y|]

where1 denotes symmetric difference. (The leading 1/k is meant merely to ensure a value
in [0, 1].) We call this measure theHamming lossof H , and we denote it by hlossD(H).

To minimize Hamming loss, we can, in a natural way, decompose the problem intok
orthogonal binary classification problems. That is, we can think ofY as specifyingk binary
labels (depending on whether a labely is or is not included inY). Similarly, h(x) can be
viewed ask binary predictions. The Hamming loss then can be regarded as an average of
the error rate ofh on thesek binary problems.

For Y ⊆ Y, let us defineY[`] for ` ∈ Y to be

Y[`] =
{+1 if ` ∈ Y

−1 if ` 6∈ Y.

To simplify notation, we also identify any functionH :X → 2Y with a corresponding
two-argument functionH :X × Y → {−1,+1} defined byH(x, `) = H(x)[`].

With the above reduction to binary classification in mind, it is rather straightforward to
see how to use boosting to minimize Hamming loss. The main idea of the reduction is
simply to replace each training example(xi ,Yi) by k examples((xi , `),Yi [`]) for ` ∈ Y.
The result is a boosting algorithm called AdaBoost.MH (shown in figure 2) which maintains

IMPROVED BOOSTING ALGORITHMS 311

Given:(x1,Y1), . . . , (xm,Ym) wherexi ∈ X , Yi ⊆ Y
Initialize D1(i, `) = 1/(mk).
For t = 1, . . . , T :

• Train weak learner using distributionDt .
• Get weak hypothesisht :X × Y → R.
• Chooseαt ∈ R.
• Update:

Dt+1(i, `) = Dt (i, `)exp(−αt Yi [`]ht (xi , `))

Zt

whereZt is a normalization factor (chosen so thatDt+1 will be a distribution).

Output the final hypothesis:

H(x, `) = sign

(
T∑

t=1

αt ht (x, `)

)
.

Figure 2. AdaBoost.MH: A multiclass, multi-label version of AdaBoost based on Hamming loss.

a distribution over examplesi and labels̀ . On roundt , the weak learner accepts such a
distributionDt (as well as the training set), and generates a weak hypothesisht :X×Y → R.
This reduction also leads to the choice of final hypothesis shown in the figure.

The reduction used to derive this algorithm combined with Theorem 1 immediately
implies a bound on the Hamming loss of the final hypothesis:

Theorem 3. Assuming the notation of figure 2, the following bound holds for the Hamming
loss of H on the training data:

hloss(H) ≤
T∏

t=1

Zt .

We now can apply the ideas in the preceding sections to this binary classification problem.
As before, our goal is to minimize

Zt =
∑
i,`

Dt (i, `)exp(−αtYi [`]ht (xi , `)) (12)

on each round. (Here, it is understood that the sum is over all examples indexed byi and
all labels` ∈ Y.)

As in Section 3.1, if we require that eachht have range{−1,+1} then we should choose

αt = 1

2
ln

(
1+ rt

1− rt

)
(13)

312 SCHAPIRE AND SINGER

where

rt =
∑
i,`

Dt (i, `)Yi [`]ht (xi , `). (14)

This gives

Zt =
√

1− r 2
t

and the goal of the weak learner becomes maximization of|rt |.
Note that(1− rt)/2 is equal to

Pr(i,`)∼Dt [ht (xi , `) 6= Yi [`]]

which can be thought of as a weighted Hamming loss with respect toDt .

Example. As an example of how to maximize|rt |, suppose our goal is to find anoblivious
weak hypothesisht which ignores the instancex and predicts only on the basis of the label`.
Thus we can omit thex argument and writeht (x, `) = ht (`). Let us also omitt subscripts.
By symmetry, minimizing−r is equivalent to maximizingr . So, we only need to findh
which maximizes

r =
∑
i,`

D(i, `)Yi [`]h(`)

=
∑
`

[
h(`)

∑
i

D(i, `)Yi [`]

]
.

Clearly, this is maximized by setting

h(`) = sign

(∑
i

D(i, `)Yi [`]

)
.

7.1. Domain-partitioning weak hypotheses

We also can combine these ideas with those in Section 4.1 on domain-partitioning weak
hypotheses. As in Section 4.1, suppose thath is associated with a partitionX1, . . . , XN of
the spaceX . It is natural then to create partitions of the formX × Y consisting of all sets
X j × {`} for j = 1, . . . , N and` ∈ Y. An appropriate hypothesish can then be formed
which predictsh(x, `) = cj ` for x ∈ X j . According to the results of Section 4.1, we should
choose

cj ` = 1

2
ln

(
W j `
+

W j `
−

)
(15)

IMPROVED BOOSTING ALGORITHMS 313

whereW j `
b =

∑
i D(i, `)[[xi ∈ X j ∧ Yi [`] = b]]. This gives

Z = 2
∑

j

∑
`

√
W j `
+ W j `

− . (16)

7.2. Relation to one-error and single-label classification

We can use these algorithms even when the goal is to minimize one-error. The most natural
way to do this is to set

H1(x) = arg max
y

∑
t

αt ht (x, y), (17)

i.e., to predict the labely most predicted by the weak hypotheses. The next simple theorem
relates the one-error ofH1 and the Hamming loss ofH .

Theorem 4. With respect to any distribution D over observations(x,Y) where Y 6= ∅,

one-errD(H
1) ≤ k hlossD(H).

Proof: AssumeY 6= ∅ and supposeH1(x) 6∈ Y. We argue that this impliesH(x) 6= Y. If
the maximum in Eq. (17) is positive, thenH1(x) ∈ H(x)−Y. Otherwise, if the maximum
is nonpositive, thenH(x) = ∅ 6= Y. In either case,H(x) 6= Y, i.e.,|H(x)1Y| ≥ 1. Thus,

[[H1(x) 6∈ Y]] ≤ |H(x)1Y|

which, taking expectations, implies the theorem. 2

In particular, this means that AdaBoost.MH can be applied to single-label multiclass
classification problems. The resulting bound on the training error of the final hypothesis
H1 is at most

k
∏

t

Zt (18)

whereZt is as in Eq. (12). In fact, the results of Section 8 will imply a better bound of

k

2

∏
t

Zt . (19)

Moreover, the leading constantk/2 can be improved somewhat by assuming without loss
of generality that, prior to examining any of the data, a 0th weak hypothesis is chosen,
namelyh0 ≡ −1. For this weak hypothesis,r0 = (k−2)/k andZ0 is minimized by setting

314 SCHAPIRE AND SINGER

α0 = 1
2 ln(k − 1) which givesZ0 = 2

√
k− 1/k. Plugging into the bound of Eq. (19), we

therefore get an improved bound of

k

2

T∏
t=0

Zt =
√

k− 1
T∏

t=1

Zt .

