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Abstract. A Bayesian model of learning to learn by sampling from multiple tasks is presented. The multiple
tasks are themselves generated by sampling from a distribution over an environment of related tasks. Such an
environment is shown to be naturally modelled within a Bayesian context by the concepbbjeativeprior
distribution. It is argued that for many common machine learning problems, although in general we do not know
the true (objective) prior for the problem, we do have some idea of a set of possible priors to which the true
prior belongs. It is shown that under these circumstances a learner can use Bayesian inference to learn the true
prior by learning sufficiently many tasks from the environment. In addition, bounds are given on the amount of
information required to learn a task when itis simultaneously learnt with several other tasks. The bounds show that
if the learner has little knowledge of the true prior, but the dimensionality of the true prior is small, then sampling
multiple tasks is highly advantageous. The theory is applied to the problem of learning a common feature set or
equivalently a low-dimensional-representation (LDR) for an environment of related tasks.
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1. Introduction

Hume’s analysis shows that there isa@riori basis for induction. In a machine learning
context, this means that a learner must be biased in some way for it to generalise well
(Mitchell, 1990). Typically such bias is introduced by hand through the skill and insights of
experts, but despite many notable successes, this process is clearly limited by the experts’
abilities. Hence a desirable goal is to find ways of automatidabyning the bias. As
knowing the right bias makes the learning problem easier, learning the bias can be viewed
as a form oflearning to learn

In this paper a Bayesian model of bias learning is introduced, based on the VC/PAC-
type models of bias learning introduced in (Baxter, 1995b, Baxter, 1996b). The central
assumption of all these models (including that of the present paper) is that the learner is
embedded within aenvironmenbf related tasks. The learner is able to sample from the
environment and hence generate multiple data sets corresponding to different tasks. The
learner can then search for a hypothesis space that is appropriate for learning all the tasks.
Learning problems which can naturally be viewed as belonging to a large class of related
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tasks are things like face recognition (each individual face classifier can be thought of as a
separate learning problem), speech recognition (the word classifiers are related) character
recognition, fingerprint recognition and so on.

For the learner to be able to search for an hypothesis space, it must be provided with a
family of hypothesis spaces from which to choose. In (Baxter, 1995b, Baxter, 1996b) it was
shown that under certain restrictions on this family of hypothesis spaces (these restrictions
are analogous to the “finite VC dimension” restrictions on ordinary learners), it is possible
for the learner to sample sufficiently often from sufficiently many tasks to ensure that a
hypothesis space containing hypotheses with small empirical loss on all the tasks will, with
high probability, contain good solutions to novel tasks drawn from the same environment.
Thus, in this formal sense, it is possible for a learner to learn its own bias.

Whether or not there actually exists a hypothesis space containing good solutions to
all the tasks will depend upon the family of hypothesis spaces provided to the learner,
or equivalently upon théyper-biasof the learner. Such hyper-bias must be provided
by hand, which appears to beg the question, “haven't you just replaced the problem of
finding the right bias with the equally difficult problem of finding the right hyper-bias?”
Part of the purpose of this paper is to show that for many classes of learning problems
(in particular those that possess a common sdeaftures or equivalently, a common
Low Dimensional RepresentatighDR) or preprocessing), the task of finding the correct
hyper-bias is considerably easier than that of finding the right bias, if multiple tasks can be
sampled. Intuitively, the reason for this is that there is a lot more information in multiple
tasks than there is in a single task, and so the hyper-bias can be more weakly specified than
the bias.

Learning multiple related tasks not only enables bias learning—in the sense that it im-
proves the learner’'s performance on novel tasks—but it also improves generalisation per-
formance on the tasks in the training set. In particular, it was shown in (Baxter, 1995b)
that if the learner is learning a common feature set (LDR) fondask training set then
the number of examples required of each task to ensure good generalisation on average
across alh tasks obeys

m:o(a+9>. (1)
n

Herea is a measure of the dimension of the smallest hypothesis space needed to learn all
the tasks in the environment ahds a measure of the dimension of the space of possible
representations available to the learner. “Good generalisation” means that the learner’s per-
formance in practice, on overage acrossafisks, will be close to its average performance

on the training sets. Note that this is an agnostic definition of good generalisation because
it does not assume that the learner actually performs well in training.

