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Abstract. We study the classification problem that arises when two variables—one continuous (x), one dis-
crete (s)—evolve jointly in time. We suppose that the vectorx traces out a smooth multidimensional curve, to each
point of which the variablesattaches a discrete label. The trace ofs thus partitions the curve into different segments
whose boundaries occur wheres changes value. We consider how to learn the mapping between the trace ofx
and the trace ofs from examples of segmented curves. Our approach is to model the conditional random process
that generates segments of constants along the curve ofx. We suppose that the variables evolves stochastically
as a function of the arc length traversed byx. Since arc length does not depend on the rate at which a curve is
traversed, this gives rise to a family of Markov processes whose predictions are invariant to nonlinear warpings
(or reparameterizations) of time. We show how to estimate the parameters of these models—known as Markov
processes on curves (MPCs)—from labeled and unlabeled data. We then apply these models to two problems in
automatic speech recognition, wherex are acoustic feature trajectories ands are phonetic alignments.
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1. Introduction

The automatic segmentation of continuous trajectories poses a challenging problem in ma-
chine learning. The problem arises whenever a multidimensional trajectory{x(t) | t ∈ [0, τ ]}
must be mapped into a sequence of discrete labelss1s2 . . . sn. A segmentation performs this
mapping by specifying consecutive time intervals such thats(t) = sk for t ∈ [tk−1, tk],
thereby attaching the labelssk to contiguous arcs along the trajectory. The learning problem
is to discover such a mapping from labeled or unlabeled examples.

In this paper, we study this problem, paying special attention to the fact that curves have
intrinsic geometric properties that do not depend on the rate at which they are traversed
(DoCarmo, 1976). Such properties include, for example, the total arc length and the max-
imum distance between any two points on the curve. Given a multidimensional trajectory
{x(t) | t ∈ [0, τ ]}, these properties are invariant to reparameterizationst → f (t), where
f (t) is any monotonic function that maps the interval [0, τ ] into itself. Put another way, the
intrinsic geometric properties of the curve are invariant tononlinear warpings of time.

The study of curves requires some simple notions from differential geometry. As a matter
of terminology, we refer to particular parameterizations of curves as trajectories. We regard
two trajectoriesx1(t)andx2(t)as equivalent to the same curve if there exists a monotonically
increasing functionf for which x1(t) = x2( f (t)). (To be precise, we mean the same
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Figure 1. Two variables—one continuous (x), one discrete (s)—evolve jointly in time. The trace ofs partitions
the curve ofx into different segments whose boundaries occur wheres changes value. Markov processes on curves
model the conditional distribution, Pr[s | x].

orientedcurve: the direction of traversal matters.) Here, as in what follows, we adopt the
convention of usingx(t) to denote an entire trajectory as opposed to constantly writing out
{x(t) | t ∈ [0, τ ]}. Where necessary to refer to the value ofx(t) at a particular moment in
time, we use a different index, such asx(t1).

Let us now return to the problem of automatic segmentation. Consider two variables—
one continuous (x), one discrete (s)—that evolve jointly in time. We assume that the vectorx
traces out a smooth multidimensional curve, to each point of which the variables attaches a
discrete label. Note that the trace ofsyields a partition of the curve into different components;
in particular, the boundaries of these components occur at the points wheres changes value.
We refer to such partitions as segmentations and to the regions of constants as segments;
see figure 1.

Our goal in this paper is to learn a probabilistic mapping between trajectoriesx(t) and
segmentationss(t) from labeled or unlabeled examples. Consider the random process that
generates segments of constants along the curve traced out byx. Given a trajectoryx(t), let
Pr[s(t) | x(t)] denote the conditional probability distribution over possible segmentations.
Suppose that for any two equivalent trajectoriesx(t) andx( f (t)), we have the identity:

Pr[s(t) | x(t)] = Pr[s( f (t)) | x( f (t))]. (1)

Equation (1) captures a fundamental invariance—namely, that the probability that the curve
is segmented in a particular way is independent of the rate at which it is traversed. In this
paper, we study Markov processes with this property. We call themMarkov processes on
curves(MPCs) because for these processes it is unambiguous to write Pr[s | x] without
providing explicit parameterizations for the trajectories,x(t) or s(t). The distinguishing
feature of MPCs is that the variables evolves as a function of thearc lengthtraversed along
x, a quantity that is manifestly invariant to nonlinear warpings of time.

Invariances and symmetries play an important role in statistical pattern recognition be-
cause they encode prior knowledge about the problem domain (Duda & Hart, 1973). Most
work on invariances has focused on spatial symmetries in vision. In optical character recog-
nition, for example, researchers have improved the accuracy of automatically trained clas-
sifiers by incorporating invariances to translations, rotations, and changes of scale (Simard,
LeCun, & Denker, 1993). This paper focuses on an invariance associated with pattern recog-
nition in dynamical systems. Invariance to nonlinear warpings of time arises naturally in
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problems involving the segmentation of continuous trajectories. For example, in pen-based
handwriting recognition, this invariance captures the notion that the shape of a letter does
not depend on the rate at which it is penned. Likewise, in automatic speech recognition
(Rabiner & Juang, 1993), this invariance can be used to model (approximately) the ef-
fects of speaking rate. Thus, in addition to being mathematically interesting in its own
right, the principled handling of this invariance has important consequences for real-world
applications of machine learning.

