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Abstract. We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particu-
larly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified
analysis of AdaBoost in this setting, and we show how this analysis can be used to find improved parameter settings
as well as a refined criterion for training weak hypotheses. We give a specific method for assigning confidences
to the predictions of decision trees, a method closely related to one used by Quinlan. This method also suggests a
technique for growing decision trees which turns out to be identical to one proposed by Kearns and Mansour. We
focus next on how to apply the new boosting algorithms to multiclass classification problems, particularly to the
multi-label case in which each example may belong to more than one class. We give two boosting methods for
this problem, plus a third method based on output coding. One of these leads to a new method for handling the
single-label case which is simpler but as effective as techniques suggested by Freund and Schapire. Finally, we
give some experimental results comparing a few of the algorithms discussed in this paper.

Keywords: boosting algorithms, multiclass classification, output coding, decision trees

1. Introduction

Boosting is a method of finding a highly accurate hypothesis (classification rule) by com-
bining many “weak” hypotheses, each of which is only moderately accurate. Typically, each
weak hypothesis is a simple rule which can be used to generate a predicted classification
for any instance. In this paper, we study boosting in an extended framework in which each
weak hypothesis generates not only predicted classifications, but also self-rated confidence
scores which estimate the reliability of each of its predictions.

There are two essential questions which arise in studying this problem in the boosting
paradigm. First, how do we modify known boosting algorithms designed to handle only
simple predictions to use confidence-rated predictions in the most effective manner possible?
Second, how should we design weak learners whose predictions are confidence-rated in the
manner described above? In this paper, we give answers to both of these questions. The
resultis a powerful set of boosting methods for handling more expressive weak hypotheses,
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as well as an advanced methodology for designing weak learners appropriate for use with
boosting algorithms.

We base our work on Freund and Schapire’'s (1997) AdaBoost algorithm which has
received extensive empirical and theoretical study (Bauer & Kohavi, to appear; Breiman,
1998; Dietterich, to appear; Dietterich & Bakiri, 1995; Drucker & Cortes, 1996; Freund &
Schapire, 1996; Maclin & Opitz, 1997; Margineantu & Dietterich, 1997; Quinlan, 1996;
Schapire, 1997; Schapire etal., 1998; Schwenk & Bengio, 1998). To boost using confidence-
rated predictions, we propose a generalization of AdaBoost in which the main parameters
a¢ are tuned using one of a number of methods that we describe in detail. Intuitivelyshe
control the influence of each of the weak hypotheses. To determine the proper tuning of these
parameters, we begin by presenting a streamlined version of Freund and Schapire’s analysis
which provides a clean upper bound on the training error of AdaBoost when the parameters
oy are left unspecified. For the purposes of minimizing training error, this analysis provides
an immediate clarification of the criterion that should be used in sedtings discussed
below, this analysis also provides the criterion that should be used by the weak learner in
formulating its weak hypotheses.

Based on this analysis, we give a number of methods for choaginfe show that the
optimal tuning (with respect to our criterion) @f can be found numerically in general, and
we give exact methods of settiag in special cases.

Freund and Schapire also considered the case in which the individual predictions of the
weak hypotheses are allowed to carry a confidence. However, we show that their setting of
oy is only an approximation of the optimal tuning which can be found using our techniques.

We next discuss methods for designing weak learners with confidence-rated predictions
using the criterion provided by our analysis. For weak hypotheses which partition the in-
stance space into a small number of equivalent prediction regions, such as decision trees, we
present and analyze a simple method for automatically assigning a level of confidence to the
predictions which are made within each region. This method turns out to be closely related
to a heuristic method proposed by Quinlan (1996) for boosting decision trees. Our analysis
can be viewed as a partial theoretical justification for his experimentally successful method.

Our technique also leads to a modified criterion for selecting such domain-partitioning
weak hypotheses. In other words, rather than the weak learner simply choosing a weak
hypothesis with low training error as has usually been done in the past, we show that,
theoretically, our methods work best when combined with a weak learner which minimizes
an alternative measure of “badness.” For growing decision trees, this measure turns out to
be identical to one earlier proposed by Kearns and Mansour (1996).

Although we primarily focus on minimizing training error, we also outline methods that
can be used to analyze generalization error as well.

Next, we show how to extend the methods described above for binary classification
problems to the multiclass case, and, more generally, tontlig-labelcase in which each
example may belong to more than one class. Such problems arise naturally, for instance, in
text categorization problems where the same document (say, a news article) may easily be
relevant to more than one topic (such as politics, sports, etc.).

Freund and Schapire (1997) gave two algorithms for boosting multiclass problems, but
neither was designed to handle the multi-label case. In this paper, we present two new
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extensions of AdaBoost for multi-label problems. In both cases, we show how to apply the
results presented in the first half of the paper to these new extensions.

In the first extension, the learned hypothesis is evaluated in terms of its ability to predict a
good approximation of the set of labels associated with a given instance. As a special case,
we obtain a novel boosting algorithm for multiclass problems in the more conventional
single-label case. This algorithm is simpler but apparently as effective as the methods
given by Freund and Schapire. In addition, we propose and analyze a modification of
this method which combines these techniques with Dietterich and Bakiri's (1995) output-
coding method. (Another method of combining boosting and output coding was proposed
by Schapire (1997). Although superficially similar, his method is in fact quite different from
what is presented here.)

In the second extension to multi-label problems, the learned hypothesis instead predicts,
for a given instance, a ranking of the labels, and it is evaluated based on its ability to place
the correct labels high in this ranking. Freund and Schapire’s AdaBoost.M2 is a special
case of this method for single-label problems.

Although the primary focus of this paper is on theoretical issues, we give some ex-
perimental results comparing a few of the new algorithms. We obtain especially dramatic
improvements in performance when a fairly large amount of data is available, such as large
text categorization problems.

2. Ageneralized analysis of Adaboost

Let S= ((X1, V1), ..., Xm, Ym)) be a sequence of training examples where éastance
X belongs to alomainor instance spacd’, and eacliabel y belongs to a finitéabel space
Y. For now, we focus on binary classification problems in whick- {—1, +1}.

We assume access tavaakor basdearning algorithm which accepts as input a sequence
of training example$ along with a distributiorD over{1, ..., m}, i.e., over the indices of
S. Given such input, the weak learner computegeak(or basé hypothesis hin general,

h has the formh: X — R. We interpret the sign dfi(x) as the predicted labe or
+1) to be assigned to instange and the magnitudéh(x)| as the “confidence” in this
prediction. Thus, ifh(x) is close to or far from zero, it is interpreted as a low or high
confidence prediction. Although the rangehaihay generally include all real numbers, we
will sometimes restrict this range.

The idea of boosting is to use the weak learner to form a highly accurate prediction rule
by calling the weak learner repeatedly on different distributions over the training examples.
A slightly generalized version of Freund and Schapire’s AdaBoost algorithm is shown in
figure 1. The main effect of AdaBoost’s update rule, assuraing- 0, is to decrease
or increase the weight of training examples classified correctly or incorrecthy Gye.,
examples for whichy; andh;(x;) agree or disagree in sign).

Our version differs from Freund and Schapire’s in that (1) weak hypotheses can have range
over all of R rather than the restricted ranged, +1] assumed by Freund and Schapire;
and (2) whereas Freund and Schapire prescribe a specific cheigend leave this choice
unspecified and discuss various tunings below. Despite these differences, we continue to
refer to the algorithm of figure 1 as “AdaBoost.”
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Given: (x1, y1), ..., Xm: Ym); X € X,y € {1, +1}
Initialize D1(i) = 1/m.
Fort=1,..., T:

o Train weak learner using distributidd.
e Get weak hypothesig; : X — R.

e Chooseax; € R.

e Update:

Dy (i) exp(—at Yiht (%))

Drya(i) = Z
t

whereZ; is a normalization factor (chosen so tfiat, 1 will be a distribution).

Output the final hypothesis:

.
H(x) = sign(Z athg (x)).

t=1
Figure L A generalized version of AdaBoost.

As discussed below, when the range of elcls restricted to {1, +1], we can choose
ot appropriately to obtain Freund and Schapire’s original AdaBoost algorithm (ignoring
superficial differences in notation). Here, we give a simplified analysis of the algorithm in
which e is left unspecified. This analysis yields an improved and more general method for
choosingy;.