This hack is equivalent to modifying the algorithm of figure 2 only in the manner in whichD1

is initialized. Specifically,D1 should be chosen so thatD1(i, yi) = 1/(2m) (whereyi is the
correct label forxi) andD1(i, `) = 1/(2m(k− 1)) for ` 6= yi . Note thatH1 is unaffected.

8. Using output coding for multiclass problems

The method above maps a single-label problem into a multi-label problem in the simplest
and most obvious way, namely, by mapping each single-label observation(x, y) to a multi-
label observation(x, {y}). However, it may be more effective to use a more sophisticated
mapping. In general, we can define a one-to-one mappingλ :Y → 2Y

′
which we can use

to map each observation(x, y) to (x, λ(y)). Note thatλ maps to subsets of an unspecified
label setY ′ which need not be the same asY. Let k′ = |Y ′|.

It is desirable to chooseλ to be a function which maps different labels to sets which are
far from one another, say, in terms of their symmetric difference. This is essentially the
approach advocated by Dietterich and Bakiri (1995) in a somewhat different setting. They
suggested using error correcting codes which are designed to have exactly this property.
Alternatively, whenk′ is not too small, we can expect to get a similar effect by choosingλ

entirely at random (so that, fory ∈ Y and` ∈ Y ′, we include or do not includè in λ(y)
with equal probability). Once a functionλ has been chosen we can apply AdaBoost.MH
directly on the transformed training data(xi , λ(yi)).

How then do we classify a new instancex? The most direct use of Dietterich and Bakiri’s
approach is to evaluateH on x to obtain a setH(x) ⊆ Y ′. We then choose the labely ∈ Y
for which the mapped output codeλ(y) has the shortest Hamming distance toH(x). That
is, we choose

arg min
y∈Y
|λ(y)1H(x)|.

A weakness of this approach is that it ignores the confidence with which each label was
included or not included inH(x). An alternative approach is to predict that labely which,
if it had been paired withx in the training set, would have caused(x, y) to be given the
smallest weight under the final distribution. In other words, we suggest predicting the label

arg min
y∈Y

∑
y′∈Y ′

exp(−λ(y)[y′] f (x, y′))

where, as before,f (x, y′) =∑t αt ht (x, y′).
We call this version of boosting using output codes AdaBoost.MO. Pseudocode is given

in figure 3. The next theorem formalizes the intuitions above, giving a bound on training

IMPROVED BOOSTING ALGORITHMS 315

Given:(x1, y1), . . . , (xm, ym) wherexi ∈ X , yi ∈ Y
a mappingλ :Y → 2Y

′

• Run AdaBoost.MH on relabeled data:(x1, λ(y1)), . . . , (xm, λ(ym))

• Get back final hypothesisH of form H(x, y′) = sign(f (x, y′))
where f (x, y′) =∑t αt ht (x, y′)

• Output modified final hypothesis:

(Variant 1)H1(x) = arg min
y∈Y
|λ(y)1H(x)

(Variant 2)H2(x) = arg min
y∈Y

∑
y′∈Y ′

exp(−λ(y)[y′] f (x, y′))

Figure 3. AdaBoost.MO: A multiclass version of AdaBoost based on output codes.

error in terms of the quality of the code as measured by the minimum distance between any
pair of “code words.”

Theorem 5. Assuming the notation of figure 3 and figure 2(viewed as a subroutine), let

ρ = min
`1,`2∈Y : `1 6=`2

|λ(`1)1λ(`2).

When run with this choice ofλ, the training error of AdaBoost.MO is upper bounded by

2k′

ρ

T∏
t=1

Zt

for Variant1, and by

k′

ρ

T∏
t=1

Zt

for Variant2.

Proof: We start with Variant 1. Suppose the modified output hypothesisH1 for Variant 1
makes a mistake on some example(x, y). This means that for somè6= y,

|H(x)1λ(`)| ≤ |H(x)1λ(y)|

which implies that

2|H(x)1λ(y)| ≥ |H(x)1λ(y)| + |H(x)1λ(`)|
≥ |(H(x)1λ(y))1(H(x)1λ(`))|
= |λ(y)1λ(`)
≥ ρ

316 SCHAPIRE AND SINGER

where the second inequality uses the fact that|A1B| ≤ |A| + |B| for any setsA and B.
Thus, in case of an error,|H(x)1λ(y)| ≥ ρ/2. On the other hand, the Hamming error of
AdaBoost.MH on the training set is, by definition,

1

mk′

m∑
i=1

|H(xi)1λ(yi)|

which is at most
∏

t Zt by Theorem 3. Thus, ifM is the number of training mistakes, then

M
ρ

2
≤

m∑
i=1

|H(xi)1λ(yi)| ≤ mk′
∏

t

Zt

which implies the stated bound.
For Variant 2, suppose thatH2 makes an error on some example(x, y). Then for some

` 6= y∑
y′∈Y ′

exp(−λ(`)[y′] f (x, y′)) ≤
∑
y′∈Y ′

exp(−λ(y)[y′] f (x, y′)). (20)

Fixing x, y and`, let us definew(y′) = exp(−λ(y)[y′] f (x, y′)). Note that

exp(−λ(`)[y′] f (x, y′)) =
{
w(y′) if λ(y)[y′] = λ(`)[y′]
1/w(y′) otherwise.

Thus, Eq. (20) implies that∑
y′∈S

w(y′) ≥
∑
y′∈S

1

w(y′)

whereS= λ(y)1λ(`). This implies that

∑
y′∈Y ′

w(y′) ≥
∑
y′∈S

w(y′) ≥ 1

2

∑
y′∈S

(
w(y′)+ 1

w(y′)

)
≥ |S| ≥ ρ.

The third inequality uses the fact thatx+ 1/x ≥ 2 for all x > 0. Thus, we have shown that
if a mistake occurs on(x, y) then∑

y′∈Y ′
exp(−λ(y)[y′] f (x, y′)) ≥ ρ.

If M is the number of training errors under Variant 2, this means that

ρM ≤
m∑

i=1

∑
y′∈Y ′

exp(−λ(yi)[y
′] f (xi , y′)) = mk′

∏
t

Zt

IMPROVED BOOSTING ALGORITHMS 317

where the equality uses the main argument of the proof of Theorem 1 combined with
the reduction to binary classification described just prior to Theorem 3. This immediately
implies the stated bound. 2

If the codeλ is chosen at random (uniformly among all possible codes), then, for largek′,
we expectρ to approach(1/2− o(1))k′. In this case, the leading coefficients in the bounds
of Theorem 5 approach 4 for Variant 1 and 2 for Variant 2, independent of the number of
classesk in the original label setY.