The main contributions of this paper are: (i) to postulate Eq. (1) as a useful invariance for
problems in statistical pattern recognition; (ii) to introduce MPCs as a family of probabilistic
models that capture this invariance; (iii) to derive learning algorithms for MPCs based on
the principle of maximum likelihood estimation; and (iv) to compare the performance of
MPCs for automatic speech recognition versus that of hidden Markov models (Rabiner &
Juang, 1993). In terms of previous work, our motivation most closely resembles that of
Tishby (1990), who several years ago proposed a dynamical system approach to speech
processing.

The organization of this paper is as follows. In Section 2, we begin by reviewing some ba-
sic concepts from differential geometry. We then introduce MPCs as a family of continuous-
time Markov processes that parameterize the conditional probability distribution, Pr[s | x].
The processes are derived from a set of differential equations that describe the pointwise
evolution ofs along the curve traced out byx.

In Section 3, we consider how to learn the parameters of MPCs in both supervised
and unsupervised settings. These settings correspond to whether the learner has access to
labeled or unlabeled examples. Labeled examples consist of trajectoriesx(t), along with
their corresponding segmentations:

{(START, 0)→ (s1, t1) · · · (sn, tn)→ (END, τ )}. (2)

The ordered pairs in Eq. (2) indicate thats(t) takes the valuesk between timestk−1 andtk;
theSTART andEND states are used to mark endpoints. Unlabeled examples consist only of
the trajectoriesx(t) and the boundary values:

{(START, 0)→ (END, τ )}. (3)

Equation (3) specifies only that the Markov process starts at timet = 0 and terminates at
some later timeτ . In this case, the learner must infer its own target values fors(t) in order
to update its parameter estimates. We view both types of learning as instances of maximum
likelihood estimation and describe an EM algorithm for the more general case of unlabeled
examples.

In Section 4, we describe some simple extensions of MPCs that significantly increase
their modeling power. We also compare MPCs to other probabilistic models of trajectory
segmentation, such as hidden Markov models. We argue that MPCs are distinguished by
two special properties: the mathematical invariance to nonlinear warpings of time, and
the parameterization of asegmentationmodel Pr[s | x], as opposed to asynthesismodel
Pr[x | s].
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Finally, in Section 5, we apply MPCs to the problem of automatic speech recognition. In
this setting, we identify the curvesx with acoustic feature trajectories and the segmentations
s with phonetic labelings and alignments. We present experimental results on two tasks—
recognizing New Jersey town names and connected alpha-digits. On these tasks, we find that
MPCs generally match or exceed the performance of comparably trained hidden Markov
models. We conclude in Section 6 by posing several open questions for future research.

2. Markov processes on curves

Markov processes on curves are based fundamentally on the notion ofarc length. After
reviewing how to compute arc lengths along curves, we show how they can be used to
define random processes that capture the invariance of Eq. (1).

2.1. Arc length

Let g(x) define aD× D matrix for each pointx ∈ RD; in other words, to each pointx, we
associate a particularD× D matrix g(x). If g(x) is non-negative definite for allx, then we
can use it as ametricto compute distances along curves. In particular, consider two nearby
pointsx andx+dx separated by the infinitesimal vectordx. We define the squared distance
between these two points as:

d`2 = dxT g(x) dx. (4)

Arc length along a curve is the non-decreasing function computed by integrating these local
distances. Thus, for the trajectoryx(t), the arc length between the pointsx(t1) andx(t2) is
given by:

` =
∫ t2

t1

dt [ẋT g(x(t)) ẋ]
1
2 , (5)

whereẋ = d
dt [x(t)] denotes the time derivative ofx. Note that the arc length between two

points is invariant under reparameterizations of the trajectory,x(t)→ x( f (t)), where f (t)
is any smooth monotonic function of time that maps the interval [t1, t2] into itself.

In the special case whereg(x) is the identity matrix for allx, Eq. (5) reduces to the
standard definition of arc length in Euclidean space. More generally, however, Eq. (4)
defines a non-Euclidean metric for computing arc lengths. Thus, for example, if the metric
g(x) varies as a function ofx, then Eq. (5) can assign different arc lengths to the trajectories
x(t) andx(t)+ x0, wherex0 is a constant displacement.

2.2. States and lifelengths

The problem of segmentation is to map a trajectoryx(t) into a sequence of discrete labels
s1s2 . . . sn. If these labels are attached to contiguous arcs along the curve ofx, then we can
describe this sequence by a piecewise constant function of time,s(t), as in figure 1. We
refer to the possible values ofs asstates. In what follows, we introduce a family of random
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processes that evolves as a function of the arc length traversed along the curve traced out by
x. These random processes are based on a simple premise—namely, thatthe probability of
remaining in a particular state decays exponentially with the cumulative arc length traversed
in that state. The signature of a state is the particular way in which it computes arc length.

To formalize this idea, we associate with each statei the following quantities: (i) a
metricgi (x) that can be used to compute arc lengths, as in Eq. (5); (ii) a decay parameter
λi that measures the probability per unit arc length thats makes a transition from statei
to some other state; and (iii) a set of transition probabilitiesai j , whereai j represents the
probability that—having decayed out of statei —the variables makes a transition to state
j . Thus,ai j defines a stochastic transition matrix with zero elements along the diagonal
and rows that sum to one:aii = 0 and

∑
j ai j = 1. (We do not consider the possibility

of self-transitions, as they give rise to artificial boundaries in otherwise indistinguishable
segmentations.) Note that all these quantities—the metricgi (x), the decay parameterλi ,
and the transition probabilitiesai j —depend explicitly on the statei with which they are
associated.