Let

N
f(x) = Zatht(x)
t=1

so thatH (x) = sign(f (x)). Also, for any predicater, let [z] be 1 if = holds and 0
otherwise. We can prove the following bound on the training errdt of

Theorem 1. Assuming the notation of figure 1, the following bound holds on the training
error of H:

1 . T
I HOO # i < gzt.
Proof: By unraveling the update rule, we have that

exp(— > o Yihe (X))
m[T; Z:

_exp(—yi f (%))

o om[[Ze

Dria(i) =

@
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Moreover, ifH(x;) # y; theny; f (xj) < 0 implying that exjg—y; f (x;)) > 1. Thus,
[HX) # il < exp(—yi f(x)). (2

Combining Egs. (1) and (2) gives the stated bound on training error since

IA

1 1
m 2 THO0 # 9T = 05 expty f4)

=> (U zt) Dra(i)

I
=]’[zt.
t

O

The important consequence of Theorem 1 is that, in order to minimize training error,
a reasonable approach might be to greedily minimize the bound given in the theorem by
minimizing Z; on each round of boosting. We can apply this idea both in the choieg of
and as a general criterion for the choice of weak hypothegsis

Before proceeding with a discussion of how to apply this principle, however, we digress
momentarily to give a slightly different view of AdaBoost. LEt= {g;, ..., gn} be the
space of all possible weak hypotheses, which, for simplicity, we assume for the moment
to be finite. Then AdaBoost attempts to find a linear threshold of these weak hypotheses
which gives good predictions, i.e., a function of the form

N
H(Xx) = sign( a;g; (x)).
j=1

J

By the same argument used in Theorem 1, it can be seen that the number of training mistakes
of H is at most

m N
zexp(—yi Sag, <xi>). @
i—1 =1

AdaBoost can be viewed as a method for minimizing the expression in Eg. (3) over the
coefficientsa; by a greedy coordinate-wise search: On each ropmdoordinatg is chosen
corresponding tdn;, that is,h; = g;. Next, the value of the coefficiew; is modified by
addingo; to it; all other coefficients are left unchanged. It can be verified that the quantity
Z; measures exactly the ratio of the new to the old value of the exponential sum in Eq. (3) so
that[ ], Z, is the final value of this expression (assuming we start with;&lset to zero).

See Friedman, Hastie and Tibshirani (1998) for further discussion of the rationale for
minimizing Eq. (3), including a connection to logistic regression. See also Appendix A for
further comments on how to minimize expressions of this form.



302 SCHAPIRE AND SINGER

3. Choosingay
To simplify notation, let us fix and letu; = yihi(Xj), Z = Z;, D = D¢, h = h; and
o = «o;. In the following discussion, we assume without loss of generality Bia} £ 0

foralli. Our goal is to findr which minimizes or approximately minimiz&sas a function
of «. We describe a number of methods for this purpose.

3.1. Deriving Freund and Schapire’s choiceogf
We begin by showing how Freund and Schapire’s (1997) version of AdaBoost can be derived

as a special case of our new version. For weak hypothesdth range 1, +1], their
choice ofa can be obtained by approximatiZgas follows:

Z= Z D(i)e U
14y o 1—uy
sZDo)( €t e“). @)

This upper bound is valid sinag € [—1, +1], and is in fact exact if has rang¢—1, +1}
(so thatu; € {—1, +1}). (A proof of the bound follows immediately from the convexity of
e~ ** for any constantr € R.) Next, we can analytically chooseto minimize the right
hand side of Eq. (4) giving

— E |n ﬂ
*=2M\ 1y
wherer =), D(i)u;. Plugging into Eq. (4), this choice gives the upper bound

Z<+1-r2

We have thus proved the following corollary of Theorem 1 which is equivalent to Freund
and Schapire’s (1997) Theorem 6:

Corollary 1 (Freund & Schapire, 1997). Using the notation of figure 1, assume eagh h
has rangd —1, +1] and that we choose

_1|n 1+rt
“a=s0\ 1

where

re=_ Du@)yihi(x) = Ei-p [yih(x)].
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Then the training error of H is at most

e

t=1

Thus, with this setting o, it is reasonable to try to find; that maximizegr;| on each
round of boosting. This quantity is a natural measure of the correlation of the predictions
of hy and the labels; with respect to the distributiody. It is closely related to ordinary
error since, ith; has rangg¢—1, +1} then

1—r¢
2

Pri~p[ht(Xi) # %] =

S0 maximizing is equivalent to minimizing error. More generallyhifhas rangef1, +1]
then(1 —ry)/2 is equivalent to the definition of error used by Freund and Schagiie (
their notation).

The approximation used in Eq. (4) is essentially a linear upper bound of the fuaction
ontherange € [—1, +1]. Clearly, other upper bounds which give a tighter approximation
could be used instead, such as a quadratic or piecewise-linear approximation.

3.2. A numerical method for the general case

We next give a general numerical method for exactly minimizZngith respect tax. Recall
that our goal is to find: which minimizes

Z(@)=7Z = Z D(i)e 4.

The first derivative o is

dz . ,
Z () = = Z D(i)u; e

=-Z Z Desa(i)ui

by definition of Dy, 1. Thus, if D¢, is formed using the value af; which minimizesz;
(so thatZ’'(«) = 0), then we will have that

Z Dry1()ui = Ei~p,, [Yihi ()] = 0.

In words, this means that, with respect to distributidn ;, the weak hypothesis, will be
exactly uncorrelated with the labgys

It can easily be verified th&” («) = d?Z /da? is strictly positive for ali € R (ignoring
the trivial case that; = O for alli). ThereforeZ’'(«) can have at most one zero. (See also
Appendix A.)
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Moreover, if there exist$ such thatu; <O then Z'(«) — co asa — oco. Similarly,
Z' (o) > —o0 asa — —oo if u; >0 for somei. This means thaZ'(«) has at least one
root, except in the degenerate case that all non-zés@re of the same sign. Furthermore,
becaus&’ () is strictly increasing, we can numerically find the unique minimurd Gf)
by a simple binary search, or more sophisticated numerical methods.

Summarizing, we have argued the following:

Theorem 2.
1. Assumetheséyihi(x):i =1, ..., m}includes both positive and negative values. Then
there exists a unique choice @f which minimizes £

2. For this choice ofy, we have that
Ei~D1+1[yi ht (Xi )] = 0

3.3. An analytic method for weak hypotheses that abstain

We next consider a natural special case in which the choiae @dn be computed analyti-
cally rather than numerically.

Suppose that the range of each weak hypothgsis now restricted tg—1, 0, +1}. In
other words, a weak hypothesis can make a definitive prediction that the labkbis+1,
or it can “abstain” by predicting 0. No other levels of confidence are allowed. By allowing
the weak hypothesis to effectively say “I don’t know,” we introduce a model analogous to
the “specialist” model of Blum (1997), studied further by Freund et al. (1997).

For fixedt, let Wy, W_1, W, 1 be defined by

Wy, = Z D(i)

i:ui=b
forb € {—1,0, +1}, where, as beforay; = y;h{(X;), and where we continue to omit the
subscriptt when clear from context. Also, for readability of notation, we will often abbre-

viate subscripts-1 and—1 by the symbolst and— so thatW.; is written W,., andW_;
is writtenW_. We can calculat& as:

Z=Y D@)e™
i
= Y Y pie
be{—1,0,+1}i :ui=b

=W0+W_e”+W+e’“.

It can easily be verified tha& is minimized when

1 (W,
= ZIn{-—-).
o zn(w>
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For this setting ofr, we have

Z =Wy + 2y/W_W,. (5)

For this case, Freund and Schapire’s original AdaBoost algorithm would instead have
made the more conservative choice

1 (W++%Wo>
a=cIn—2—
27 \W. + IW,

giving a value ofZ which is necessarily inferior to Eq. (5), but which Freund and Schapire
(1997) are able to upper bound by

Z< 2\/<W_ + %W()) (W+ + %WO). (6)

If Wo = 0 (so thath has rangd—1, +1}), then the choices af and resulting values ot
are identical.

4. A criterion for finding weak hypotheses

So far, we have only discussed using Theorem 1 to chapsk general, however, this
theorem can be applied more broadly to guide us in the design of weak learning algorithms
which can be combined more powerfully with boosting.

In the past, it has been assumed that the goal of the weak learning algorithm should be to
find a weak hypothests with a small number of errors with respect to the given distribution
D; over training samples. The results above suggest, however, that a different criterion can
be used. In particular, we can attempt to greedily minimize the upper bound on training
error given in Theorem 1 by minimizing; on each round. Thus, the weak learner should
attempt to find a weak hypothediswhich minimizes

Zi =) Di(i) exp(—aryihi(%)).