Then = 1 case of formula (1)-= = O(a + b)—is an upper bound on the number of
examples that would be required for good generalisation in the ordinary, single task learning
scenario, while the limiting case of = O(a) is an upper bound on the number of examples
required if the correct preprocessing is already known. Thus, this formula shows that the
upper bound on the number of examples required per task for good generalisation decays
to the minimum possible as the number of tasks being learnt increases.
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Although very suggestive, without a matching lower bound of the same form, it is not
possible to conclude from (1) that learning multiple related tasks requires fewer exam-
ples per task for good generalisation than if those tasks are learnt independently. Un-
fortunately, lower bounds within a real-valued VC/PAC framework can only be obtained
by making extra assumptions, such as that the function values are corrupted by noise
(Bartlett, Long & Williamson, 1994), or that every algorithm within a certain class of algo-
rithms performs well (Anthony & Bartlett, 1995). Without such assumptions it is possible
to construct (albeit artificial) scenarios in which every function within some class encodes
its identity at every point (Bartlett, Long & Williamson, 1994). The problem arises because
the output of areal-valued function can potentially encode an infinite amount of information.

The Bayesian model introduced here is an alternative way to overcome these limitations.
In particular the concept of information (in a Shannon sense) is more naturally modeled
within a Bayesian framework than in a VC/PAC setting, and so one can precisely formulate
guestions such as “how much information is required to learn”. By asking this kind of ques-
tion rather than “how many examples are required to learn” we get away from the difficulties
mentioned in the previous paragraph. Another advantage of the Bayesian framework is that
it is much easier to formulate and analyse the effects of prior knowledge on the learning
process. This is particularly important in bias learning where one is trying to understand
how the process of acquiring prior knowledge can be automated.

The main novel feature of this model is that the traditional Bayes prior distribution
is treated a®bjective rather than subjective. The sample space of the objective prior
represents the space of tasks in the environment, and sampling from the prior corresponds
to selecting different learning tasks from the environment. The reason the prior is regarded
as objective is because it is assumed that it can be sampled ifeoiib represents some
objective stochastic phenomenon, in contrast to subjective priors which reflect the prior
beliefsof the learner.

The analogous question to “how many examples are required of each task itagk
training set” leading to the upper bound (1), is “how much information is required per
task to learm tasks?” By using the usual Shannon definition of information, it is shown
in subsection 3.1 that if the learner already knows the true (objective) prior then there is
no advantage to learning tasks; that is, the expected amount of information needed to
learn each task within amtask training set is the same as if the tasks are learnt separately.
However, if the learner does not know the true prior (which is generally the case in bias
learning, otherwise there is no need to do bias learning), but instead knows only that the
prior is one of a seil of possible priors, then we will see that the expected amount of
information required per task to leanntasks,R,, .-, obeys

— 1 1
Ry e =d —i—b/(ﬂ'*) Oin +0( OTgln) 2)

)

wherea’ is the minimum amount of information possible (the amount the learner would
require if it knew the true priorr* € II) andb’(7*) is a local measure of the dimen-
sion of the space of possible pridikat the pointt*. Here f(n,7*) = g(n,7*) means
f(n,7*) = g(n,n*) for all but a set ofr* of vanishingly small measure as— oo, and
o(logn/n) stands for a functiorf (n) satisfying f(n)/(logn/n) — 0. The “vanishingly



10 J. BAXTER

small measure” referred to above is a measurH ahe set of possible priors, and hence is
itself ahyper-priordistribution. The hyper-prior has no physical meaning, it simply reflects
the initial beliefs of the learner as to whiphiors are more likely. Thus, in the terminology
of the present paper, the hyper-prior isubjectivedistribution.