Together, these quantities can be used define a Markov process along the curve traced
out byx. In particular, letpi (t) denote the probability thats is in statei at timet , based on
its history up to that point in time. A Markov process is defined by the set of differential
equations:

dpi

dt
= −λi pi [ẋT gi (x) ẋ]

1
2 +

∑
j 6=i

λ j pj aji [ẋT gj (x) ẋ]
1
2 . (6)

The right hand side of Eq. (6) consists of two competing terms. The first term computes the
probability thats decays out of statei ; the second computes the probability thats decays
into statei . Both probabilities are proportional to measures of arc length, and combining
them gives the overall change in probability that occurs in the time interval [t, t + dt]. The
process is Markovian because the evolution ofpi depends only on quantities available at
time t ; thus the future is independent of the past given the present.

Equation (6) has certain properties of interest. First, note that summing both sides over
i gives the identity

∑
i dpi /dt = 0. This shows thatpi remains a normalized probability

distribution: i.e.,
∑

i pi = 1 at all times. Second, suppose that we start in statei and do
not allow return visits: i.e.,pi = 1 at t = 0 andaji = 0 for all j . In this case, the
second term of Eq. (6) vanishes, and we obtain a simple, one-dimensional linear differential
equation forpi (t). It follows that the probability of remaining in statei decays exponentially
(Papoulis, 1991) with the amount of arc length traversed byx, where arc length is computed
using the matrixgi (x). The decay parameter,λi , controls the typical amount of arc length
traversed in statei ; it may be viewed as an inverse lifetime or—to be more precise—an
inverselifelength. Finally, noting that arc length is a reparameterization-invariant quantity,
we therefore observe that these dynamics capture the fundamental invariance of Eq. (1).

2.3. Inference

Let a0i denote the probability that the variables makes an immediate transition from the
START state—denoted by the zero index—to statei ; put another way, this is the probability
that the first segment belongs to statei . Given a trajectoryx(t), the Markov process in
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Eq. (6) gives rise to a conditional probability distribution over possible segmentations,s(t).
Consider the segmentation in whichs(t) takes the valuesk between timestk−1 andtk, and
let

`k =
∫ tk

tk−1

dt[ẋT gsk(x(t)) ẋ]
1
2 (7)

denote the arc length traversed in statesk. From Eq. (6), we know that the probability
of remaining in a particular state decays exponentially with this arc length. Thus, the
conditional probability of this segmentation is given by (Papoulis, 1991):

Pr[s | x] =
(

n∏
k=1

λsk e−λsk `k

)(
n∏

k=0

asksk+1

)
, (8)

where we have useds0 andsn+1 to denote theSTART andEND states of the Markov process.
The first product in Eq. (8) multiplies the probabilities that each segment traverses exactly its
observed arc length. The second product multiplies the probabilities for transitions between
statessk andsk+1. The leading factors ofλsk are included to normalize each state’s duration
model.

There are many important quantities that can be computed from the distribution, Pr[s | x].
Of particular interest is the most probable segmentation:

s∗ = arg max
s
{ln Pr[s | x]}. (9)

Given a particular trajectoryx(t), Eq. (9) calls for a maximization over all piecewise constant
functions of time,s(t). In practice, this maximization can be performed by discretizing
the time axis and applying a dynamic programming (or forward-backward) procedure,
analogous to the Viterbi decoder in HMMs (Viterbi, 1967). The resulting segmentations
will be optimal at some finite temporal resolution,1t . For example, letαi (t) denote the
log-likelihood of the most probable segmentation, ending in statei , of the subtrajectory up
to timet . Starting from the initial conditionαi (0) = ln[a0i ], we compute

α j (t +1t) = max
i
{αi (t)− λi1t [ẋT gi (x) ẋ ]

1
2 + ln[λi ai j ](1− δi j )}, (10)

whereδi j is the discrete delta function. Also, at each time step, let9 j (t +1t) record the
value ofi that maximizes the right hand side of Eq. (10). Suppose that the Markov process
terminates at timeτ . Enforcing the endpoint conditions∗(τ ) = END, we find the most likely
segmentation by back-tracking:

s∗(t −1t) = 9s∗(t)(t). (11)

These recursions yield a segmentation that is optimal at some finite temporal resolution
1t . Generally speaking, by choosing1t to be sufficiently small, one can minimize the
errors introduced by discretization. In practice, one would choose1t to reflect the time
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scale beyond which it is not necessary to consider changes of state. For example, in pen-
based handwriting recognition,1t might be determined by the maximum pen velocity; in
automatic speech recognition, by the sampling rate and frame rate.

Other types of inferences can be made from the distribution, Eq. (8). For example, one
can compute the marginal probability, Pr[s(τ ) = END | x(t)] that the Markov process termi-
nates at precisely the observed time. Similarly, one can compute the posterior probability,
Pr[s(t1) = i | x(t), s(τ ) = END], that at an earlier timet1, the variables was in statei .
These inferences are made by summing the probabilities in Eq. (8) over all segmentations
that terminate precisely at timeτ . This sum is performed by discretizing the time axis and
applying a forward-backward procedure similar to Eqs. (10) and (11). These algorithms
have the same form and computational complexity as their counterparts in hidden Markov
models (Rabiner & Juang, 1993).

3. Learning from examples

The learning problem in MPCs is to estimate the parameters{λi ,ai j , gi (x)} in Eq. (6) from
examples of segmented (or non-segmented) curves. Our first step is to assume a convenient
parameterization for the metrics,gi (x), that compute arc lengths. We then show how to fit
these metrics, along with the parametersλi andai j , by maximum likelihood estimation.