We can use Theorem 5 to improve the bound in Eq. (18) for AdaBoost.MH to that in
Eq. (19). We apply Theorem 5 to the code defined byλ(y) = {y} for all y ∈ Y. Clearly,
ρ = 2 in this case. Moreover, we claim thatH1 as defined in Eq. (17) produces identical
predictions to those generated by Variant 2 in AdaBoost.MO since∑

y′∈Y
exp(−λ(y)[y′] f (x, y′)) = e− f (x,y) − ef (x,y) +

∑
y′∈Y

ef (x,y′). (21)

Clearly, the minimum of Eq. (21) overy is attained whenf (x, y) is maximized. Applying
Theorem 5 now gives the bound in Eq. (19).

9. Using ranking loss for multiclass problems

In Section 7, we looked at the problem of finding a hypothesis that exactly identifies the
labels associated with an instance. In this section, we consider a different variation of this
problem in which the goal is to find a hypothesis whichranksthe labels with the hope that
the correct labels will receive the highest ranks. The approach described here is closely
related to one used by Freund et al. (1998) for using boosting for more general ranking
problems.

To be formal, we now seek a hypothesis of the formf :X×Y → Rwith the interpretation
that, for a given instancex, the labels inY should be ordered according tof (x, ·). That is,
a label`1 is considered to be ranked higher than`2 if f (x, `1) > f (x, `2). With respect
to an observation(x,Y), we only care about the relative ordering of thecrucial pairs
`0, `1 for which `0 6∈ Y and `1 ∈ Y. We say thatf misordersa crucial pair`0, `1 if
f (x, `1) ≤ f (x, `0) so that f fails to rank`1 above`0. Our goal is to find a functionf
with a small number of misorderings so that the labels inY are ranked above the labels not
in Y.

Our goal then is to minimize the expected fraction of crucial pairs which are misor-
dered. This quantity is called theranking loss, and, with respect to a distributionD over
observations, it is defined to be

E(x,Y)∼D

[|{(`0, `1) ∈ (Y − Y)× Y : f (x, `1) ≤ f (x, `0)}|
|Y||Y − Y|

]
.

We denote this measure rlossD f . Note that we assume thatY is never empty nor equal to
all of Y for any observation since there is no ranking problem to be solved in this case.

318 SCHAPIRE AND SINGER

Given:(x1,Y1), . . . , (xm,Ym) wherexi ∈ X , Yi ⊆ Y
Initialize D1(i, `0, `1) =

{
1/(m · |Yi | · |Y − Yi |) if `0 6∈ Yi and`1 ∈ Yi

0 else.
For t = 1, . . . , T :

• Train weak learner using distributionDt .
• Get weak hypothesisht : X × Y → R.
• Chooseαt ∈ R.
• Update:

Dt+1(i, `0, `1) =
Dt (i, `0, `1) exp

(1
2αt (ht (xi , `0)− ht (xi , `1))

)
Zt

whereZt is a normalization factor (chosen so thatDt+1 will be a distribution).

Output the final hypothesis:

f (x, `) =
T∑

t=1

αt ht (x, `).

Figure 4. AdaBoost.MR: A multiclass, multi-label version of AdaBoost based on ranking loss.

A version of AdaBoost for ranking loss called AdaBoost.MR is shown in figure 4. We
now maintain a distributionDt over {1, . . . ,m} × Y × Y. This distribution is zero, how-
ever, except on the relevant triples(i, `0, `1) for which `0, `1 is a crucial pair relative to
(xi ,Yi).

Weak hypotheses have the formht :X×Y → R. We think of these as providing a ranking
of labels as described above. The update rule is a bit new. Let`0, `1 be a crucial pair relative
to (xi ,Yi) (recall thatDt is zero in all other cases). Assuming momentarily thatαt > 0, this
rule decreases the weightDt (i, `0, `1) if ht gives a correct ranking (ht (xi , `1) > ht (xi , `0)),
and increases this weight otherwise.

We can prove a theorem analogous to Theorem 1 for ranking loss:

Theorem 6. Assuming the notation of figure 4, the following bound holds for the ranking
loss of f on the training data:

rloss(f) ≤
T∏

t=1

Zt .

Proof: The proof is very similar to that of Theorem 1.
Unraveling the update rule, we have that

DT+1(i, `0, `1) =
D1(i, `0, `1) exp

(
1
2(f (xi , `0)− f (xi , `1))

)∏
t Zt

.

IMPROVED BOOSTING ALGORITHMS 319

The ranking loss on the training set is∑
i,`0,`1

D1(i, `0, `1)[[f (xi , `0) ≥ f (xi , `1)]]

≤
∑

i,`0,`1

D1(i, `0, `1) exp

(
1

2
(f (xi , `0)− f (xi , `1))

)
=
∑

i,`0,`1

DT+1(i, `0, `1)
∏

t

Zt =
∏

t

Zt .

(Here, each of the sums is over all example indicesi and all pairs of labels inY ×Y.) This
completes the theorem. 2

So, as before, our goal on each round is to try to minimize

Z =
∑

i,`0,`1

D(i, `0, `1) exp

(
1

2
α(h(xi , `0)− h(xi , `1))

)
where, as usual, we omitt subscripts. We can apply all of the methods described in previous
sections. Starting with the exact methods for findingα, suppose we are given a hypothesis
h. Then we can make the appropriate modifications to the method of Section 3.2 to findα

numerically.
Alternatively, in the special case thath has range{−1,+1}, we have that

1
2(h(xi , `0)− h(xi , `1)) ∈ {−1, 0,+1}.

Therefore, we can use the method of Section 3.3 to chooseα exactly:

α = 1

2
ln

(
W+
W−

)
(22)

where

Wb =
∑

i,`0,`1

D(i, `0, `1)[[h(xi , `0)− h(xi , `1) = 2b]] . (23)

As before,

Z = W0+ 2
√

W−W+ (24)

in this case.
How can we find a weak hypothesis to minimize this expression? A simplest first case

is to try to find the best oblivious weak hypothesis. An interesting open problem then is,
given a distributionD, to find an oblivious hypothesish :Y → {−1,+1} which minimizes
Z when defined as in Eqs. (23) and (24). We suspect that this problem may be NP-complete
when the size ofY is not fixed.