Comparing (2) and (1) and the meaning:@ndb with their partners’ andd’, we see that
(2) partially realizes the aim of providing an exact bound justifying learning multiple related
tasks. In particular, (2) shows that the information required to learn each task within an
task training set decays to thenimumpossible as the number of tasks is made arbitrarily
large. One way of interpreting this is that the effect of the learner’s ignorance concerning
the true (objective) prior can be made arbitrarily small by learning sufficiently many tasks,
or equivalently that any uncertainty the learner may have about the appropriate bias to use
for the environment can be made arbitrarily small by learning sufficiently many tasks.

The difference between the amount of information required by the learner to learn the
nth taskafteralready learning. — 1 tasks, and the amount of information required to learn
the nth task if the learneknowsthe true (objective) prior is analysed in subsection 3.2.

In particular, defining theumulative los®f the learner(,, .- to be the sum of the extra
information required when learning the first, second, nth task, it is shown that

/ *
Chrope = w logn + o(logn). 3

The form of this equation akgn multiplied by the dimension of the space of possi-
ble priors around the true priar* is similar to results from ordinary Bayesian inference
(Clarke & Barron, 1990).

The results of section 3 are purely concerned with the amount of information required
to learn each task within an task training set, they do not address the problem of how
the information is obtained. In section 4 it is assumed that each task takes the form of a
probability distribution over an observation space, and the information about the task is
obtained by sampling from this distribution. This model covers a multitude of learning
scenarios, from pattern classification to density estimation (see section 2). The question of
how much information is required to encode th&h observation of each task in antask
training set,fn,m,,r*, after seeing the first — 1 observations of each task, is analysed. In
particular, general results in terms of metric dimension are given in subsection 4.1 for the
cumulative 10SSC, 1 = > pe Lkt 1,77 -

Theseresultare specialized in section 4.2 to hierarchical models witheal parameters,

b of which are hyper-parameters and the remainitng which are model parameters. That

is, each possible different prior Iii is obtained by fixing of the total set of parameters to
some value, and then each individual learning problem with respect to that prior is obtained
by fixing the remaining parameters to some value. These models are callég-models

Neural networks for learning LDRs are (almost), b)-models; they are considered in
section 4.3. A second example based on learning the parameters of a normal distribution is
given in section 4.4.

In section 4.2 it is shown that fdi, b)-models, the cumulative loss in predicting novel
examples of each task satisfies
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. logm

_ . b
Cn,m,ﬂ'* = 9 (a + E) +o (lOg m) . (4)

Compare this with the situation in which each task is learnt independently:

— . logm
On,m,ﬂ'* =

(a+b)+o(logm), (5)

and the optimal loss achievable if the true prior is known:

— 1
Cn,m,ﬂ'* = ngm (a) +o (log m) . (6)

Again we find that the learner’s loss decays to the minimum possible as the number of tasks
grows. Note the reappearance of the faatar b/n.

The rest of the paper is organized as follows. The Bayesian model of bias learning
is introduced formally in section 2, along with a concrete example based on learning a
feature map or low-dimensional representation (LDR) with a neural network. Equations
(2) and (3) are derived in section 3 and the constahtdd’(7*) are calculated for the
neural network example, where contact is made between the Bayesian model results and
the VC/PAC model results of (Baxter, 1995b). Equations (4), (5) and (6) are derived in
section 4, along with more general versions based only upon metric dimension concepts.
These results are again applied to the neural network example in section 4.3, and once again
comparison is made with the VC/PAC model results. To demonstrate that this theory is
more generally applicable than just the LDR example, a second example based on learning
the parameters of a normal distribution is given in section 4.4.

1.1. Related Work

Several authors have made empirical studies of the idea that learning multiple related tasks
should improve performance, sea.(Caruana, 1993, Abu-Mostafa, 1989, Mitchell &
Thrun, 1994). Experimental verification of this for feedforward nets was also reported

in (Baxter, 1995b). The additional assumption that the tasks are distributed according to
an objectivedistribution is what allows us to perform a theoretical analysis of this idea.
This assumption was also made in (Baxter, 1995b, Baxter, 1996b). However, note that
the theoretical model presented here does not apply directly to the experimental results of
(Caruana, 1993) because there the training sets are not generated independently for each
task.