3.1. Parameterizing the metric

A variety of parameterizations can be considered for the metrics,gi (x). The simplest possible
form is a Euclidean metric, wheregi (x) does not have any dependence on the pointx. Such
a metric has the virtue of simplicity, but it is not very powerful in terms of what it can model.
In this paper, we consider the more general form:

gi (x) = 82
i (x)6

−1
i , (12)

where8i (x) is a positive scalar-valued function ofx, and6i is a positive-definite matrix
with |6i | = 1. Equation (12) is a conformal transformation (Wald, 1984) of a Euclidean
metric—that is, a non-Euclidean metric in which all the dependence onx is captured by a
scalar prefactor. (A conformal transformation is one that locally preserves angles, but not
distances.) Equation (12) strikes one possible balance between the confines of Euclidean
geometry and the full generality of Riemannian manifolds. The determinant constraint
|6i | = 1 is imposed to avoid the degenerate solutiongi (x) = 0, in which every trajectory is
assigned zero arc length. Note that we have defined the metricgi (x) in terms of the inverse
of 6i ; this turns out to simplify the parameter reestimation formula for6i , given later in
the section.

The form of the metric determines the nature of the learning problem in MPCs. For
the choice in Eq. (12), one must estimate the functions8i (x), the matrices6i , the decay
parametersλi and the transition probabilitiesai j . In this section, we will consider the
functions8i (x) as fixed or pre-determined, leaving only the parameters6i , λi , andai j to
be estimated from training data. Later, in Section 4.2, we will suggest a particular choice for
the functions8i (x) based on the relationship between MPCs and hidden Markov models.
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3.2. Labeled examples

Suppose we are given examples of segmented trajectories,{xα(t), sα(t)}, where the index
α runs over the examples in the training set. As shorthand, letIiα(t) denote the indicator
function that selects out segments associated with statei :

Iiα(t) =
{

1 if sα(t) = i,

0 otherwise.
(13)

Also, let`iα denote the total arc length traversed by statei in theαth example:

`iα =
∫

dt Iiα(t)
[
ẋT
α gi (xα) ẋα

] 1
2 . (14)

In this paper we view learning as a problem in maximum likelihood estimation. Thus we
seek the parameters that maximize the log-likelihood:∑

α

ln Pr[sα | xα] = −
∑
iα

λi `iα +
∑

i

ni ln λi +
∑

i j

ni j ln ai j , (15)

whereni j is the overall number of observed transitions from statei to state j , andni =∑
j ni j is the number of visits to statei . Equation (15) follows directly from the distribution

over segmentations in Eq. (8). Note that the first two terms measure the log-likelihood of
observed segments in isolation, while the last term measures the log-likelihood of observed
transitions.

Equation (15) has a convenient form for maximum likelihood estimation. In particular,
for fixed6i , there are closed-form solutions for the optimal values ofλi andai j ; these are
given by:

ai j = ni j /ni , (16)

λ−1
i =

1

ni

∑
α

`iα. (17)

These formulae are easy to interpret. The transition probabilitiesai j are determined by
observed counts of transitions, while the decay parametersλi are determined by the mean
arc lengths traversed in each state.

In general, we cannot find closed-form solutions for the maximum likelihood estimates
of 6i . However, we can update these matrices in an iterative fashion that is guaranteed to
increase the log-likelihood at each step. Denoting the updated matrices by6̃i , we consider
the iterative scheme (derived in the appendix):

6̃i ← ci

∑
α

∫
dt Iiα(t)8i (xα(t))

ẋα ẋT
α[

ẋT
α6
−1
i ẋα

] 1
2

, (18)

where the constantci is determined by the determinant constraint|6̃i | = 1. The reestimation
formula for6i involves a sum and integral over all segments assigned to thei th state of
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the MPC. In practice, the integral is evaluated numerically by discretizing the time axis. By
taking gradients of Eq. (15), one can show that the fixed points of this iterative procedure
correspond to stationary points of the log-likelihood. A proof of monotonic convergence is
given in the appendix.

In the case of labeled examples, the above procedures for maximum likelihood estimation
can be invoked independently for each statei . One first iterates Eq. (18) to estimate the
matrix elements of6i . These parameters are then used to compute the arc lengths,`iα, that
appear in Eq. (14). Given these arc lengths, the decay parameters and transition probabilities
follow directly from Eqs. (16) and (17). Thus the problem of learning given labeled examples
is relatively straightforward.

3.3. Unlabeled examples

In an unsupervised setting, the learner does not have access to labeled examples; the only
available information consists of the trajectoriesxα(t), as well as the fact that each pro-
cess terminates at some timeτα. The goal of unsupervised learning is to maximize the
log-likelihood that for each trajectoryxα(t), some probable segmentation can be found that
terminates at precisely the observed time. The appropriate marginal probability is com-
puted by summing Pr[s(t) | x(t)] over allowed segmentations, as described at the end of
Section 2.3.

The maximization of this log-likelihood defines a problem in hidden variable density
estimation. The hidden variables are the states of the Markov process. If these variables
were known, the problem would reduce to the one considered in the previous section. To fill
in these missing values, one can use the Expectation-Maximization (EM) algorithm (Baum,
1972; Dempster, Laird, & Rubin, 1977). Roughly speaking, the EM algorithm works by
converting the maximization of the hidden variable problem into a weighted version of the
problem where the segmentations,sα(t), are known. The weights are determined by the
posterior probabilities, Pr[sα(t) | xα(t), sα(τα) = END], derived from the current parameter
estimates.

We note that Eqs. (10) and (11) suffice to implement an extremely useful approximation
to the EM algorithm in MPCs. This approximation is to compute, based on the current
parameter estimates, the optimal segmentation,s∗α(t), for each trajectory in the training
set; one then re-estimates the parameters of the Markov process by treating the inferred
segmentations,s∗α(t), as targets. This approximation reduces the problem of parameter
estimation to the one considered in the previous section. It can be viewed as a winner-take-
all approximation to the full EM algorithm, analogous to the Viterbi approximation for
learning in hidden Markov models (Rabiner & Juang, 1993).