This expression can be simplified by foldiaginto hy, in other words, by assuming without
loss of generality that the weak learner can freely scale any weak hypothbgisiny
constant factor € R. Then (omittingt subscripts), the weak learner’s goal now is to
minimize

zZ= Z D(i) exp(—yih(x)). @)

For some algorithms, it may be possible to make appropriate modifications to handle such
a “loss” function directly. For instance, gradient-based algorithms, such as backprop, can
easily be modified to minimize Eq. (7) rather than the more traditional mean squared error.
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We show how decision-tree algorithms can be modified based on the new criterion for
finding good weak hypotheses.

4.1. Domain-partitioning weak hypotheses

We focus now on weak hypotheses which make their predictions based on a partitioning of
the domainX. To be more specific, each such weak hypothesis is associated with a partition
of X into disjoint blocksXy, ..., Xy which cover all ofX and for whichh(x) = h(x’)
for all x, X € X;j. In other wordsh’s prediction depends only on which bloek a given
instance falls into. A prime example of such a hypothesis is a decision tree whose leaves
define a partition of the domain.
Supposethdd = Dy and that we have already found a partitdn . . ., Xy of the space.
What predictions should be made for each block of the partition? In other words, how do we
find a functionh : X — R which respects the given partition and which minimizes Eq. (7)?
Letc; = h(x) for x € X;. Our goal is to find appropriate choices fgt For eachj and
forb e {—1, +1}, let

W= > D()=Pip[x eX;Ay=h
i:xeXjAy=b

be the weighted fraction of examples which fall in blochkvith labelb. Then Eq. (7) can
be rewritten

Z= Z Z D(i) exp(—Vicj)

j i:XiEXj

. . 8
= Z(Wi e + W! e%). ®
j
Using standard calculus, we see that this is minimized when
1. (W
ci==In{—). 9
T2 (wi) ©

Plugging into Eq. (8), this choice gives
z=2%"Jwiw. (10)
j

Note that the sign of; is equal to the (weighted) majority class within blogkMoreover,
c;j will be close to zero (a low confidence prediction) if there is a roughly equal split of
positive and negative examples in blopkLikewise,c; will be far from zero if one label
strongly predominates.

A similar scheme was previously proposed by Quinlan (1996) for assigning confidences
to the predictions made at the leaves of a decision tree. Although his scheme differed in the
details, we feel that our new theory provides some partial justification for his method.
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The criterion given by Eq. (10) can also be used as a splitting criterion in growing
a decision tree, rather than the Gini index or an entropic function. In other words, the
decision tree could be built by greedily choosing the split which causes the greatest drop
in the value of the function given in Eq. (10). In fact, exactly this splitting criterion was
proposed by Kearns and Mansour (1996). Furthermore, if one wants to boost more than one
decision tree then each tree can be built using the splitting criterion given by Eq. (10) while
the predictions at the leaves of the boosted trees are given by Eg. (9).

4.2. Smoothing the predictions

The scheme presented above requires that we predict as in Eqg. (9) on blootay well
happen thaw! or W. is very small or even zero, in which casewill be very large or
infinite in magnitude. In practice, such large predictions may cause numerical problems. In
addition, there may be theoretical reasons to suspect that large, overly confident predictions
will increase the tendency to overfit.

To limit the magnitudes of the predictions, we suggest using instead the “smoothed”
values

1 WJ;I—S
W +¢

for some appropriately small positive valuefBecausew’ and Wi are both bounded
between 0 and 1, this has the effect of boundmgby

1 1+¢ 1 1

=1In ~—In{-).

2 £ 2 £
Moreover, this smoothing only slightly weakens the valu& afince, plugging into Eq. (8)
gives

55

J

2 Wil 4 \Jew! + \/ewi>

<2y JwW w! + V2Ne. (11)
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In the second inequality, we used the inequaljfy +y < /X + /¥ for nonnegativex
andy. In the last inequality, we used the fact that
Yowlpwl) =1,

J

which implies
> (N + M) < V2N.
j

(Recall thatN is the number of blocks in the partition.) Thus, comparing Egs. (11) and (10),
we see tha®Z will not be greatly degraded by smoothing if we choese« 1/(2N). In

our experiments, we have typically usedn the order of Im wherem is the number of
training examples.

5. Generalization error

So far, we have only focused on the training error, even though our primary objective is to
achieve low generalization error.

Two methods of analyzing the generalization error of AdaBoost have been proposed.
The first, given by Freund and Schapire (1997), uses standard VC-theory to bound the
generalization error of the final hypothesis in terms of its training error and an additional
term which is a function of the VC-dimension of the final hypothesis class and the number
of training examples. The VC-dimension of the final hypothesis class can be computed
using the methods of Baum and Haussler (1989). Interpretting the derived upper bound as
a qualitative prediction of behavior, this analysis suggests that AdaBoost is more likely to
overfit if run for too many rounds.

Schapire et al. (1998) proposed an alternative analysis to explain AdaBoost's empirically
observed resistance to overfitting. Following the work of Bartlett (1998), this method is
based on the “margins” achieved by the final hypothesis on the training examples. The
margin is a measure of the “confidence” of the prediction. Schapire et al. show that larger
margins imply lower generalization error—regardless of the number of rounds. Moreover,
they show that AdaBoost tends to increase the margins of the training examples.

To a large extent, their analysis can be carried over to the current context, which is the
focus of this section. As a first step in applying their theory, we assume that each weak
hypothesid; has bounded range. Recall that the final hypothesis has the form

H(x) = sign(f (x))
where

f(x) = Zatht(x).
t

Since theh;'s are bounded and since we only care about the sigh,afie can rescale
theh;’s and normalize they’s allowing us to assume without loss of generality that each
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hi: X — [-1,+1], eacha; € [0,1] and) , or = 1. Let us also assume that eath
belongs to a hypothesis spate

Schapire et al. define theargin of a labeled exampléx, y) to beyf(x). The margin
then is in -1, +1], and is positive if and only iH makes a correct prediction on this
example. We further regard the magnitude of the margin as a measure of the confidence of
H'’s prediction.

Schapire et al.'s results can be applied directly in the present context only in the special
case that each € H has rangg—1, +1}. This case is not of much interest, however,
since our focus is on weak hypotheses with real-valued predictions. To extend the margins
theory, then, let us defind to be thepseudodimensioof H (for definitions, see, for
instance, Haussler (1992)). Then using the method sketched in Section 2.4 of Schapire et al.
together with Haussler and Long’s (1995) Lemma 13, we can prove the following upper
bound on generalization error which holds with probability & for all 6 > 0 and for all f
of the form above:

1 (dlog’(m/d) 1\\"?

Here, Pg denotes probability with respect to choosing an exanipley) uniformly at
random from the training set. Thus, the first term is the fraction of training examples with
margin at mos#. A proof outline of this bound was communicated to us by Peter Bartlett
and is provided in Appendix B.

Note that, as mentioned in Section 4.2, this margin-based analysis suggests that it may
be a bad idea to allow weak hypotheses which sometimes make predictions that are very
large in magnitude. Ifhy(x)| is very large for somg, then rescalind); leads to a very large
coefficiento; which, in turn, may overwhelm the other coefficients and so may dramatically
reduce the margins of some of the training examples. This, in turn, according to our theory,
can have a detrimental effect on the generalization error.

Itremains to be seen if this theoretical effect will be observed in practice, or, alternatively,
if an improved theory can be developed.

6. Multiclass, multi-label classification problems

We next show how some of these methods can be extended to the multiclass case in which
there may be more than two possible labels or classes. Moreover, we will consider the more
generamulti-labelcase in which a single example may belong to any number of classes.
Formally, we let) be a finite set of labels or classes, andklet |)|. In the traditional
classification setting, each example X is assigned a single clagse ) (possibly via a
stochastic process) so that labeled examples are (paiy3. The goal then, typically, is to
find a hypothesi#l : X — ) which minimizes the probability that ¢ H (x) on a newly
observed examplg, y).
In the multi-label case, each instance X may belong to multiple labels iy. Thus,
a labeled example is a paix, Y) whereY C ) is the set of labels assigned %o The
single-label case is clearly a special case in whith= 1 for all observations.
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It is unclear in this setting precisely how to formalize the goal of a learning algorithm,
and, in general, the “right” formalization may well depend on the problem at hand. One
possibility is to seek a hypothesis which attempts to predict just one of the labels assigned to
an example. In other words, the goal is to fidd X — ) which minimizes the probability
thatH(x) € Y on a new observatiofx, Y). We call this measure thene-errorof hypo-
thesisH since it measures the probability of not getting even one of the labels correct. We
denote the one-error of a hypothekisvith respect to a distributio over observations
(X,Y) by one-erp(H). That s,

one-erp(H) = Pry.v)~p[H(X) & Y].