The Bayesian aspect of the model presented here is a special case of what is known as
hierarchical Bayesian inferendeee e.g (Berger, 1985, Berger, 1986, Good, 1980)). To the
best of my knowledge the asymptotic analysis given in this paper for these models is new,
as is the consideration of the effect of the difference in the number of hyper-parameters
and model parameters, and the application of these results to representation or feature-map
learning with neural networks. Hierarchical Bayesian inference has also been discussed
in the context of neural networks by several authors ésge(Mackay, 1991), although
the techniques presented there are not explicitly identified as hierarchical Bayes). As far
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as | know the idea of an objective prior has not been employed previously in Bayesian
approaches to neural networks. For the most part hierarchical Bayes has been used to tune
a small number of “nuisance” (hyper) parameters (such as the paraiaiatrolling the
trade-off between regularisation and data-misfit in regression networks (Mackay, 1991)),
and this tuning has been based on learnisggletask.

The asymptotic results for smooth Euclidean models given in section 4.2 could also
be derived more directly from the results of (Clarke & Barron, 1990). The motivation
behind the approach taken here (which is based on the ideas in (Haussler & Opper, 1995a))
is that it provides results for general metric spaces, not just Euclidean models, although
this is at the expense of losing lower order terms in the asymptotic estimates. Theorem
1 can also be derived via quite different techniques as a special case of theorem 2 in
(Haussler & Opper, 1995b) (which appeared as an earlier incarnation of the present paper
(Baxter, 1996a) was being prepared).

1.2. Notation

The probability model treated throughout this paper is three-tiered. At the bottom level
is Z which is assumed to be (at least) a complete separable metric space. All probability
measures or¥ are defined on the sigma-field of Borel subsetsZof Z is the learner’s
interface with the environment—the learner receives all its data in the form of samples
from Z. For example, in density estimatidghwould just be the input spack, while in
classificationZ = X x Y whereX is the input space and = {0, 1}.

The next level up in the hierarchy €, which is the set of possible “states of nature”
or “learning tasks” with which the learner might be confronted. For gach© there is
a probability measuré’;, on Z. Itis assumed that there exists a fixedinite measure
v that dominatesP,, for eacht € ©. © is also assumed to be a complete separable
metric space. At the highest level in the hierarchy is thélsshich represents the space of
possible “priors” on®. For eachr € II there is a probability measuré, , on©. Again
the Pg)'s are defined on the sigma field of Borel subset®aind it is assumed that there
exists a second measyiedominating allPg,. Finally, onII there is a fixed probability
measurePyy: the “hyper-prior”. AsO is a complete separable metric space, the domain of
P can be taken to be the sigma field generated by the topology of weak convergence of
the Po |, measures. Let sugpdenote the support of measure

Where multiple instances of the same space need to be distinguished, the extra copies
will be denoted by primesAq’) or tildes ¢).

Integration with respect to the measureand 1. will be denoted by[, dz and [, df
respectively # and . are not assumed to be Lebesgue measures—the notation is just for

convenience). Integration with respect to the hyper-pFigiwill be denoted|;; p(r) dr.

The Radon-Nikodym derivative of any measutg atz € Z, M(z) will be written

dv
interchangeably as(z|0)) or pzs(2), and similarly‘“;%‘"(é)) will be written asp(0|x) or

p@\ﬂ(e)'
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If fis a function onZ, then the expectation gf with respect to any random variable
with distribution Pz, will be denoted byE o f(z) = [, f(2)p(z]0) dz. Similarly for
functions defined o® andIl.

n x m matrices with elements froi will be denoted by:("™):

Z11 --- R1m
AR (7)

Znl -+ Znm-

The columns of(™™) will be denoted as?, soz(™™) = [2...2"].
Let N denote the natural numbers.