Essentially the same algorithm can also be applied to partially labeled examples. Partially
labeled examples can take different forms. For example, the labels may specify the state
sequences, but not the segment boundaries, such as:

{(START, 0)→ (s1, ?) · · · (sn, ?)→ (END)}. (19)

Or they may specify the segment boundaries, but not the state sequences:

{(START, 0)→ (?, t1) · · · (?, tn)→ (END)}. (20)
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The ability to handle such examples is important for two reasons: first, because they provide
more information than unlabeled examples, and second, because complete segmentations
in the form of Eq. (2) may not be available. For example, in the problem of automatic speech
recognition, phonetic transcriptions in the form of Eq. (19) are much easier to obtain than
phonetic alignments. As before, we can view the learning problem for these examples as
one in hidden variable density estimation. For these examples, partial knowledge of the
state sequence and/or segment boundaries is incorporated into the EM algorithm simply by
restricting the forward-backward procedures to allowed paths.

4. Observations

In this section, we present some extensions to MPCs and discuss how they relate to other
probabilistic models for trajectory segmentation.

4.1. Extensions to MPCs

MPCs can accomodate more general measures of distance than the one presented in Eq. (4).
For example, letu = ẋ/|ẋ| denote the unit tangent vector along the curve ofx, where
|ẋ| = (ẋT ẋ)1/2. A simple extension of Eq. (4) is to considerd`2 = ẋTg(x, u) ẋ, where
g(x, u) depends not only on the pointx, but also on the tangent vectoru. This extension
enables one to assign different distances to time-reversed trajectories, as opposed to the
measure in Eq. (5), which does not depend on whether the curve is traversed forwards or
backwards. More generally, one may incorporate any of the vector invariants[

1

|ẋ|
(

d

dt

)]n

[x(t)] (21)

into the distance measure. These vectors characterize the local geometry at each point along
the curve; in particular, Eq. (21) gives the pointx for n = 0, the unit tangent vectoru for
n = 1, the local curvature forn = 2, etc. Incorporating higher-order derivatives in this way
enables one to use fairly general distance measures in MPCs.

The invariance to nonlinear warpings of time can also be relaxed in MPCs. This is done
by including time as a coordinate in its own right—i.e., by operating on thespacetime
trajectoriesz(t) = {x(t), t} and computing generalized arc lengths,d`2 = żT G(x) ż, where
ż= {ẋ, 1} andG(x) is a spacetime metric—a(D + 1)-dimensional square matrix for each
point x. The effect of replacinġx by ż is to allow stationary portions of the trajectory to
contribute to the integral̀ = ∫

d`. Mixing space and time coordinates in this way is an
old idea from physics, originating in the theory of relativity, though in that context the
metric is negative-definite (Wald, 1984). Note that this extension of MPCs can also be
combined with the previous one—for instance, by incorporating both tangent vectors and
timing information into the distance measure.

4.2. Relation to hidden Markov models and previous work

Hidden Markov models (HMMs), currently the most popular approach to trajectory seg-
mentation, are also based on probabilistic methods. These models parameterize joint
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distributions of the form:

Pr[s, x] =
∏

t

Pr[st | st−1] Pr[xt | st ]. (22)

There are several important differences between HMMs and MPCs (besides the trivial one
that HMMs are formulated for discrete-time processes). First, the predictions of HMMs are
not invariant to nonlinear warpings of time. For example, consider the pair of trajectories
xt andyt , whereyt is created by the doubling operation:

yt =
{

xt/2 if t even,

yt−1 if t odd.
(23)

Both trajectories trace out the same curve, butyt does so at half the rate asxt . In general,
HMMs will not assign these trajectories the same likelihood, nor are they guaranteed to infer
equivalent segmentations. This is true even for HMMs with more sophisticated durational
models (Rabiner & Juang, 1993). By contrast, these trajectories will be processed identically
by MPCs based on Eqs. (5) and (6).

The states in HMMs and MPCs are also weighted differently by their inference proce-
dures. On one hand, in HMMs, the contribution of each state to the log-likelihood grows
in proportion to its duration in time (i.e., to the number of observations attributed to that
state). On the other hand, in MPCs, the contribution of each state grows in proportion to its
arc length. Naturally, the weighting by arc length attaches a more important role to short-
lived states with non-stationary trajectories. The consequences of this for automatic speech
recognition are discussed in Section 5.

HMMs and MPCs also differ in what they model. HMMs parameterize joint distributions
of the form given by Eq. (22). Thus, in HMMs, maximum likelihood parameter estimation
is directed at learning asynthesismodel, Pr[x | s], while in MPCs, it is directed at learning
a segmentationmodel, Pr[s | x]. The direction of conditioning onx is a crucial difference.
In HMMs, one can generate artificial trajectories by sampling from the joint distribution
Pr[s, x]; MPCs, on the other hand, do not provide a generative model of trajectories. The
Markov assumption is also slightly different in HMMs and MPCs. HMMs observe the con-
ditional independence Pr[st+1 | st , xt ] = Pr[st+1 | st ], such that the state,st+1, is independent
of the observation,xt , given the previous state,st . By contrast, in MPCs the evolution of
pi (t), as given by Eq. (6), depends explicitly on the trajectory at timet—namely, through
the arc length [̇xT gi (x)ẋ]1/2.