Note that, for single-label classification problems, the one-error is identical to ordinary
error. In the following sections, we will introduce other loss measures that can be used in the
multi-label setting, namely, Hamming loss and ranking loss. We also discuss modifications
to AdaBoost appropriate to each case.

7. Using Hamming loss for multiclass problems

Suppose now that the goal is to predict all and only all of the correct labels. In other
words, the learning algorithm generates a hypothesis which predicts sets of labels, and
the loss depends on how this predicted set differs from the one that was observed. Thus,
H:Xx — 2Y and, with respect to a distributid, the loss is

1
EE(X,Y)NDHh(X)AY”

whereA denotes symmetric difference. (The leadindsis meant merely to ensure a value
in [0, 1].) We call this measure tHéamming los®f H, and we denote it by hloggH).

To minimize Hamming loss, we can, in a natural way, decompose the problerk into
orthogonal binary classification problems. That is, we can thinka$ specifying binary
labels (depending on whether a lalyels or is not included ir). Similarly, h(x) can be
viewed ask binary predictions. The Hamming loss then can be regarded as an average of
the error rate oh on thesek binary problems.

ForY C Y, let us definer[¢] for £ € Y to be

Y] = {+1 ff@eY

-1 ifegy.
To simplify notation, we also identify any functiod : X — 2 with a corresponding
two-argument functiomd : X x Y — {—1, +1} defined byH (x, £) = H(x)[£].

With the above reduction to binary classification in mind, it is rather straightforward to
see how to use boosting to minimize Hamming loss. The main idea of the reduction is
simply to replace each training exampgle, Y;) by k examples((x;, £), Y;[£]) for £ € V.

The resultis a boosting algorithm called AdaBoost.MH (shown in figure 2) which maintains
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Given: (X1, Y1), ..., (Xm, Ym) Wwherexj € X,Y; C Y
Initialize D1(i, £) = 1/(mk).
Fort=1,..., T:

o Train weak learner using distributidd.
e Get weak hypothesis; : X' x ) — R.

e Chooseax; € R.

e Update:

Di(i, £) exp(—ar Yi[€]he (Xi, £))

Dita(i, ) = Z
t

whereZ; is a normalization factor (chosen so tfiat, 1 will be a distribution).

Output the final hypothesis:

.
H(x, ) = sign(z athi (X, Z)).

t=1

Figure 2 AdaBoost.MH: A multiclass, multi-label version of AdaBoost based on Hamming loss.

a distribution over examplasand labelst. On roundt, the weak learner accepts such a
distributionD; (as well as the training set), and generates aweak hypothesisx Y — R.
This reduction also leads to the choice of final hypothesis shown in the figure.

The reduction used to derive this algorithm combined with Theorem 1 immediately
implies a bound on the Hamming loss of the final hypothesis:

Theorem 3. Assuming the notation of figure 2, the following bound holds for the Hamming
loss of H on the training data

;
hlosgH) < 1_[ Z:.
t=1

We now can apply the ideas in the preceding sections to this binary classification problem.
As before, our goal is to minimize

Zy = Di(i, £) exp(—an Y [ (X;, ) (12)
il

on each round. (Here, it is understood that the sum is over all examples indekeshty
all labelst € Y.)
As in Section 3.1, if we require that eabhhave rangg—1, 41} then we should choose

1 1+rt
== 13
“ 2n<1—rt) ( )
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where

re=Y_ D, 0) Yi[e]he (%, €). (14)
il

This gives

Zi =+/1—r1?

and the goal of the weak learner becomes maximizatidn of
Note that(1 — r¢)/2 is equal to

Pri.o~p [N (Xi, £) # Yi[£€]]
which can be thought of as a weighted Hamming loss with respdat.to

Example As an example of how to maximizg |, suppose our goal is to find ablivious
weak hypothesik; which ignores the instanceand predicts only on the basis of the label
Thus we can omit thg argument and writl; (x, £) = h{(£). Let us also omit subscripts.
By symmetry, minimizing—r is equivalent to maximizing. So, we only need to fint
which maximizes

r = Z DG, O)Yi[¢]h(e)
il

=3 [h(z) > D, E)Yi[ﬂ]} :
) i

Clearly, this is maximized by setting
h(¢) = sign (Z D, O)Y, [e]) .
i

7.1. Domain-partitioning weak hypotheses

We also can combine these ideas with those in Section 4.1 on domain-partitioning weak
hypotheses. As in Section 4.1, suppose thiatassociated with a partitiod,, ..., Xy of

the spacev. It is natural then to create partitions of the foAhx ) consisting of all sets
Xjx{£}forj=1,...,Nandf € Y. An appropriate hypothestscan then be formed
which predictsh(x, £) = ¢, for x € X;. According to the results of Section 4.1, we should
choose

1, /w!t
Cje = > In <W) (15)
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Wherewgz =Y, DG, O)[x € Xj AYi[€] = b]. This gives
z=2> 5" Jwliw'. (16)
i e

7.2. Relation to one-error and single-label classification

We can use these algorithms even when the goal is to minimize one-error. The most natural
way to do this is to set

H(x) = arg rr}axz ath (X, y), (17)
t

i.e., to predict the labef most predicted by the weak hypotheses. The next simple theorem
relates the one-error ¢4* and the Hamming loss df .

Theorem 4. With respect to any distribution D over observatiqrsY) where Y+ @,
one-erp(H?Y) < khloss, (H).

Proof: AssumeY # @ and supposéi(x) ¢ Y. We argue that this implied (x) # Y. If

the maximum in Eq. (17) is positive, theh! (x) € H(x) — Y. Otherwise, if the maximum

is nonpositive, thetd (x) = @ # Y. In either caseH (x) # Y, i.e.,|[H(X)AY| > 1. Thus,
[H') ¢ Y] < [H®AY]

which, taking expectations, implies the theorem. O

In particular, this means that AdaBoost.MH can be applied to single-label multiclass
classification problems. The resulting bound on the training error of the final hypothesis
H?is at most

k[ ]z (18)
t

whereZ; is as in Eq. (12). In fact, the results of Section 8 will imply a better bound of

k
5 H Z:. (19)

Moreover, the leading constakt2 can be improved somewhat by assuming without loss
of generality that, prior to examining any of the data, a Oth weak hypothesis is chosen,
namelyhg = —1. For this weak hypothesig = (k — 2)/k andZ, is minimized by setting
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ag = % In(k — 1) which givesZy = 2k — 1/k. Plugging into the bound of Eq. (19), we
therefore get an improved bound of

t=0 t=1

This hack is equivalent to modifying the algorithm of figure 2 only in the manner in wiich
is initialized. SpecificallyD; should be chosen so thBt (i, yi) = 1/(2m) (wherey; is the
correct label forx;) andD4(i, £) = 1/(2m(k — 1)) for £ # y;. Note thatH* is unaffected.

8. Using output coding for multiclass problems

The method above maps a single-label problem into a multi-label problem in the simplest
and most obvious way, namely, by mapping each single-label obseratighto a multi-

label observationix, {y}). However, it may be more effective to use a more sophisticated
mapping. In general, we can define a one-to-one mapping — 2% which we can use

to map each observatia®, y) to (x, A(y)). Note thath maps to subsets of an unspecified
label sef)” which need not be the same HsLetk’ = |)’|.

It is desirable to chooseto be a function which maps different labels to sets which are
far from one another, say, in terms of their symmetric difference. This is essentially the
approach advocated by Dietterich and Bakiri (1995) in a somewhat different setting. They
suggested using error correcting codes which are designed to have exactly this property.
Alternatively, wherk’ is not too small, we can expect to get a similar effect by choosing
entirely at random (so that, for € ) and¢ € ), we include or do not includéin A(y)
with equal probability). Once a function has been chosen we can apply AdaBoost.MH
directly on the transformed training data, A(y;)).