2. The Basic Model

In Bayesian models of learning (seqy. (Berger, 1985)) the learner receives data=
z1,...,2n, Which are observations anrandom variables™ = 71,...,Z,. TheZ; are
identically distributed and conditionally independent given the true state of naturee
learner does not kno#, but does know that belongs to a set of possible states of nature
©. The learner begins with a prior distribution &1 p(6), and upon receipt of the dat&
updatew(#) to a posterior distributiop(#|z™) according to Bayes’ rule:

p(6]2") = W (8)
where
p(=") = /@ p(="10)p(6) db. ©)

2.1. Bayesian inference and Neural Networks

Pattern classification or regression with neural networks may be viewed as a special case
of the above. To fix our ideas, consider the case of an MLP for recognising my face. The
weights of the network correspond to the set of possible states of riattine true state of
naturef* being an assignment of weights such that the output of the network is 1 when an
example of my face is applied to its input, and 0 if anything else is applied to its input. The
dataz" = z, ..., z, comes in the form of input-output paits = (x;,y;) where each;

is an example image ang is the correct class label (in this case either 0 or 1). As we are
only interested in classification in this example, the input distribyti@r) is not modeled,

only the conditional distribution on class labelg/|x). Denoting the output of a network
with weightsé by fy(x), and interpretingfy(x) asp(y = 1|z), it can easily be shown
(Bridle, 1989) that the probability of data st = (z1,y1), - . ., (Zn, y») given weightd

is
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p(2"10) = Hp(xi)efE(zn;e) (20)
=1
where
B(2":0) = 3 yilog(fo(z) + (1 — i) log(fo(1)). (12)

i=1

Choosing a priop(6) (typically multivariate Gaussian or uniform over some compact set)
for the weights and substituting (10) into (8) yields the posterior distribution on the weights
p(0]z™). The posterior is the “output” of the learning process. It can be used to predict the
class label of a novel input* by integrating:

ply = 1o 2") = /@ fola*)p(6]2") db. (12)

Of course in general this integral cannot be calculated in closed form and so some kind of
approximation procedure such as Markov-Chain Monte-Carlo must be used for its evalua-
tion. In this paper we do not concern ourselves with such computational issues, except to
note that the common practice of choosing the weights with minimal error is equivalent to
approximating the posterior by a delta function at the maximum-likelihood weight setting.

2.2. Interpreting the Prior

In the example above the prip(d) is a purelysubjectiveprior. A relatively weak prior was
chosen reflecting our weak knowledge about appropriate weight settings for this problem.
However, in the case of face recognition (and many other pattern recognition problems
such as speech and character recognition) it is arguable that therelgaigtvepriors. To

see this, note that given our weak prior knowledge we are likely to have chosen a network
large enough to solvanyface recognition problem within some margin of error, not just
the specific task: “recognise Jon ”. Hence it is likely that there will exist weight settings
0,65, 05,...thatwill cause the network to behave as a classifier for ‘Mary’, ‘Joe’, ‘males’,
‘smiling’, ‘big nose’ and so on. In fact there should exist weight settings that correspond to
nonexistent faces provided different examples of the face vary in a “face-like” way. Hence
we can consider the space of all face classifiers, both real and fictitious, as represented by
a particular subsedy, .. of all possible weight setting®. The objective priorp(8) for

face recognition is then characterised by the fact that its support is restrictegd.to The
restriction of the support is the mostimportant aspect of the face prior. The actual numerical
probabilities for each elemeéite Oy, .. could be chosen in a number of different ways, but
for the sake of argument we can take them to be uniform or as corresponding to the general
frequency of face-like classifier problems encountered in a particular person’s environment.
In general different people will have different environments and so there will actually be
multiple different objective priors for the face recognition problem. However, this does not
change the fact that the face prior is objective—it is objective precisely because itis defined
by the environmenibf the learner and not by a set of subjective beliefs. Note also that
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different people embedded within the same environment—say primarily Caucasian faces,
or primarily Asian faces—will have essentially the same objective priors.