320 SCHAPIRE AND SINGER

We also do not know how to analytically find the best oblivious hypothesis when we
do not restrict the range ofh, although numerical methods may be reasonable. Note that
finding the best oblivious hypothesis is the simplest case of the natural extension of the
technique of Section 4.1 to ranking loss. Foldingα/2 intoh as in Section 4, the problem is
to find h :Y → R to minimize

Z =
∑
`0,`1

[(∑
i

D(i, `0, `1)

)
exp(h(`0)− h(`1))

]
.

This can be rewritten as

Z =
∑
`0,`1

[w(`0, `1) exp(h(`0)− h(`1))] (25)

wherew(`0, `1) =
∑

i D(i, `0, `1). In Appendix A we show that expressions of the form
given by Eq. (25) are convex, and we discuss how to minimize such expressions. (To see
that the expression in Eq. (25) has the general form of Eq. (A.1), identify thew(`0, `1)’s
with thewi ’s in Eq. (A.1), and theh(`)’s with theaj ’s.)

Since exact analytic solutions seem hard to come by for ranking loss, we next consider
approximations such as those in Section 3.1. Assuming weak hypothesesh with range in
[−1,+1], we can use the same approximation of Eq. (4) which yields

Z ≤
(

1− r

2

)
eα +

(
1+ r

2

)
e−α (26)

where

r = 1

2

∑
i,`0,`1

D(i, `0, `1)(h(xi , `1)− h(xi , `0)). (27)

As before, the right hand side of Eq. (26) is minimized when

α = 1

2
ln

(
1+ r

1− r

)
(28)

which gives

Z ≤
√

1− r 2.

Thus, a reasonable and more tractable goal for the weak learner is to try to maximize|r |.

Example. To find the oblivious weak hypothesish :Y → {−1,+1} which maximizesr ,
note that by rearranging sums,

r =
∑
`

h(`)π(`)

IMPROVED BOOSTING ALGORITHMS 321

where

π(`) = 1

2

∑
i,`′
(D(i, `′, `)− D(i, `, `′)).

Clearly,r is maximized if we seth(`) = sign(π(`)). 2

Note that, although we use this approximation to find the weak hypothesis, once the weak
hypothesis has been computed by the weak learner, we can use other methods to chooseα

such as those outlined above.

9.1. A more efficient implementation

The method described above may be time and space inefficient when there are many labels.
In particular, we naively need to maintain|Yi | · |Y −Yi | weights for each training example
(xi ,Yi), and each weight must be updated on each round. Thus, the space complexity and
time-per-round complexity can be as bad asθ(mk2).

In fact, the same algorithm can be implemented using onlyO(mk) space and time per
round. By the nature of the updates, we will show that we only need to maintain weightsvt

over{1, . . . ,m} × Y. We will maintain the condition that if̀0, `1 is a crucial pair relative
to (xi ,Yi), then

Dt (i, `0, `1) = vt (i, `0) · vt (i, `1) (29)

at all times. (Recall thatDt is zero for all other triples(i, `0, `1).)
The pseudocode for this implementation is shown in figure 5. Equation (29) can be proved

by induction. It clearly holds initially. Using our inductive hypothesis, it is straightforward
to expand the computation ofZt in figure 5 to see that it is equivalent to the computation
of Zt in figure 4. To show that Eq. (29) holds on roundt + 1, we have, for crucial pair
`0, `1:

Dt+1(i, `0, `1) =
Dt (i, `0, `1) exp

(
1
2αt (ht (xi , `0)− ht (xi , `1))

)
Zt

= vt (i, `0) exp
(

1
2αt ht (xi , `0)

)
√

Zt
· vt (i, `1) exp

(− 1
2αt ht (xi , `1)

)
√

Zt

= vt+1(i, `0) · vt+1(i, `1).

Finally, note that all space requirements and all per-round computations areO(mk), with
the possible exception of the call to the weak learner. However, if we want the weak learner
to maximize|r | as in Eq. (27), then we also only need to passmk weights to the weak

322 SCHAPIRE AND SINGER

Given:(x1,Y1), . . . , (xm,Ym) wherexi ∈ X , Yi ⊆ Y
Initialize v1(i, `) = (m · |Yi | · |Y − Yi |)−1/2

For t = 1, . . . , T :

• Train weak learner using distributionDt (as defined by Eq. (29))
• Get weak hypothesisht :X × Y → R.
• Chooseαt ∈ R.
• Update:

vt+1(i, `) =
vt (i, `)exp

(− 1
2αt Yi [`]ht (xi , `)

)
√

Zt

where

Zt =
∑

i

∑
`6∈Yi

vt (i, `)exp

(
1

2
αt ht (xi , `)

)∑
`∈Yi

vt (i, `)exp

(
−1

2
αt ht (xi , `)

)
Output the final hypothesis:

f (x, `) =
T∑

t=1

αt ht (x, `).

Figure 5. A more efficient version of AdaBoost.MR (figure 4).

learner, all of which can be computed inO(mk) time. Omittingt subscripts, we can rewrite
r as

r = 1

2

∑
i,`0,`1

D(i, `0, `1)(h(xi , `1)− h(xi , `0))

= 1

2

∑
i

∑
`0 6∈Yi ,`1∈Yi

v(i, `0)v(i, `1)(h(xi , `1)Yi [`1] + h(xi , `0)Yi [`0])

= 1

2

∑
i

[∑
`0 6∈Yi

(
v(i, `0)

∑
`1∈Yi

v(i, `1)

)
Yi [`0]h(xi , `0)

+
∑
`1∈Yi

(
v(i, `1)

∑
`0 6∈Yi

v(i, `0)

)
Yi [`1]h(xi , `1)

]

=
∑
i,`

d(i, `)Yi [`]h(xi , `) (30)

where

d(i, `) = 1

2
v(i, `)

∑
`′ : Yi [`′] 6=Yi [`]

v(i, `′).

IMPROVED BOOSTING ALGORITHMS 323

All of the weightsd(i, `) can be computed inO(mk) time by first computing the sums which
appear in this equation for the two possible cases thatYi [`] is−1 or+1. Thus, we only need
to passO(mk) weights to the weak learner in this case rather than the full distributionDt

of sizeO(mk2). Moreover, note that Eq. (30) has exactly the same form as Eq. (14) which
means that, in this setting, the same weak learner can be used for either Hamming loss or
ranking loss.

9.2. Relation to one-error

As in Section 7.2, we can use the ranking loss method for minimizing one-error, and therefore
also for single-label problems. Indeed, Freund and Schapire’s (1997) “pseudoloss”-based
algorithm AdaBoost.M2 is a special case of the use of ranking loss in which all data are
single-labeled, the weak learner attempts to maximize|rt | as in Eq. (27), andαt is set as in
Eq. (28).