How then do we classify a new instance The most direct use of Dietterich and Bakiri's
approach is to evaluaté onx to obtain a seH (x) € ). We then choose the labgle
for which the mapped output codgy) has the shortest Hamming distanceH¢x). That
is, we choose

argmin|A(y)AH(X)|.
yey

A weakness of this approach is that it ignores the confidence with which each label was
included or not included ifd (x). An alternative approach is to predict that lalgethich,
if it had been paired witkx in the training set, would have caused y) to be given the
smallest weight under the final distribution. In other words, we suggest predicting the label

argmin’ " exp(—x([y1 f(x, ¥))
Y

where, as beforef (x, y') = >, athi (X, Y)).
We call this version of boosting using output codes AdaBoost.MO. Pseudocode is given
in figure 3. The next theorem formalizes the intuitions above, giving a bound on training
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Given: (xa, y1), .. ., (Xm, Ym) Wherex; € X, vy €)Y
amapping.: Y — 2¥

e Run AdaBoost.MH on relabeled datay, A(y1)), ..., (Xm» A(Ym))
o Get back final hypothesid of form H(x, y') = sign(f (x, ¥))
wheref (x,y") = 3 ethi(x, ¥)

o Output modified final hypothesis:
(Variant 1)H1(x) = arg mi)p\k(y)AH (X)
ye

(Variant 2)Hz(x) = arg min Z exp(—A(LY] f(x, ¥))
yey =
y'ey
Figure 3 AdaBoost.MO: A multiclass version of AdaBoost based on output codes.

error in terms of the quality of the code as measured by the minimum distance between any
pair of “code words.”

Theorem 5. Assuming the notation of figure 3 and figurév®ewed as a subroutinglet

= min AL AA(L).
o &.,bey:h#@' (L) AL(LR)

When run with this choice d&f, the training error of AdaBoost.MO is upper bounded by

for Variant1, and by
T

= 1_[ Z

P i1

for Variant 2.

Proof: We start with Variant 1. Suppose the modified output hypothdsi®r Variant 1
makes a mistake on some examptey). This means that for some# v,

[HOOALD)| = [HX) ALY
which implies that

2IH) ALY = [HO)AL(W)] + [H()ALWD)]
> [((HO)AA(Y)A(H(X)ALD)]
= [A(Y)AL(D)
>p
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where the second inequality uses the fact thak B| < |A| + |B| for any setsA and B.
Thus, in case of an errod (X) AA(Y)| > p/2. On the other hand, the Hamming error of
AdaBoost.MH on the training set is, by definition,

1 m
— _lem(ximuw
i=
which is at mos{ |, Z; by Theorem 3. Thus, iM is the number of training mistakes, then

M

ND

<D IHOOAMYI = mK [ ]z
i=1 t

which implies the stated bound.
For Variant 2, suppose th&t, makes an error on some examgke y). Then for some

Ly
Y exp—AOly] f(x.y) = Y exp—ayly] f(x. y)). (20)

y'e)y’ y'ey
Fixing x, y and¢, let us definav(y’) = exp(—A(Y)[Y'] f (X, ¥")). Note that

w(y) ifAWY]T=20O[Y]

exp(—A(O[y] f(x,¥)) = {1/w(y/) otherwise.

Thus, Eq. (20) implies that

Dowy)=)

4

whereS = A(y)Ar(£). This implies that

Y owy) =Y wy)= %Z (w(y/) - w(ly,)> > |S| > p.

yey y'eS y'eS

The third inequality uses the fact tha#- 1/x > 2 for all x > 0. Thus, we have shown that
if a mistake occurs o(x, y) then

3 exp—ayIy] f(x.¥) = p.

yey

If M is the number of training errors under Variant 2, this means that

PM =3 exp—2(ly] Fxi.y) =mK [] 2,
i=1

y' ey t



IMPROVED BOOSTING ALGORITHMS 317

where the equality uses the main argument of the proof of Theorem 1 combined with
the reduction to binary classification described just prior to Theorem 3. This immediately
implies the stated bound. O

If the coder is chosen at random (uniformly among all possible codes), then, forkgrge
we expeci to approachl/2 — o(1))k'. In this case, the leading coefficients in the bounds
of Theorem 5 approach 4 for Variant 1 and 2 for Variant 2, independent of the number of
classexk in the original label se) .

We can use Theorem 5 to improve the bound in Eq. (18) for AdaBoost.MH to that in
Eqg. (19). We apply Theorem 5 to the code defined.by) = {y} for all y € ). Clearly,

p = 2 in this case. Moreover, we claim thet as defined in Eq. (17) produces identical
predictions to those generated by Variant 2 in AdaBoost.MO since

Y exp—aWIY f(x.y)) = & "* — el 4 57 efxy), (21)
y'ey y'ey

Clearly, the minimum of Eq. (21) overis attained wherf (X, y) is maximized. Applying
Theorem 5 now gives the bound in Eq. (19).

9. Using ranking loss for multiclass problems

In Section 7, we looked at the problem of finding a hypothesis that exactly identifies the
labels associated with an instance. In this section, we consider a different variation of this
problem in which the goal is to find a hypothesis whiahksthe labels with the hope that
the correct labels will receive the highest ranks. The approach described here is closely
related to one used by Freund et al. (1998) for using boosting for more general ranking
problems.

To be formal, we now seek a hypothesis of the fdrmY’ x )V — R with the interpretation
that, for a given instance, the labels iy should be ordered according f@x, -). That is,
a label¢; is considered to be ranked higher thgnf f(x, ¢1) > f(x, £2). With respect
to an observation(x, Y), we only care about the relative ordering of ttricial pairs
Lo, €1 for which £g ¢ Y and¢; € Y. We say thatf misordersa crucial pairég, ¢; if
f(x,£1) < f(X,£o) sothatf fails to rank¢; abovety. Our goal is to find a functiorf
with a small number of misorderings so that the label¥ ere ranked above the labels not
inY.

Our goal then is to minimize the expected fraction of crucial pairs which are misor-
dered. This quantity is called thranking loss and, with respect to a distributiob over
observations, it is defined to be

c [u(eo, () e@=Y)xY:f(x ) < f(X,eo)}l}
P NMIEA '

We denote this measure rlgsk. Note that we assume th¥tis never empty nor equal to
all of Y for any observation since there is no ranking problem to be solved in this case.
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Given: (X1, Y1), ..., (Xm, Ym) wherexi ¢ X, Y C )Y
Initialize D]_(i, EO’ [1) — {é/(m |Y|| : |y - YI |) if [O ¢ YI andzl € YI

else.
Fort=1,..., T:

e Train weak learner using distributidy.
e Get weak hypothesis; : X x Y — R.
e Choosex; € R.

e Update:

Dt (i, Lo, £1) exp(3ac (he(xi, €0) — ht(xi, €1)))

Dty1(i, €o, £1) = Z
t

whereZ; is a normalization factor (chosen so tiiat, ; will be a distribution).

Output the final hypothesis:

.
f(x, €)= Zatht(x,ﬁ).
t=1

Figure 4 AdaBoost.MR: A multiclass, multi-label version of AdaBoost based on ranking loss.

A version of AdaBoost for ranking loss called AdaBoost.MR is shown in figure 4. We
now maintain a distributiod; over{1, ..., m} x Y x Y. This distribution is zero, how-
ever, except on the relevant triplés ¢, £1) for which £, £ is a crucial pair relative to
(X, Yi).

Weak hypotheses have the fohg1 X' x ) — R. We think of these as providing aranking
of labels as described above. The update rule is a bit neviglL&t be a crucial pair relative
to (%, Y;) (recall thatDy is zero in all other cases). Assuming momentarily that O, this
rule decreases the weigbt (i, £o, ¢1) if h; gives a correct rankindn((x;, £1) > h¢ (X, €0)),
and increases this weight otherwise.

We can prove a theorem analogous to Theorem 1 for ranking loss:

Theorem 6. Assuming the notation of figure 4, the following bound holds for the ranking
loss of f on the training data:

.
rlosg f) < 1_[ Z.

t=1

Proof: The proof is very similar to that of Theorem 1.
Unraveling the update rule, we have that

D1(i, €o. £1) exp(5(f (i, Lo) — f (%, £1)))
l_It Z

DT+l(i ) £07 el) -
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The ranking loss on the training set is

>~ Didi, o, DL F (%, €o) = (i, €0)]

i.KO,el
< Y Dili.bo. £ )exp(l(f(x- L) — f(xi, € )))
_i’zo,el 1\, Lo, €1 2 i» L0 i, L1
= Z Dra(i, 4o, ﬂl)nzt = HZI~
i,[o,el t t

(Here, each of the sums is over all example indicasd all pairs of labels iy x ).) This
completes the theorem. ]

So, as before, our goal on each round is to try to minimize

. 1
Z=) Dt t) exp(éam(xi,eo) —h(xi,m))

i,€0,€1

where, as usual, we ontisubscripts. We can apply all of the methods described in previous
sections. Starting with the exact methods for findinguppose we are given a hypothesis
h. Then we can make the appropriate modifications to the method of Section 3.2 éo find
numerically.