The usual subjective priors chosen in neural network applications (Gaussian or uniform
on the weights) bear no resemblance to the objective prior discussed above: initializing the
weights of a network according to a Gaussian prior typically does not cause the network
to behave like some kind of face classifier, whereas initializing according to the objective
prior by definition will induce such behaviour. Hence the use of subjective priors such as
the Gaussian not only demonstrates our ignorance concerning the specific task atdnand (
learn to recognise Jon) but also demonstrates our ignorance concerning the true prior. That
is, we typically have little idea which parameter settiigerrespond to face-like classifiers
and which correspond to “random junk”.

Should we care that we don’t know the true prior? In short, yes. If we know the true
prior then the task of learning any individual face is vastly simplified. A single positive
example of my face is enough to set the posterior probability of any other individual face
classifiers to zero (or very close to zero), and a few more examples with me smiling,
frowning, bearded, clean-shaven, long-haired, short-haired and so on is enough to set the
posterior probability oEveryother classifier (the smiling, frowningfcclassifiers) except
the “Jon” classifier to zero. Contrast this with the usual subjective priors where typically
thousands of examples and counter-examples of my face would have to be supplied to the
network before a reasonably peaked posterior and hence reasonable generalisation could
be achieved.

2.3. Learning the Prior

If knowing the true prior is such a great advantage then we should try to learn it. To do
this an extra layer of inference must be added to the standard Bayesian model in the form
of a setof candidate priordI. Thus, eachr € II corresponds to some pripff|r) on
O. Realizability is assumed, so that the true objective ps{@f=*) corresponds to some
7* € II. To complete the Bayesian pictursabjectivenyper-priorp(m) must be chosen for
I1. The hyper-priop(r) is subjective, rather than objective, because it cannot be sampled,
that is it does not correspond to some objective stochastic phenomenon in the way that the
objective priorp(f|7*) does. Typically the learner will not have a strong preference for
any particular prior and so we can follow the course taken in ordinary Bayesian inference
under such circumstances and chop@e) to be non-informative or simply Gaussian with
large variance or uniform over some compact set (assuhhiisgeuclidean).

As the true priop(6|7*) is objective it cann principle be sampled from to generate a
sequence of trainintasks 0™ = 01,0, ...,0,. A direct application of Bayes’ rule (8)
then gives the posterior probability of each prior:

p(0"|m)p(r)

p(0™) (13)

p(0") =

wherep(0”|r) = [T;_, p(0s|7) andp(6™) = [;; p(0™|m)p(r) dr.
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Under appropriate conditions the posterior distribution will tend to a delta function over
the true priorr™ asn — oo. Thus for large enough the learner can be said to hdearnt
the prior.

2.4. Example: Learning a Low Dimensional Representation

For this model to work it has to be assumed that although the learner has no idea about the
true prior, it can generate a class of pribrgontaining the true priot*. This assumption

is quite reasonable in the case of face recognition because it seems plausible that there
exists dow-dimensional representatidb DR) or feature map for faces such that each face
classifier can be implemented by a simple map {inear or nearest-neighbour) composed

with the LDR. An LDR in its simplest form is just a fixed mapping from the (typically
high-dimensional) input space to a much smaller dimensional space. One can think of the
LDR as a preprocessing applied to the input data that extracts features that are important
for classification. For example, in the case of face recognition it might be that to uniquely
determine any face one only needs to know the distance between the eyes and the length of
the nose. So an appropriate LDR would be a two-dimensional one that extracts these two
features from an image. Although faces almost certainly cannot be represented solely by
the inter-eye distance and nose length, it is highly plausible that some kind of LDR exists
for the face recognition problem. Itis similarly plausible that LDRs exist for other pattern
recognition problems such as character and speech recognition.