As before, the natural prediction rule is

H1(x) = arg max
y

∑
t

f (x, y),

in other words, to choose the highest ranked label for instancex. We can show:

Theorem 7. With respect to any distribution D over observations(x,Y)where Y is neither
empty nor equal toY,

one-errD(H
1) ≤ (k− 1) rlossD(f).

Proof: SupposeH1(x) 6∈ Y. Then, with respect tof and observation(x,Y), misorderings
occur for all pairs̀ 1 ∈ Y and`0 = H1(x). Thus,

|{(`0, `1) ∈ (Y − Y)× Y : f (x, `1) ≤ f (x, `0)}|
|Y| · |Y − Y| ≥ 1

|Y − Y| ≥
1

k− 1
.

Taking expectations gives

1

k− 1
E(x,Y)∼D[[[H1(x) 6∈ Y]]] ≤ rlossD(f)

which proves the theorem. 2

10. Experiments

In this section, we describe a few experiments that we ran on some of the boosting algorithms
described in this paper. The first set of experiments compares the algorithms on a set of

324 SCHAPIRE AND SINGER

learning benchmark problems from the UCI repository. The second experiment does a
comparison on a large text categorization task. More details of our text-categorization
experiments appear in a companion paper (Schapire & Singer, to appear).

For multiclass problems, we compared three of the boosting algorithms:

Discrete AdaBoost.MH:In this version of AdaBoost.MH, we require that weak hypotheses
have range{−1,+1}. As described in Section 7, we setαt as in Eq. (13). The goal of
the weak learner in this case is to maximize|rt | as defined in Eq. (14).

Real AdaBoost.MH:In this version of AdaBoost.MH, we do not restrict the range of the
weak hypotheses. Since all our experiments involve domain-partitioning weak hypothe-
ses, we can set the confidence-ratings as in Section 7.1 (thereby eliminating the need
to chooseαt). The goal of the weak learner in this case is to minimizeZt as defined in
Eq. (16). We also smoothed the predictions as in Section 4.2 usingε = 1/(2mk).

Discrete AdaBoost.MR:In this version of AdaBoost.MR, we require that weak hypotheses
have range{−1,+1}. We use the approximation ofZt given in Eq. (26) and therefore
setαt as in Eq. (28) with a corresponding goal for the weak learner of maximizing|rt |
as defined in Eq. (27). Note that, in the single-label case, this algorithm is identical to
Freund and Schapire’s (1997) AdaBoost.M2 algorithm.

We used these algorithms for two-class and multiclass problems alike. Note, however, that
discrete AdaBoost.MR and discrete AdaBoost.MH are equivalent algorithms for two-class
problems.

We compared the three algorithms on a collection of benchmark problems available from
the repository at University of California at Irvine (Merz & Murphy, 1998). We used the
same experimental set-up as Freund and Schapire (1996). Namely, if a test set was already
provided, experiments were run 20 times and the results averaged (since some of the learning
algorithms may be randomized). If no test set was provided, then 10-fold cross validation
was used and rerun 10 times for a total of 100 runs of each algorithm. We tested on the same
set of benchmarks, except that we dropped the “vowel” dataset. Each version of AdaBoost
was run for 1000 rounds.

We used the simplest of the weak learners tested by Freund and Schapire (1996). This
weak learner finds a weak hypothesis which makes its prediction based on the result of a
single test comparing one of the attributes to one of its possible values. For discrete attributes,
equality is tested; for continuous attributes, a threshold value is compared. Such a hypothesis
can be viewed as a one-level decision tree (sometimes called a “decision stump”). The best
hypothesis of this form which optimizes the appropriate learning criterion (as listed above)
can always be found by a direct and efficient search using the methods described in this
paper.

Figure 6 compares the relative performance of Freund and Schapire’s AdaBoost.M2 algo-
rithm (here called “discrete AdaBoost.MR”) to the new algorithm, discrete AdaBoost.MH.
Each point in each scatterplot gives the (averaged) error rates of the two methods for a single
benchmark problem; that is, thex-coordinate of a point gives the error rate for discrete Ada-
Boost.MR, and they-coordinate gives the error rate for discrete AdaBoost.MH. (Since the
two methods are equivalent for two-class problems, we only give results for the multiclass
benchmarks.) We have provided scatterplots for 10, 100 and 1000 rounds of boosting, and

IMPROVED BOOSTING ALGORITHMS 325

Figure 6. Comparison of discrete AdaBoost.MH and discrete AdaBoost.MR on 11 multiclass benchmark prob-
lems from the UCI repository. Each point in each scatterplot shows the error rate of the two competing algorithms
on a single benchmark. Top and bottom rows give training and test errors, respectively, for 10, 100 and 1000
rounds of boosting. (However, on one benchmark dataset, the error rates fell outside the given range when only
10 rounds of boosting were used.)

326 SCHAPIRE AND SINGER

for test and train error rates. It seems rather clear from these figures that the two methods are
generally quite evenly matched with a possible slight advantage to AdaBoost.MH. Thus,
for these problems, the Hamming loss methodology gives comparable results to Freund and
Schapire’s method, but has the advantage of being conceptually simpler.

Next, we assess the value of using weak hypotheses which give confidence-rated pre-
dictions. Figure 7 shows similar scatterplots comparing real AdaBoost.MH and discrete
AdaBoost.MH. These scatterplots show that the real version (with confidences) is overall
more effective at driving down the training error, and also has an advantage on the test error
rate, especially for a relatively small number of rounds. By 1000 rounds, however, these
differences largely disappear.

In figures 8 and 9, we give more details on the behavior of the different versions of Ada-
Boost. In figure 8, we compare discrete and real AdaBoost.MH on 16 different problems
from the UCI repository. For each problem we plot for each method its training and test error
as a function of the number of rounds of boosting. Similarly, in figure 8 we compare discrete
AdaBoost.MR, discrete AdaBoost.MH, and real AdaBoost.MH on multiclass problems.

After examining the behavior of the various error curves, the potential for improvement
of AdaBoost with real-valued predictions seems to be greatest on larger problems. The
most noticeable case is the “letter-recognition” task, the largest UCI problem in our suite.
This is a 26-class problem with 16,000 training examples and 4,000 test examples. For this
problem, the training error after 100 rounds is 32.2% for discrete AdaBoost.MR, 28.0% for
discrete AdaBoost.MH, and 19.5% for real AdaBoost.MH. The test error rates after 100
rounds are 34.1%, 30.4% and 22.3%, respectively. By 1,000 rounds, this gap in test error
has narrowed somewhat to 19.7%, 17.6% and 16.4%.