Alternatively, in the special case tHahas rangdg—1, +1}, we have that

3(h(x, £o) — (X, €1)) € {—1,0, +1}.

Therefore, we can use the method of Section 3.3 to che@sactly:

«=3h (%> (22)
where
Wo = > D, o, e[ fo) — h(x;. £1) = 2b]. (23)
i,00,€1
As before,
Z =W+ 2y/W_W, (24)
in this case.

How can we find a weak hypothesis to minimize this expression? A simplest first case
is to try to find the best oblivious weak hypothesis. An interesting open problem then is,
given a distributiorD, to find an oblivious hypothests: Y — {—1, +1} which minimizes
Z when defined as in Egs. (23) and (24). We suspect that this problem may be NP-complete
when the size oy is not fixed.
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We also do not know how to analytically find the best oblivious hypothesis when we
do not restrict the range df, although numerical methods may be reasonable. Note that
finding the best oblivious hypothesis is the simplest case of the natural extension of the
technique of Section 4.1 to ranking loss. Foldiy® into h as in Section 4, the problem is
to findh:)Y — R to minimize

z=3" [ (_Z D, o, m) exp(h(to) — h(el))},

Lo, ¢y I

This can be rewritten as

Z = "[w(to, &2) exp(h(£o) — h(£1))] (25)

Lo, L1

wherew(£o, £1) = Y _; D(, £o. £1). In Appendix A we show that expressions of the form
given by Eq. (25) are convex, and we discuss how to minimize such expressions. (To see
that the expression in Eq. (25) has the general form of Eq. (A.1), identifwtlig £1)'s
with thew;’s in Eqg. (A.1), and thén(¢)’s with thea;’s.)

Since exact analytic solutions seem hard to come by for ranking loss, we next consider
approximations such as those in Section 3.1. Assuming weak hypotheg#srange in
[—1, +1], we can use the same approximation of Eq. (4) which yields

1—r 1+r)\ _,
2= )+ () “
where
1 .
r =3 3 D o, (0 &) = Mk, €0). @7)
I,eo,zl

As before, the right hand side of Eq. (26) is minimized when

1 1+r

which gives
Z<+y1-r2
Thus, a reasonable and more tractable goal for the weak learner is to try to maximize

Example To find the oblivious weak hypothedis Y — {—1, +1} which maximizes,
note that by rearranging sums,

r= Z h(&)m (¢)
¢
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where

1 o o
7)) = EZ(Do,e ,0) — D, ¢, 0)).

it
Clearly,r is maximized if we seh(£) = sign(z (£)). O

Note that, although we use this approximation to find the weak hypothesis, once the weak
hypothesis has been computed by the weak learner, we can use other methods ta choose
such as those outlined above.

9.1. A more efficient implementation

The method described above may be time and space inefficient when there are many labels.
In particular, we naively need to maintdivj | - | — Y;| weights for each training example

(i, Y;), and each weight must be updated on each round. Thus, the space complexity and
time-per-round complexity can be as badas k).

In fact, the same algorithm can be implemented using @yk) space and time per
round. By the nature of the updates, we will show that we only need to maintain wejghts
over{l, ..., m} x Y. We will maintain the condition that iy, ¢, is a crucial pair relative
to (i, Y;), then

Di(i, €o, £1) = vt (i, £o) - v (i, £1) (29)

at all times. (Recall thaD, is zero for all other triplesi, £o, £1).)

The pseudocode for thisimplementation is shown in figure 5. Equation (29) can be proved
by induction. It clearly holds initially. Using our inductive hypothesis, it is straightforward
to expand the computation & in figure 5 to see that it is equivalent to the computation
of Z; in figure 4. To show that Eqg. (29) holds on round- 1, we have, for crucial pair
Lo, 1.

Desai. £o. £ Dy (i, €o, £1) exp(3e (he (X, €0) — hi(Xi, £1)))

Z
_u(, lo) exp(3aihi (%, £0)) ~u(i, £e) exp(—3achi (X, £1))
VZi VZ;

= vi41(i, Lo) - veya(i, €1).

Finally, note that all space requirements and all per-round computatio@ari), with
the possible exception of the call to the weak learner. However, if we want the weak learner
to maximizelr| as in Eqg. (27), then we also only need to pagsweights to the weak
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Given:(xg, Y1), ..., (Xm, Ym) Wwherex; e X, Y; C Y

Initialize v1(i, €) = (M- [Yi| - |V — Yi )~%/2

Fort=1,..., T:

e Train weak learner using distributidd; (as defined by Eqg. (29))
o Get weak hypothesis; : X x Y — R.

e Choosex; € R.
e Update:

v (i, €) exp(— e Yi[]he (xi, £))
VZi

vy (i, €) =

where

. 1 . 1
Z = Z {(% vt(l,Z)eXP<§atht(Xi,f)>) (‘;; v (i, £) EXP<—§atht(Xi’Z)))}

Output the final hypothesis:

.
fx, 0 = ethe(x, 0).
t=1

Figure 5 A more efficient version of AdaBoost.MR (figure 4).

learner, all of which can be computed@(mk) time. Omittingt subscripts, we can rewrite
r as

1 _
r=3 >~ D, Lo, 1) (h(Xi, £2) — h(x;, £o))

i,00,01

1 ) .
=52, 2 v toul en(hes, €)Y [l +hex, €o)Yi [¢o])

i LogYi.l1€Y

= %Z [ 3> (v(i,ew 3 v, m)wo]h(xi,eo)

i oY L1€Y;

+ ) (v(i,m > v(h%))%[&]h(xi,eo]

£1€Y LogYi

=Y d(i, OYi[hx. 0 (30)
ie

where

1
di.o)=>vi.0 > vi.f).
2 G0
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All of the weightsd(i, £) can be computed i®(mK) time by first computing the sums which
appear in this equation for the two possible casesYiétis —1 or+1. Thus, we only need

to passO(mk) weights to the weak learner in this case rather than the full distribidjon

of size O(mk?). Moreover, note that Eq. (30) has exactly the same form as Eq. (14) which
means that, in this setting, the same weak learner can be used for either Hamming loss or
ranking loss.

9.2. Relation to one-error

Asin Section 7.2, we can use the ranking loss method for minimizing one-error, and therefore
also for single-label problems. Indeed, Freund and Schapire’s (1997) “pseudoloss™based
algorithm AdaBoost.M2 is a special case of the use of ranking loss in which all data are
single-labeled, the weak learner attempts to maxinrizes in Eq. (27), and; is set as in
Eq. (28).

As before, the natural prediction rule is

H(x) = f
(x) argn;aXZt: (X, y),

in other words, to choose the highest ranked label for instanéée can show:

Theorem 7. Withrespectto any distribution D over observatigrsY) whereY is neither
empty nor equal tQ/,

one-erp(HY) < (k — 1) rloss ().

Proof: SupposeHi(x) ¢ Y. Then, with respect td and observatiofx, Y), misorderings
occur for all pairst; € Y andfg = H(x). Thus,

{(lo, D) e V=) x Y fx b= T b))l 1 1
Y11V =Y Y=Y T k-1

Taking expectations gives

1

mE<x,v)~D[|[ Hi(x) & Y]] <rloss(f)

which proves the theorem. O

10. Experiments

In this section, we describe a few experiments that we ran on some of the boosting algorithms
described in this paper. The first set of experiments compares the algorithms on a set of
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learning benchmark problems from the UCI repository. The second experiment does a
comparison on a large text categorization task. More details of our text-categorization
experiments appear in a companion paper (Schapire & Singer, to appear).

For multiclass problems, we compared three of the boosting algorithms:

Discrete AdaBoost.MHin this version of AdaBoost.MH, we require that weak hypotheses
have rangd—1, +1}. As described in Section 7, we sgtas in Eq. (13). The goal of
the weak learner in this case is to maximjeg as defined in Eq. (14).