Figure 1 illustrates how in the case of neural-networks the assumption that there exists
an LDR for the tasks in the environment can be translated into a specification for the set
of possible priord1. Referring to the figure, the input space has dimendioine LDR
is implemented by a two-layer sigmoidal net witthidden units followed by output
units (any bounded-dimensional LDR can be approximated to arbitrarily high accuracy
by such a two-layer structure (seey. (Hornik, 1991))), while each individual classifier
task is assumed to be a sigmoidal map composed with the output of the LDR. Thus each
6 € © divides into two partsd = (61,pr, fouT), Wwheredr pr are the hidden layer weights
andfoyr are the weights of the output map. Assuming that the true preprocessing for
the environment corresponds to some assignment of weights to the hiddendayearss
91 br- the true prior can be written as

p(0ror, four) = 6(6LpR — O1pR)f(BoUT) (14)

whered is the Dirac delta-function anf{ 6oy ) is some distribution over the output weights
that generates the different tasks in the environment. Thus it is reasonable Ib tiake
the set of all priors that are a delta function over sémsg, with the distributionf (8our)
over the output weights:

IT= {5(9LDR —O1pr) f(0our) : OLpR € @LDR} : (15)

ThusII is equivalent to the set of possible weights in the hidden lay@rsr. Note
that assumindl is of this form means that the learner must know the true distribution
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f(BouT) on the output weights. If the learner does not knfi@loyr) but does know that
f(BouT) belongs to a parameterised set of distributilgs;r (e.g.multi-variate Gaussians
with unknown means and covariance), then the parameters parametéfizingcan be
adjoined tall, which will then be of the form

= {5(9LDR — 0LDR) frour (Pout) 1 0 € OLpR, ToUT € HOUT} ~ (16)

2.5. Hyper-parameters outnumber parameters

In this model knowing the true prior is equivalent to knowing the correct hidden layer
weights (and the true parameters for the output weight distribution). So if the true prior
is known, learning any individual task is simply a matter of estimating the output weights
for a single node (which is a just a linear regression or linear classification problem). Thus
the output layer weights amaodel parametersvhile the hidden layer weights (and the
parameters of the output weight distribution) aretiedel hyper-parametersn contrast

to other techniques for Bayes learning with neural networks in which there are at most a
handful of hyper-parameters (seq. (Mackay, 1991)), here the hyper-parameters vastly
outnumber the model parameters. This happens because we have assumed that the learner’s
uncertainty concerning the true model (or equivalently, the true prior) is large, while the
dimensionality of the true model is in fact quite low. For many real-world learning envi-
ronments this seems to be a plausible assumption. For example, for the environment of
face-recognition problems, we have a fairly large uncertainty concerning the true model,
but human performance on these kinds of problesng.@ur ability to recognise faces from
single examples) shows that the true model must be very small. Another example is speech
recognition. Considering all individual spoken words as constituting a “speech recognition
environment”, it is true that we have little idea of what the true model is for this environ-
ment, but again human performance suggests that the true model must be small. Many other
pattern recognition problems are arguably best modeled by a two-tier inference structure
in which the hyper-parameters vastly outweigh the model parameters. In the remainder of
the paper we will see how such a two-tiered structure can lead to great improvements in
learning performance if multiple tasks, rather than just a single task, are learnt.

3. Learning Multiple Tasks

Having set up the model of Bayesian bias learning in the previous section, we can now
tackle the questions posed in the introduction: “How much information is required per task
to learnn tasks simultaneously?” and “How much extra information is required to learn a
sequence of tasks when the true prior is unknown?”.

3.1. Learningn tasks simultaneously

Note that if the learner already knows the true ppig#|=*), then the expected amount of
information required per task to leamntasks is
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Figure 1. A neural network for learning low dimensional representations (LDRs) via multi-task sampling. Each
output node corresponds to a different task. Each task is assumed to be implementable by composing a squashed
linear map with a fixed LDR. The LDR is assumed to be implementable by a single-hidden-layer sigmoidal
net. The LDR weights arbyper-parameterswhile the the output weights for a single node are ordinary model
parameters.