Finally, we give results for a large text-categorization problem. More details of our text-
categorization experiments are described in a companion paper (Schapire & Singer, to
appear). In this problem, there are six classes: DOMESTIC, ENTERTAINMENT, FINANCIAL ,
INTERNATIONAL, POLITICAL , WASHINGTON. The goal is to assign a document to one, and
only one, of the above classes. We use the same weak learner as above, appropriately
modified for text; specifically, the weak hypotheses make their predictions based on tests
that check for the presence or absence of a phrase in a document. There are 142,727 training
documents and 66,973 test documents.

In figure 10, we compare the performance of discrete AdaBoost.MR, discrete Ada-
Boost.MH and real AdaBoost.MH. The figure shows the training and test error as a function
of number of rounds. Thex-axis shows the number of rounds (using a logarithmic scale),
and they-axis the training and test error. Real AdaBoost.MH dramatically outperforms
the other two methods, a behavior that seems to be typical on large text-categorization
tasks. For example, to reach a test error of 40%, discrete AdaBoost.MH takes 16,938
rounds, and discrete AdaBoost.MR takes 33,347 rounds. In comparison, real AdaBoost.MH
takes only 268 rounds, more than a sixty-fold speed-up over the best of the other two
methods!

As happened in this example, discrete AdaBoost.MH seems to consistently outperform
discrete AdaBoost.MR on similar problems. However, this might be partially due to the
inferior choice ofαt using the approximation leading to Eq. (28) rather than the exact
method which gives the choice ofαt in Eq. (22).

IMPROVED BOOSTING ALGORITHMS 327

Figure 7. Comparison of discrete and real AdaBoost.MH on 26 binary and multiclass benchmark problems from
the UCI repository. (See caption for figure 6.)

328 SCHAPIRE AND SINGER

Figure 8. Comparison of discrete and real AdaBoost.MH on 16 binary problems from UCI repository. For each
problem we show the training (left) and test (right) errors as a function of number of rounds of boosting.

11. Concluding remarks

In this paper, we have described several improvements to Freund and Schapire’s AdaBoost
algorithm. In the new framework, weak hypotheses may assign confidences to each of their
predictions. We described several generalizations for multiclass problems. The experimental
results with the improved boosting algorithms show that dramatic improvements in training
error are possible when a fairly large amount of data is available. However, on small and

IMPROVED BOOSTING ALGORITHMS 329

Figure 9. Comparison of discrete AdaBoost.MR, discrete AdaBoost.MH, and real AdaBoost.MH on 11 mul-
ticlass problems from UCI repository. For each problem we show the training (left) and test (right) errors as a
function of number of rounds of boosting.

Figure 10. Comparison of the training (left) and test (right) error using three boosting methods on a six-class
text classification problem from the TREC-AP collection.

330 SCHAPIRE AND SINGER

noisy datasets, the rapid decrease of training error is often accompanied with overfitting
which sometimes results in rather poor generalization error. A very important research goal
is thus to control, either directly or indirectly, the complexity of the strong hypotheses
constructed by boosting.

Several applications can make use of the improved boosting algorithms. We have imple-
mented a system called BoosTexter for multiclass multi-label text and speech categoriza-
tion and performed an extensive set of experiments with this system (Schapire & Singer,
to appear). We have also used the new boosting framework for devising efficient ranking
algorithms (Freund et al., 1998).

There are other domains that may make use of the new framework for boosting. For
instance, it might be possible to train non-linear classifiers, such as neural networks using
Z as the objective function. We have also mentioned several open problems such as finding
an oblivious hypothesis into{−1,+1} which minimizesZ in AdaBoost.MR.

Finally, there seem to be interesting connections between boosting and other models
and their learning algorithms such as generalized additive models (Friedman et al., 1998)
and maximum entropy methods (Csisz´ar & Tusnády, 1984) which form a new and exciting
research arena.

Appendix A: Properties of Z

In this appendix, we show that the function defined by Eq. (3) is a convex function in the
parametersa1, . . . ,aN and describe a numerical procedure based on Newton’s method to
find the parameters which minimize it.

To simplify notation, letui j = −yi gj (xi). We will analyze the following slightly more
general form of Eq. (3)

m∑
i=1

wi exp

(
N∑

j=1

aj ui j

)
,

(
wi ≥ 0,

∑
i

wi = 1

)
. (A.1)

Note that in all cases discussed in this paperZ is of the form given by Eq. (A.1). We
therefore refer for brevity to the function given by Eq. (A.1) asZ. The first and second
order derivatives ofZ with respect toa1, . . . ,aN are

∇k Z = ∂Z

ak
=

m∑
i=1

wi exp

(
N∑

j=1

aj ui j

)
uik (A.2)

∇2
kl Z =

∂2Z

akal
=

m∑
i=1

wi exp

(
N∑

j=1

aj ui j

)
uikuil . (A.3)

Denoting byuT
i = (ui 1, . . . ,ui N) we can rewrite∇2Z as

∇2Z =
m∑

i=1

wi exp

(
N∑

j=1

aj ui j

)
uuT .

IMPROVED BOOSTING ALGORITHMS 331

Now, for any vectorx ∈ RN we have that,

xT∇2Zx = xT

(
m∑

i=1

wi exp

(
N∑

j=1

aj ui j

)
uT

i ui

)
x

=
m∑

i=1

wi exp

(
N∑

j=1

aj ui j

)
xTui uT

i x

=
m∑

i=1

wi exp

(
N∑

j=1

aj ui j

)
(x · ui)

2 ≥ 0.

Hence,∇2Z is positive semidefinite which implies thatZ is convex with respect toa1, . . . ,aN

and has a unique minimum (with the exception of pathological cases).
To find the values ofa1, . . . ,aN that minimizeZ we can use iterative methods such as

Newton’s method. In short, for Newton’s method the new set of parameters is updated from
the current set as follows

a← a− (∇2Z)−1∇ZT , (A.4)

whereaT = (a1, . . . ,aN).
Let

vi = 1

Z
wi exp

(
N∑

j=1

aj ui j

)
,

and denote by

Ei∼v[ui] =
n∑

i=1

vi ui and Ei∼v
[
uT

i ui
] = n∑

i=1

vi uT
i ui .

Then, substituting the values for∇Z and∇2Z from Eqs. (A.2) and (A.3) in Eq. (A.4), we
get that the Newton parameter update is

a← a− (Ei∼v
[
uT

i ui]
)−1

Ei∼v[ui].