Real AdaBoost.MHn this version of AdaBoost.MH, we do not restrict the range of the
weak hypotheses. Since all our experiments involve domain-partitioning weak hypothe-
ses, we can set the confidence-ratings as in Section 7.1 (thereby eliminating the need
to choosex;). The goal of the weak learner in this case is to minindzes defined in
Eq. (16). We also smoothed the predictions as in Section 4.2 asing/(2mK).

Discrete AdaBoost.MRIn this version of AdaBoost.MR, we require that weak hypotheses
have rangd—1, +1}. We use the approximation &; given in Eq. (26) and therefore
seta; as in Eq. (28) with a corresponding goal for the weak learner of maximizing
as defined in Eqg. (27). Note that, in the single-label case, this algorithm is identical to
Freund and Schapire’s (1997) AdaBoost.M2 algorithm.

We used these algorithms for two-class and multiclass problems alike. Note, however, that
discrete AdaBoost.MR and discrete AdaBoost.MH are equivalent algorithms for two-class
problems.

We compared the three algorithms on a collection of benchmark problems available from
the repository at University of California at Irvine (Merz & Murphy, 1998). We used the
same experimental set-up as Freund and Schapire (1996). Namely, if a test set was already
provided, experiments were run 20 times and the results averaged (since some of the learning
algorithms may be randomized). If no test set was provided, then 10-fold cross validation
was used and rerun 10 times for a total of 100 runs of each algorithm. We tested on the same
set of benchmarks, except that we dropped the “vowel” dataset. Each version of AdaBoost
was run for 1000 rounds.

We used the simplest of the weak learners tested by Freund and Schapire (1996). This
weak learner finds a weak hypothesis which makes its prediction based on the result of a
single test comparing one of the attributes to one of its possible values. For discrete attributes,
equality is tested; for continuous attributes, a threshold value is compared. Such a hypothesis
can be viewed as a one-level decision tree (sometimes called a “decision stump”). The best
hypothesis of this form which optimizes the appropriate learning criterion (as listed above)
can always be found by a direct and efficient search using the methods described in this
paper.

Figure 6 compares the relative performance of Freund and Schapire’'s AdaBoost.M2 algo-
rithm (here called “discrete AdaBoost.MR”) to the new algorithm, discrete AdaBoost.MH.
Each point in each scatterplot gives the (averaged) error rates of the two methods for a single
benchmark problem; that is, tixecoordinate of a point gives the error rate for discrete Ada-
Boost.MR, and theg/-coordinate gives the error rate for discrete AdaBoost.MH. (Since the
two methods are equivalent for two-class problems, we only give results for the multiclass
benchmarks.) We have provided scatterplots for 10, 100 and 1000 rounds of boosting, and
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Figure 6 Comparison of discrete AdaBoost.MH and discrete AdaBoost.MR on 11 multiclass benchmark prob-
lems from the UCI repository. Each point in each scatterplot shows the error rate of the two competing algorithms
on a single benchmark. Top and bottom rows give training and test errors, respectively, for 10, 100 and 1000
rounds of boosting. (However, on one benchmark dataset, the error rates fell outside the given range when only
10 rounds of boosting were used.)



326 SCHAPIRE AND SINGER

for test and train error rates. It seems rather clear from these figures that the two methods are
generally quite evenly matched with a possible slight advantage to AdaBoost.MH. Thus,
for these problems, the Hamming loss methodology gives comparable results to Freund and
Schapire’s method, but has the advantage of being conceptually simpler.

Next, we assess the value of using weak hypotheses which give confidence-rated pre-
dictions. Figure 7 shows similar scatterplots comparing real AdaBoost.MH and discrete
AdaBoost.MH. These scatterplots show that the real version (with confidences) is overall
more effective at driving down the training error, and also has an advantage on the test error
rate, especially for a relatively small number of rounds. By 1000 rounds, however, these
differences largely disappear.

In figures 8 and 9, we give more details on the behavior of the different versions of Ada-
Boost. In figure 8, we compare discrete and real AdaBoost.MH on 16 different problems
from the UClI repository. For each problem we plot for each method its training and test error
as a function of the number of rounds of boosting. Similarly, in figure 8 we compare discrete
AdaBoost.MR, discrete AdaBoost.MH, and real AdaBoost.MH on multiclass problems.

After examining the behavior of the various error curves, the potential for improvement
of AdaBoost with real-valued predictions seems to be greatest on larger problems. The
most noticeable case is the “letter-recognition” task, the largest UCI problem in our suite.
This is a 26-class problem with 16,000 training examples and 4,000 test examples. For this
problem, the training error after 100 rounds is23 for discrete AdaBoost.MR, 28% for
discrete AdaBoost.MH, and 1% for real AdaBoost.MH. The test error rates after 100
rounds are 34.1%, 30.4% and 22.3%, respectively. By 1,000 rounds, this gap in test error
has narrowed somewhat to 19.7%, 17.6% and 16.4%.

Finally, we give results for a large text-categorization problem. More details of our text-
categorization experiments are described in a companion paper (Schapire & Singer, to
appear). In this problem, there are six classe3mBsTIC, ENTERTAINMENT, FINANCIAL ,
INTERNATIONAL, POLITICAL, WASHINGTON. The goal is to assign a document to one, and
only one, of the above classes. We use the same weak learner as above, appropriately
modified for text; specifically, the weak hypotheses make their predictions based on tests
that check for the presence or absence of a phrase in a document. There are 142,727 training
documents and 66,973 test documents.

In figure 10, we compare the performance of discrete AdaBoost.MR, discrete Ada-
Boost.MH and real AdaBoost.MH. The figure shows the training and test error as a function
of number of rounds. Theg-axis shows the number of rounds (using a logarithmic scale),
and they-axis the training and test error. Real AdaBoost.MH dramatically outperforms
the other two methods, a behavior that seems to be typical on large text-categorization
tasks. For example, to reach a test error of 40%, discrete AdaBoost.MH takes 16,938
rounds, and discrete AdaBoost.MR takes 33,347 rounds. In comparison, real AdaBoost.MH
takes only 268 rounds, more than a sixty-fold speed-up over the best of the other two
methods!

As happened in this example, discrete AdaBoost.MH seems to consistently outperform
discrete AdaBoost.MR on similar problems. However, this might be partially due to the
inferior choice ofa; using the approximation leading to Eq. (28) rather than the exact
method which gives the choice of in Eq. (22).
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11. Concluding remarks

In this paper, we have described several improvements to Freund and Schapire’s AdaBoost
algorithm. In the new framework, weak hypotheses may assign confidences to each of their
predictions. We described several generalizations for multiclass problems. The experimental
results with the improved boosting algorithms show that dramatic improvements in training
error are possible when a fairly large amount of data is available. However, on small and
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Figure 10 Comparison of the training (left) and test (right) error using three boosting methods on a six-class
text classification problem from the TREC-AP collection.
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noisy datasets, the rapid decrease of training error is often accompanied with overfitting
which sometimes results in rather poor generalization error. A very important research goal
is thus to control, either directly or indirectly, the complexity of the strong hypotheses
constructed by boosting.

Several applications can make use of the improved boosting algorithms. We have imple-
mented a system called BoosTexter for multiclass multi-label text and speech categoriza-
tion and performed an extensive set of experiments with this system (Schapire & Singer,
to appear). We have also used the new boosting framework for devising efficient ranking
algorithms (Freund et al., 1998).

There are other domains that may make use of the new framework for boosting. For
instance, it might be possible to train non-linear classifiers, such as neural networks using
Z as the objective function. We have also mentioned several open problems such as finding
an oblivious hypothesis intp-1, +1} which minimizesZ in AdaBoost.MR.

Finally, there seem to be interesting connections between boosting and other models
and their learning algorithms such as generalized additive models (Friedman et al., 1998)
and maximum entropy methods (Cas& Tusrady, 1984) which form a new and exciting
research arena.

Appendix A: Properties of Z

In this appendix, we show that the function defined by Eq. (3) is a convex function in the

parametersy, ..., ay and describe a numerical procedure based on Newton’s method to
find the parameters which minimize it.
To simplify notation, letu;; = —y;g;(x;). We will analyze the following slightly more

general form of Eq. (3)

m N
Zwi exp(Zajui,—), (u)i ZO,Zwi =1>. (A.l)
i=1 j=1 i

Note that in all cases discussed in this pageis of the form given by Eq. (A.1). We
therefore refer for brevity to the function given by Eq. (A.1) AsThe first and second
order derivatives o with respectta, ..., ay are

(ZaJ u.,) (A.2)
2 ZZ -
Vi = a Z ZaJ Uij JUikU; . (A.3)

VW = — =

%’ﬁ
Mg

(o5}

Denoting byu| = (Ui1, . . ., Uiy) We can rewritév2Z as

m N
V27 = Zw‘ exp(ZajuiJ) uu’.
i—1 =1
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Now, for any vectox € R we have that,
m N
x"'V2Zx = x" <Z wi exp(Zaj Uij) uiTui> X
i=1 =1

wj exp(

(Zaju.,)(x u)? > 0.