While MPCs do not provide a generative model of trajectories, we emphasize that they
do provide a generative model of segmentations. In particular, one can generate a state
sequences0s1s2 . . . sn+1, wheres0 is theSTART state andsn+1 is theEND state, by sampling
from the transition probabilitiesai j . (Here, the sequence lengthn is not fixed in advance, but
determined by the sampling procedure.) Moreover, for each statesk, one can generate an arc
length`k by sampling from the exponential distribution,P(`k) = λske

−λsk `k . Together, these
sampled values ofsk and`k define a segmentation that can be grafted onto any (sufficiently
long) trajectoryx(t). Importantly, this interpretation of MPCs allows them to be combined
hierarchically with other generative models, such as language models in automatic speech
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recognition. For example, denoting words byW, states byS, and arc lengths byL, one can
write: Pr[W,S,L] = Pr[W]Pr[S |W]Pr[L |S].

Finally, we note that one can essentially realize HMMs as a special case of MPCs. This
is done by computing arc lengths along spacetime trajectoriesz(t) = {x(t), t}, as described
in Section 4.1. In this setting, one can mimic the predictions of HMMs by setting the6i

matrices to have only one non-zero element (namely, the diagonal element for delta-time
contributions to the arc length) and by defining the functions8i (x) in terms of the HMM
emission probabilities Pr(x | i ) as:

8i (x) = −ln

[
Pr(x | i )∑
k Pr(x | k)

]
. (24)

This equation sets up a correspondence between the emission log-probabilities in HMMs
and the arc lengths in MPCs. Ignoring the effects of transition probabilities (which are often
negligible), an MPC initialized by Eq. (24) and this singular choice of6i will reproduce the
segmentations of its “parent” HMM. This correspondence is important because it allows
one to bootstrap an MPC from a previously trained HMM. (Also, despite many efforts, we
have not found a more effective way to estimate the functions8i (x).)

In terms of previous work, our motivation for MPCs resembles that of Tishby (1990), who
several years ago proposed a dynamical systems approach to speech processing. Because
MPCs exploit the notion that trajectories are continuous, they also bear some resemblance
to so-calledsegmentalHMMs (Ostendorf, Digalakis, & Kimball, 1996). MPCs never-
theless differ from segmental HMMs in two important respects: (i) the treatment of arc
length—particularly, the estimation of a metricgi (x) for each hidden state of the Markov
process, and (ii) the natural parameterization of a segmentation model Pr[s | x], as opposed
to a synthesis model, Pr[x | s], that is even more complicated than the one in ordinary
HMMs.

5. Automatic speech recognition

The Markov processes in this paper were conceived as models for automatic speech recog-
nition (Rabiner & Juang, 1993). Speech recognizers take as input a sequence of feature
vectors, each of which summarizes the acoustic properties of a short window of speech.
Acoustic feature vectors typically have ten or more components, so that a particular se-
quence of feature vectors can be viewed as tracing out a multidimensional curve. The goal
of a speech recognizer is to translate this curve into a sequence of words, or more generally,
a sequence of sub-syllabic units known asphonemes. Denoting the feature vectors byxt

and the phonemes byst , we can view this problem as the discrete-time equivalent of the
segmentation problem in MPCs.

5.1. Invariances of speech

Though HMMs have led to significant advances in automatic speech recognition, they
are handicapped by certain weaknesses. One of these is the poor manner in which they
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model variations in speaking rate (Siegler & Stern, 1995). Typically, HMMs make more
errors on fast speech than slow speech. A related effect, occurring at the phoneme level,
is that consonants are confused more often than vowels. Generally speaking, consonants
have short-lived, non-stationary acoustic signatures; vowels, just the opposite. Thus, at the
phoneme level, we can view consonantal confusions as a consequence of locally fast speech.

It is tempting to imagine that HMMs make these mistakes because they do not incorporate
an invariance to nonlinear warpings of time. While this oversimplifies the problem, it is
clear that HMMs have systemic biases. In HMMs, the contribution of each state to the log-
likelihood grows in proportion to its duration in time. Thus decoding procedures in HMMs
are inherently biased to pay more attention to long-lived states than short-lived ones. In
our view, this suggests one plausible explanation for the tendency of HMMs to confuse
consonants more often than vowels.

MPCs are quite different from HMMs in how they weight the speech signal. In MPCs,
the contribution of each state is determined by its arc length. The weighting by arc length
attaches a more important role to short-lived but non-stationary phonemes, such as conso-
nants. Of course, one can imagine heuristics in HMMs that achieve the same effect, such as
dividing each state’s contribution to the log-likelihood by its observed (or inferred) duration.
Unlike such heuristics, however, the metricsgi (x) in MPCs are estimated from each state’s
training data; in other words, they are designed to reweight the speech signal in a way that
reflects the statistics of acoustic trajectories.

Admittedly, it is oversimplistic to model the effects of speaking rate by an invariance to
nonlinear warpings of time. The acoustic realization (i.e., spectral profile) of any phoneme
does depend to some extent on the speaking rate, and certain phonemes are more likely to
be stretched or shortened than others. Also, articulatory trajectories do not remain invariant
to changes in the rate of speech; one observes both overshoot and undershoot of articulatory
targets. Finally, an invariance to nonlinear warpings of time presupposes a certain separation
of time scales: on one hand, there is the time scale at which input features are extracted
from the speech signal (i.e., the frame rate); on the other, there is the time scale at which
these features tend to vary. These time scales need to be well separated for MPCs to have
a meaningful interpretation. Whether this is true obviously depends on the choice of input
features.