Typically, the above update would result in a new set of parameters that attains a smaller
value ofZ than the current set. However, such a decrease is notalwaysguaranteed. Hence,
the above iteration should be augmented with a test on the value ofZ and a line search in
the direction of(∇2Z)−1∇ZT in case of an increase in the value ofZ. (For further details,
see for instance Fletcher (1987)).

332 SCHAPIRE AND SINGER

Appendix B: Bounding the generalization error

In this appendix, we prove a bound on the generalization error of the combined hypothesis
produced by AdaBoost in terms of the margins of the training examples. An outline of the
proof that we present here was communicated to us by Peter Bartlett. It uses techniques
developed by Bartlett (1998) and Schapire et al. (1998).

LetH be a set of real-valued functions on domainX . We let co(H) denote theconvex
hull ofH, namely,

co(H) =
{

f : x 7→
∑

h

αhh(x) |αh ≥ 0,
∑

h

αh = 1

}

where it is understood that each of the sums above are over the finite subset of hypotheses in
H for whichαh > 0. We assume here that the weights on the hypotheses are nonnegative. The
result can be generalized to handle negative weights simply by adding toH all hypotheses
−h for h ∈ H.

The main result of this appendix is the theorem below. This theorem is identical to
Schapire et al.’s (1998) Theorem 2 except that we allow the weak hypotheses to be real-
valued rather than binary.

We use Pr(x,y)∼D[A] to denote the probability of the eventA when the example(x, y) is
chosen according toD, and Pr(x,y)∼S[A] to denote probability with respect to choosing an
example uniformly at random from the training set. When clear from context, we abbreviate
these by PrD[A] and PrS[A]. We use ED[A] and ES[A] to denote expected value in a similar
manner.

To prove the theorem, we will first need to define the notion of a sloppy cover. For a class
F of real-valued functions, a training setS of sizem, and real numbersθ > 0 andε ≥ 0,
we say that a function clasŝF is anε-sloppyθ -cover ofF with respect to Sif, for all f in
F , there existsf̂ in F̂ with Prx∼S[| f̂ (x)− f (x)| > θ] ≤ ε. LetN (F, θ, ε,m) denote the
maximum, over all training setsSof sizem, of the size of the smallestε-sloppyθ -cover of
F with respect toS.

Theorem 8. Let D be a distribution overX × {−1,+1}, and let S be a sample of m
examples chosen independently at random according toD. Suppose the weak-hypothesis
spaceH of [−1,+1]-valued functions has pseudodimension d, and letδ > 0. Assume that
m≥ d ≥ 1. Then with probability at least1− δ over the random choice of the training set
S, every weighted average function f∈ co(H) satisfies the following generalization-error
bound for allθ > 0:

PrD[y f (x) ≤ 0] ≤ PrS[y f (x) ≤ θ] + O

(
1√
m

(
d log2(m/d)

θ2
+ log

(
1

δ

))1/2
)
.

Proof: Using techniques from Bartlett (1998), Schapire et al. (1998, Theorem 4) give a
theorem which states that, forε > 0 andθ > 0, the probability over the random choice of

IMPROVED BOOSTING ALGORITHMS 333

training setS that there exists any functionf ∈ co(H) for which

PrD[y f (x) ≤ 0] > PrS[y f (x) ≤ θ] + ε

is at most

2N (co(H), θ/2, ε/8, 2m) e−ε
2m/32. (B.1)

We prove Theorem 8 by applying this result. To do so, we need to construct sloppy covers
for co(H).

Haussler and Long (1995, Lemma 13) prove that

N (H, θ,0,m) ≤
d∑

i=0

(
m

i

)⌊
1

θ

⌋i

≤
(

em

θd

)d

.

Fix any setS⊆ X of sizem. Then this result means that there existsĤ ⊆ H of cardinality
(em/(θd))d such that for allh ∈ H there existŝh ∈ Ĥ such that

∀x ∈ S: |h(x)− ĥ(x)| ≤ θ. (B.2)

Now let

ĈN =
{

f : x 7→ 1

N

N∑
i=1

hi (x) | hi ∈ Ĥ
}

be the set of unweighted averages ofN elements inĤ. We will show thatĈN is a sloppy
cover of co(H).

Let f ∈ co(H). Then we can write

f (x) =
∑

j

α j h j (x)

whereα j ≥ 0 and
∑

j α j = 1. Let

f̂ (x) =
∑

j

α j ĥ j (x)

whereĥ j ∈ Ĥ is chosen so thath j andĥ j satisfy Eq. (B.2). Then for allx ∈ S,

| f (x)− f̂ (x)| =
∣∣∣∣∣∑

j

α j (h j (x)− ĥ j (x))

∣∣∣∣∣
≤
∑

j

α j |h j (x)− ĥ j (x)|

≤ θ. (B.3)

334 SCHAPIRE AND SINGER

Next, let us define a distributionQ over functions inĈN in which a functiong ∈ ĈN is
selected by choosinĝh1, . . . , ĥN independently at random according to the distribution over
Ĥ defined by theα j coefficients, and then settingg = (1/N)

∑N
i=1 ĥi . Note that, for fixed

x, f̂ (x) = Eg∼Q[g(x)]. We therefore can use Chernoff bounds to show that

Prg∼Q[| f̂ (x)− g(x)| > θ] ≤ 2e−Nθ2/2.

Thus,

Eg∼Q[Pr(x,y)∼S[| f̂ (x)− g(x)| > θ]]

= E(x,y)∼S[Prg∼Q[| f̂ (x)− g(x)| > θ]] ≤ 2e−Nθ2/2.

Therefore, there existsg ∈ ĈN such that

Pr(x,y)∼S[| f̂ (x)− g(x)| > θ] ≤ 2e−Nθ2/2.

Combined with Eq. (B.3), this means thatĈN is a 2e−Nθ2/2-sloppy 2θ -cover of co(H).
Since|ĈN | ≤ |Ĥ|N , we have thus shown that

N (co(H), 2θ, 2e−Nθ2/2,m) ≤
(

em

θd

)d N

.

SettingN = (32/θ2) ln(16/ε), this implies that Eq. (B.1) is at most

2

(
8em

θd

)(32d/θ2) ln(16/ε)

e−ε
2m/32. (B.4)

Let

ε = 16

(
ln(2/δ)

8m
+ 2d

mθ2
ln

(
8em

d

)
ln

(
em

d

))1/2

. (B.5)

Then the logarithm of Eq. (B.4) is

ln 2− 16d

θ2
ln

(
8em

θd

)
ln

(
ln(2/δ)

8m
+ 2d

mθ2
ln

(
8em

d

)
ln

(
em

d

))
− ln(2/δ)− 16d

θ2
ln

(
8em

d

)
ln

(
em

d

)
≤ ln δ − 16d

θ2

(
ln

(
8em

d

)
ln

(
em

d

)
− ln

(
8em

θd

)
ln

(
mθ2

2d

))
≤ ln δ.