J

NG

Il
N

ajuij) XTUiUiTX

z II.MZ
[=Y

HenceV2Z is positive semidefinite which implies thais convex with respectia, . . ., ay
and has a unique minimum (with the exception of pathological cases).
To find the values o0&y, ..., ay that minimizeZ we can use iterative methods such as

Newton’s method. In short, for Newton’s method the new set of parameters is updated from
the current set as follows

a<a—(v2z)lvzT, (A.4)

wherea' = (ay, ..., ay).
Let

1 N
Vj ZEwi exp ;ajuij s
and denote by

E-[u] = Zv.u. and ENU u u Z”'u uj.

i=1

Then, substituting the values f&Z andV2Z from Egs. (A.2) and (A.3) in Eq. (A.4), we
get that the Newton parameter update is

a<—a— (Ei'vu[ui-rui])_lEiNv[ui]'

Typically, the above update would result in a new set of parameters that attains a smaller
value ofZ than the current set. However, such a decrease ialwalysguaranteed. Hence,

the above iteration should be augmented with a test on the valdeanofl a line search in

the direction 0 V2Z)~1 VZT in case of an increase in the valuezf(For further details,

see for instance Fletcher (1987)).
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Appendix B: Bounding the generalization error

In this appendix, we prove a bound on the generalization error of the combined hypothesis
produced by AdaBoost in terms of the margins of the training examples. An outline of the
proof that we present here was communicated to us by Peter Bartlett. It uses techniques
developed by Bartlett (1998) and Schapire et al. (1998).

Let H be a set of real-valued functions on domainWe let ca’) denote theconvex
hull of H, namely,

co(H) = {fZXI—> Zahh(x)mh zO,Zah =1}
h h

where it is understood that each of the sums above are over the finite subset of hypotheses in
‘H forwhichay, > 0. We assume here that the weights onthe hypotheses are nonnegative. The
result can be generalized to handle negative weights simply by addiiglichypotheses
—hforh e H.

The main result of this appendix is the theorem below. This theorem is identical to
Schapire et al.'s (1998) Theorem 2 except that we allow the weak hypotheses to be real-
valued rather than binary.

We use P y)~p[ Al to denote the probability of the eveAtwhen the exampléx, y) is
chosen according t®, and Py y)~s[ A] to denote probability with respect to choosing an
example uniformly at random from the training set. When clear from context, we abbreviate
these by Ps[ A] and Pg[ A]. We use B[ A] and Eg[ A] to denote expected value in a similar
manner.

To prove the theorem, we will first need to define the notion of a sloppy cover. For a class
F of real-valued functions, a training s8tof sizem, and real numberg > 0 ande > 0,
we say that a function class is ane-sloppyd-cover of F with respect to 3, for all f in
F, there existsf in F with Pr_g[| f(X) — f(X)| > 0] < €. Let N'(F, 6, €, m) denote the
maximum, over all training setS of sizem, of the size of the smallestsloppyé-cover of
F with respect tcS.

Theorem 8. LetD be a distribution overtt x {—1, +1}, and let S be a sample of m
examples chosen independently at random accordirfg. tBuppose the weak-hypothesis
spaceH of [—1, +1]-valued functions has pseudodimensigmadd lets > 0. Assume that
m > d > 1. Then with probability at least — § over the random choice of the training set
S, every weighted average functionefco(H) satisfies the following generalization-error
bound for all6 > 0:

1 (dlog?(m/d) 1\\?
Pro[yf(x) < 0] < Prs[yf(x) < 6] + o(ﬁ(T + log (5» :

Proof: Using techniques from Bartlett (1998), Schapire et al. (1998, Theorem 4) give a
theorem which states that, fer> 0 andd > 0, the probability over the random choice of
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training setSthat there exists any functioh € co(?) for which
Pro[yf(X) < 0] > Prg[yf(x) < 6] + ¢
is at most
2N (CO(H), 02, €/8, 2m) e <™/32, (B.1)
We prove Theorem 8 by applying this result. To do so, we need to construct sloppy covers

for co(H).
Haussler and Long (1995, Lemma 13) prove that

4. /m 1] em d
; i 0 6d

Fix any setS € X of sizem. Thenthis result means that there exists ‘H of cardinality
(emy(6d))? such that for alh € H there exist$1 € H such that

vx € S:h(x) — h(x)| < . (B.2)

Now let

R 1N N
Cn = fZXl—)NZhi(XHhi eH
i=1

be the set of unweighted averageshbklements irf{. We will show thatCy is a sloppy
cover of cqH).
Let f € co(H). Then we can write

f(x) = Zajh,-(x)
j
whereej > 0and)_; oj = 1. Let
foo = ajhjx)
j
whereh; e 7 is chosen so that; andh; satisfy Eq. (B.2). Then for alt € S,
1100 = fo0l =D ejhjo0 —hj0)
j

< Y ajlhj(0 —hjx)]
j

< (B.3)
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Next, let us define a distributio@ over functions inCy in which a functiong € Cy is
selected by choosiry, . . ., hn independently at random according to the distribution over
H defined by thex; coefficients, and then setting= (1/N) ZiNzl h;. Note that, for fixed

X, f(x) = Eg~ol[9(X)]. We therefore can use Chernoff bounds to show that

Pry~ol| f(x) — g(x)| > 6] < 27 N*/2,
Thus,

Eg~olProy~sll f00 — g0l > 6]]
= Epy~slPrg~ol| () — g(x)| > 6]] < 2e N*/2,
Therefore, there existp € Cn such that
N92/2_

Prcy~sll f (X) — g(x)| > 6] < 2e~

Combined with Eq. (B.3), this means théy is a 2e~N"/2-sloppy @-cover of caH).
Since|Cn| < |H|N, we have thus shown that

dN
N (CO(H), 20, 2eN/2 m) < (%n) .

SettingN = (32/62) In(16/¢), this implies that Eq. (B.1) is at most

(32d/62) In(16/¢)
2(%”) g m/32, (B.4)
Let
In(2/8)  2d 8em em\ Y2
=16 —In{—)In{ — . B.5
¢ < sm Tmz '\ d )"\ (85

Then the logarithm of Eq. (B.4) is
16d 8em In(2/8) 2d 8em em
In(2/6) 16d In gem In em
/ 02 d d

o= 2 () () (33 ()

Iné.

IA
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For the first inequality, we used the fact thatdem/d) > In(em/d) > 1. For the second
inequality, note that

In Sin In m_92
od 2d

is increasing as a function éf Therefore, sincé < 1, itis upper bounded by

In (Sin) In (E) <lIn (8in> In (@)
d 2d/) d d )’
Thus, for the choice of given in Eq. (B.5), the bound in Eq. (B.4) is at mést
We have thus proved the bound of the theorem for a single given choite-dd with
high probability. We next prove that with high probability, the bound holds simultaneously
forall® > 0. Lete (0, §) be the choice of givenin Eq. (B.5), regarding the other parameters
as fixed. We have shown that, for alt> 0, the probability that

Prp[yf(x) < 0] > Prg[yf(x) < 8] +€(8, d) (B.6)

isatmos®. Let® = {1, 1/2, 1/4, .. .}. By the union bound, this implies that, with proba-
bility at least 1— §,

Prp[yf(x) < 0] < Prg[yf(x) < 6] +€(9,0/2) (B.7)

for all & € ©. This is because, for fixel € ©, Eq. (B.7) holds with probability + 50/2.
Therefore, the probability that it fails to hold fany® € ® is at most)_,_ 66/2 = 5.

Assume we are in the high probability case that Eq. (B.7) holds férall®. Then given
any6 > 0, choos®’ € ® such that/2 < 6’ < 6. We have

Prplyf(x) < 0] < Prs[yf(x) <61 +€(0',86'/2)
< Prs[yf(X) < 0] +€(0/2,580/4).

Since

_ 1 /d log*(m/d) 1\\ 2
€(0/2,50/4) = O<W<T + log (5>> .

this completes the proof. O
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