Despite these caveats, we feel that MPCs provide a compelling alternative to traditional
methods. While we have motivated MPCs by appealing to the intrinsic geometric prop-
erties of curves, we emphasize that for automatic speech recognition, it is important to
relax the invariance to nonlinear warpings of time. This is done by computing arc lengths
along spacetime trajectories, as described in Section 4.1. This extension allows MPCs to
incorporate both movement in acoustic feature spaceandduration in time as measures of
phonemic evolution. Both of these measures are important for speech recognition.

5.2. Experiments

Both HMMs and MPCs were used to build connected speech recognizers. Training and test
data came from speaker-independent databases of telephone speech. All data was digitized
at the caller’s local switch and transmitted in this form to the receiver. For feature extraction,
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input telephone signals (sampled at 8 kHz and band-limited between 100–3800 Hz) were
pre-emphasized and blocked into 30 ms frames with a frame shift of 10 ms. Each frame was
Hamming windowed, autocorrelated, and processed by a linear predictive coding (LPC)
cepstral analysis to produce a vector of 12 liftered cepstral coefficients (Rabiner & Juang,
1993). The feature vector was then augmented by its normalized log energy value, as well as
temporal derivatives of first and second order. Overall, each frame of speech was described
by 39 features. These features were used differently by HMMs and MPCs, as described
below.

Recognizers were evaluated on two tasks. The first task was recognizing New Jersey
town names (e.g., Hoboken). The training data for this task (Sachs, Tikijian, & Roskos,
1994) consisted of 12100 short phrases, spoken in the seven major dialects of American
English. These phrases, ranging from two to four words in length, were selected to provide
maximum phonetic coverage. The test data consisted of 2426 isolated utterances of 1219
New Jersey town names and was collected from nearly 100 speakers. Note that the training
and test data for this task have non-overlapping vocabularies.

Baseline recognizers were built using 43 left-to-right continuous-density HMMs, each
corresponding to a context-independent English phone. Phones were modeled by three-
state HMMs, with the exception of background noise, which was modeled by a single state.
State emission probabilities were computed by Gaussian mixture models with diagonal
covariance matrices. Different sized models were trained usingM = 2, 4, 8, 16, 32, and 64
mixture components per hidden state; for a particular model, the number of mixture compo-
nents was the same across all states. Mixture model parameters were estimated by a Viterbi
implementation of the Baum-Welch algorithm. Transition probabilities were assigned de-
fault values; in particular, all transitions allowed by the task grammar were assumed to
be equally probable. (This assumption simplifies the forward-backward procedure in large
state spaces.)

MPC recognizers were built using the same overall grammar. The HMM segmentations
were used to provide labeled examples for the supervised learning procedures in Section 3.2.
Each hidden state in the MPCs was assigned a metricgi (x) = 6−1

i 82
i (x). The functions

8i (x) were initialized (and fixed) by the state emission probabilities of the HMMs, as in
Eq. (24), using the 39 dimensional cepstral feature vectors. The matrices6i were estimated
by iterating Eq. (18) until convergence. Convergence typically occurred within six iterations,
over the course of which the matrices6i changed significantly from their initial values. We
computed arc lengths along the 14 dimensional spacetime trajectories through cepstra, log-
energy, and time. Thus each6i was a 14× 14 symmetric matrix applied to tangent vectors
consisting of delta-cepstra, delta-log-energy, and delta-time. Note that these MPCs made
use of both extensions discussed in Section 4.1. Curiously, our best results for MPCs were
obtained by settingλi = 1, as opposed to estimating the values of these decay parameters
from training data. We suspect this was due to the highly irregular (i.e., non-exponential)
distribution of arc lengths in the state representing silence and background noise. As in the
HMMs, transition probabilities were assigned default values.

Table 1 shows the results of these experiments comparing MPCs to HMMs. The error
rates in these experiments measure the percentage of town names in the test set that were
incorrectly recognized. The horizontal axis shows the number of mixture components per
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Table 1. Test set error rates on the task of recognizing New Jersey town names versus the number of mixture
components per hidden state.

Mixture components HMM error rate (%) MPC error rate (%)

2 22.3 20.9

4 18.9 17.5

8 16.5 15.1

16 14.6 13.3

32 13.5 12.3

64 11.7 11.4

Figure 2. Test set error rates for HMMs (dashed) and MPCs (solid) on New Jersey town names versus the number
of parameters per hidden state.

hidden state in the HMMs; the emission probabilities from these HMMs were also used to
compute the MPC metrics from Eqs. (12) and (24). Both recognizers used the same recursive
search algorithm to determine the best path through the allowable lattice of states. Beam
widths were chosen so that corresponding recognizers activated roughly equal numbers of
arcs. For various model sizes (as measured by the number of mixture components), we found
the MPCs to yield consistently lower error rates than the HMMs. The graph in figure 2 plots
these error rates versus the number of modeling parameters per hidden state. This graph
shows that the MPCs are not outperforming the HMMs merely because they have extra
modeling parameters (i.e., the6i matrices).

The second task in our experiments involved the recognition of connected alpha-digits
(e.g., N Z3 V J 4 E 3 U 2). Thetraining and test data consisted of 14622 and 7255 utterances,
respectively. Recognizers were built from 285 subword HMMs/MPCs, each corresponding
to a context-dependent English phone. Each subword model had three states, with the
exception of the model for background noise, which only had a single state. The recognizers
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Table 2. Test set word error rates on the task of recognizing connected alpha-digits versus the number of mixture
components per hidden state.

Mixture components HMM error rate (%) MPC error rate (%)

2 12.5 10.0

4 10.7 8.8

8 10.0 8.2

Figure 3. Test set word error rates for HMMs (dashed) and MPCs (solid) on connected alpha-digits versus the
number of parameters per hidden state.

were trained and evaluated in the same way as the previous task, except that we measured
word error rates instead of phrase error rates. The results, shown in Table 2 and figure 3,
follow a similar pattern as before, with the MPCs outperforming the HMMs.