IMPROVED BOOSTING ALGORITHMS 335

For the first inequality, we used the fact that ln(8em/d) ≥ ln(em/d) ≥ 1. For the second
inequality, note that

ln

(
8em

θd

)
ln

(
mθ2

2d

)
is increasing as a function ofθ . Therefore, sinceθ ≤ 1, it is upper bounded by

ln

(
8em

d

)
ln

(
m

2d

)
≤ ln

(
8em

d

)
ln

(
em

d

)
.

Thus, for the choice ofε given in Eq. (B.5), the bound in Eq. (B.4) is at mostδ.
We have thus proved the bound of the theorem for a single given choice ofθ > 0 with

high probability. We next prove that with high probability, the bound holds simultaneously
for all θ > 0. Letε(θ, δ) be the choice ofε given in Eq. (B.5), regarding the other parameters
as fixed. We have shown that, for allθ > 0, the probability that

PrD[y f (x) ≤ 0] > PrS[y f (x) ≤ θ] + ε(θ, δ) (B.6)

is at mostδ. Let2 = {1, 1/2, 1/4, . . .}. By the union bound, this implies that, with proba-
bility at least 1− δ,

PrD[y f (x) ≤ 0] ≤ PrS[y f (x) ≤ θ] + ε(θ, δθ/2) (B.7)

for all θ ∈ 2. This is because, for fixedθ ∈ 2, Eq. (B.7) holds with probability 1− δθ/2.
Therefore, the probability that it fails to hold foranyθ ∈ 2 is at most

∑
θ∈2 δθ/2= δ.

Assume we are in the high probability case that Eq. (B.7) holds for allθ ∈ 2. Then given
anyθ > 0, chooseθ ′ ∈ 2 such thatθ/2≤ θ ′ ≤ θ . We have

PrD[y f (x) ≤ 0] ≤ PrS[y f (x) ≤ θ ′] + ε(θ ′, δθ ′/2)
≤ PrS[y f (x) ≤ θ] + ε(θ/2, δθ/4).

Since

ε(θ/2, δθ/4) = O

(
1√
m

(
d log2(m/d)

θ2
+ log

(
1

δ

))1/2
)
,

this completes the proof. 2

Acknowledgments

We would like to thank Yoav Freund and Raj Iyer for many helpful discussions. Thanks
also to Peter Bartlett for showing us the bound on generalization error in Section 5 using
pseudodimension, and to Roland Freund and Tommi Jaakkola for useful comments on
numerical methods.

336 SCHAPIRE AND SINGER

References

Bartlett, P.L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights
is more important than the size of the network.IEEE Transactions on Information Theory, 44(2), 525–536.

Bauer, E., & Kohavi, R. An empirical comparison of voting classification algorithms: Bagging, boosting, and
variants.Machine Learning,36(1/2):105–139, 1999.

Baum, E.B., & Haussler, D. (1989). What size net gives valid generalization?Neural Computation, 1(1), 151–160.
Blum, A. (1997). Empirical support for winnow and weighted-majority based algorithms: results on a calendar

scheduling domain.Machine Learning, 26, 5–23.
Breiman, L. (1998). Arcing classifiers.The Annals of Statistics, 26(3), 801–849.
Csiszár, I., & Tusnády, G. (1984). Information geometry and alternaning minimization procedures.Statistics and

Decisions, Supplement Issue, 1, 205–237.
Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees:

Bagging, boosting, and randomization.Machine Learning,to appear.
Dietterich, T.G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes.

Journal of Artificial Intelligence Research, 2, 263–286.
Drucker, H., & Cortes, C. (1996). Boosting decision trees. InAdvances in Neural Information Processing Systems,

8, MIT Press.
Fletcher, R. (1987).Practical Methods of Optimization(second edition), John Wiley.
Freund, Y., Iyer, R., Schapire, R.E., & Singer, Y. (1998). An efficient boosting algorithm for combining preferences.

Machine Learning: Proceedings of the Fifteenth International Conference.
Freund, Y., & Schapire, R.E. (1996). Experiments with a new boosting algorithm.Machine Learning: Proceedings

of the Thirteenth International Conference(pp. 148–156).
Freund, Y., & Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and an application to

boosting.Journal of Computer and System Sciences, 55(1), 119–139.
Freund, Y., Schapire, R.E., Singer, Y., & Warmuth, M.K. (1997). Using and combining predictors that specialize.

Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing(pp. 334–343).
Friedman, J., Hastie, T., & Tibshirani, R. (1998).Additive logistic regression: A statistical view of boosting

Technical Report.
Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net and other learning appli-

cations.Information and Computation, 100(1), 78–150.
Haussler, D., & Long, P.M. (1995). A generalization of Sauer’s lemma.Journal of Combinatorial Theory, Series

A, 71(2), 219–240.
Kearns, M., & Mansour, Y. (1996). On the boosting ability of top-down decision tree learning algorithms.Pro-

ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing.
Maclin, R., & Opitz, D. (1997). An empirical evaluation of bagging and boosting.Proceedings of the Fourteenth

National Conference on Artificial Intelligence(pp. 546–551).
Margineantu, D.D., & Dietterich, T.G. (1997). Pruning adaptive boosting.Machine Learning: Proceedings of the

Fourteenth International Conference(pp. 211–218).
Merz, C.J., & Murphy, P.M. (1998).UCI repository of machine learning databases. http://www.ics.uci.edu/
∼mlearn/MLRepository.html.

Quinlan, J.R. (1996). Bagging, boosting, and C4.5.Proceedings of the Thirteenth National Conference on Artificial
Intelligence(pp. 725–730).

Schapire, R.E. (1997). Using output codes to boost multiclass learning problems.Machine Learning: Proceedings
of the Fourteenth International Conference(pp. 313–321).

Schapire, R.E., Freund, Y., Bartlett, P., & Lee, W.S. (1998). Boosting the margin: A new explanation for the
effectiveness of voting methods.The Annals of Statistics, 26(5), 1651–1686.

Schapire, R.E., & Singer, Y. BoosTexter: A boosting-based system for text categorization.Machine Learning,to
appear.

Schwenk, H., & Bengio, Y. (1998). Training methods for adaptive boosting of neural networks. InAdvances in
Neural Information Processing Systems 10. MIT Press.