6. Discussion

The experimental results in the previous section demonstrate the viability of MPCs for
automatic speech recognition. Nevertheless, several issues require further attention. One
important issue is the problem of feature selection—namely, how to extract meaningful
trajectories from the speech signal. In this work, we used the same cepstral features for
both MPCs and HMMs; this was done to facilitate a side-by-side comparison. It is doubt-
ful, however, that cepstral trajectories (which are not particularly smooth) provide the
most meaningful type of input to MPCs. Intuitively, one suspects that other measurements
(e.g., pitch contours, formant trajectories, articulatory features) would provide smoother,
more informative trajectories than cepstra; unfortunately, these types of features are not as
straightforward to compute. Further work in this area is needed.

Another important issue for MPCs is learning—namely, how to parameterize and estimate
the metricsgi (x) from trajectoriesx(t). We stress that the learning problem in MPCs has
many more degrees of freedom than the corresponding one in HMMs. In particular, whereas
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in HMMs one must learn a distribution Pr(x | i ) for each hidden state, in MPCs one must
learn a metricgi (x). The former is ascalar-valued function over the acoustic feature space;
the latter, amatrix-valued function. It is fair to say that we do not understand how to
parameterize metrics nearly as well as probability distributions. Certainly, MPCs have the
potential to exploit more sophisticated metrics than the one studied in this paper. Moreover,
it is somewhat unsatisfactory that the metric in Eq. (12) relies on a trained HMM for its
initialization. Finally, we note that the form of Eq. (12) has an unfortunate drawback: the
denominator requires a sum over all the states in the MPC. This did not present a major
computational penalty for the applications we considered, but it would be prohibitively
expensive for problems with larger state spaces. Thus, better solutions for the metric are
needed to scale MPCs up to larger problems in ASR.

On a final note, we emphasize that the issues of feature selection and parameter estimation
in MPCs are not independent. The cepstral front end in today’s speech recognizers is
extremely well matched to the HMM back end; indeed, one might argue that over the
last decade of research, each has been systematically honed to compensate for the other’s
failings. It seems likely that future progress in automatic speech recognition will require
concerted efforts at both ends. Thus we hope that besides providing an alternative to HMMs,
MPCs also encourage a fresh look at the signal processing performed by the front end.

Appendix

A.1. Reestimation formula

In this appendix we derive the reestimation formula, Eq. (18) and show that it leads to
monotonic increases in the log-likelihood, Eq. (15). Recall that in MPCs, the probability
of remaining in a state decays exponentially as a function of the arc length. It follows that
maximizing the log-likelihood in each state is equivalent to minimizing its arc length. For
the choice of metric in Eqs. (12) and (24), the learning problem reduces to optimizing the
matrices6i . For simplicity, consider the arc length of a single trajectory under this metric:

`(6) =
∫ τ

0
dt
[
ẋT6−1ẋ

] 1
28(x(t)). (A.1)

Here we have written the arc length`(6) explicitly as a function of the matrix6, and we
have suppressed the state index for notational convenience.

Our goal is to minimizè (6), subject to the determinant constraint|6| = 1. Note that
the matrix elements of6−1 appear nonlinearly in the right hand side of Eq. (A.1); thus it is
not possible to compute their optimal values in closed form. As an alternative, we consider
the auxiliary function:

Q(9,6) =
∫ τ

0
dt

{
ẋT9−1ẋ

[ẋT6−1ẋ]
1
2

+ [ẋT6−1ẋ]
1
2

}
8(x(t))

2
, (A.2)

where9 is a D × D positive-definite matrix like6. It follows directly from the definition
in Eq. (A.2) that̀ (6) = Q(6,6). Somewhat less trivially, we observe thatQ(9,9) ≤
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Figure A.1. The square root function is concave and upper bounded by
√

z ≤ 1
2 [zξ−1/2 + ξ1/2] for all ξ ≥ 0.

The bounding tangents are shown forξ = 1
10 andξ = 1.

Q(9,6) for all positive definite matrices9 and6. This inequality follows from the
concavity of the square root function, as illustrated in figure A.1.

Consider the value of9 which minimizesQ(9,6), subject to the determinant constraint
|9| = 1. We denote this value bỹ6 = min|9|=1 Q(9,6). Because the matrix elements of
9−1 appearlinearly in Q(9,6), this minimization can be performed analytically, using
Lagrange multipliers to enforce the determinant constraint. The calculation has essentially
the same form as the maximum likelihood estimate of the covariance matrix for a mul-
tivariate normal density (Anderson, 1958). In particular, the arc length is minimized by
computing the correlation matrix of the tangent vectorẋ, as distributed along the trajectory
x(t), or:

6̃ ∝
∫ τ

0
dt

ẋẋT

[ẋT6−1ẋ]
1
2

8(x(t)), (A.3)

where the constant of proportionality is determined by the constraint|6̃| = 1. To minimize
`(6) with respect to6, we now consider the iterative procedure where at each step we
replace6 by 6̃. We observe that:

`(6̃) = Q(6̃, 6̃)

≤ Q(6̃,6) due to concavity

≤ Q(6,6) since6̃ = min
9

Q(9,6)

= `(6),

with equality generally holding only wheñ6 = 6. In other words, this iterative proce-
dure converges monotonically to a local minimum of the arc length,`(6). Extending this
procedure to combined arc lengths over multiple trajectories, we obtain Eq. (18).
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