H(P@”|7r*)

S = H(Pojy-) (17)

becaus&®on |- = Py and entropy is additive over products of independent distributions
(hereH (Pg|r+) = —Eg|~ log p(0|7*) is theentropyof the true prior). AsH (Pg|,-) is

the expected amount of information required to learn a single task, (17) shows that there is
no advantage to learning multiple tasks if the true prior is known.

If the true prior is unknown, but the learner is in possession of a family of pfiors
containing the true prioPg .-, then the expected amount of information required per task
to learnn tasks is

_ Hy(Pon)

Ry v i= ———, (18)
n

whereH - (Pon ) := —Egn |~ log p(0™) where

p(0") = /H p(67|m)p(r) dr (19)

is the density of thenducedor mixtureprior on6™, Pg~. Note that— log p(6™) is (within
one bit) the optimal amount of information required to encoderthiasksé™ under the
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distributionp(6™), and thap(6™) is theconsistentistribution for the learner to use, given
its prior beliefs as encapsulated in the hyper-priar). Asthe tasks are selected according to
the true priotPg | «, we see thatl .- (Pe ) /n is indeed the expected amount of information
required (per task) to leamntasks.

Ratherthan tackling,, .- directly itis more convenient to analyse the expected difference
between the information required to leasrtasks using the true prigr(6™|7*) and the
information required to learn tasks using the induced pripfd™). This quantity is

6" =: D (Pon |z

[ o102 Pon), (20)

p(6™)

which is theKullback-Liebler divergencbetween the true and induced distributiong3sh
Note that if we knowD i (Pgn |- || Por ), We can recoveR,, .- from the relation

— 1
Ry pv = ﬁDK(PG)"hr* | Por) + H(Pojx) (21)

To boundD g (Pen |

Pgn) the following definitions are needed.

Definition 1 For any m, ' € II, let Ay (w,7') denote the squared Hellinger distance
between the two priorfg . and Pg|

Bumw) = [ [Vl - /ol as 22)

JO
and letAk (m,7") denote the Kullback-Liebler divergence between the two piys,
P@|7r’:

p(O|m)
p(f]7’)

Let B.(w) := {«": A}f(w,w’) < ¢}, i.e.the closed Hellinger ball of radius around.
For all = € II, define thdocal metric dimension of by

A (m, 1) = Dic (Poys | Pojwr) = /@ p(6]) log (23)

dimp, () := lim — (24)

e—0 log B

whenever the limit existg; is the subjective (hyper) prior probability distribution &f).

Note that(H,A}f) is a metric space whil€ll, Ax) is not (Ax is asymmetric and

does not satisfy the triangle inequality). Alshy (m,7') > Ay (7, ') always (see.g.
(Haussler & Opper, 1995a)). To get a feel for the meanindiofp, (7), observe that if
II = R? and Py has a continuous densipy(~), then for anyr € R? with p(7) > 0,

dimpn (7T) =d.

Definition 2 Let(X, X, P) be a measure space afdg: N x X — R be two real-valued
functions onV x X such that for alln € N, f(n,-) andg(n, -) are measurable functions
onX. SetX,, := {z: f(n,x) = g(n,x)} for eachn € N. We say
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f(n,2) =x,p) 9(n,x) (25)

if lim,, o P(X,) = 1. This will be abbreviated t¢(n, z) = g(n,x) whenX and P are
clear from the context.

Theorem 1 If there existsy < oo such that for allr, 7’ € II,
Ak (m, ') < alApy(m, '), (26)
anddimp,, (7) exists for almost all ;) 7 € II, then

DK(P@"\W*
logn

P(—)”) B dimpn (7T*)
— (1L, Pn) 9

+o(1), (27)

where o(g(n)) for any function g(n) stands for a function f(n) for which
lim,, o f(n)/g(n) = 0.

Proof: See appendix A. ]
Note that if
sup p(6im) < 00 (28)

m,m*ell andvco p(9|ﬂ-*)
then there exista < oo such thatA i (7, 7') < aA g (7, 7’) (Haussler & Opper, 1995a).

Theorem 2 Under the same conditions as theorem 1,

_ di ) 1 1
2 Qe () logn —|—o< Og”>. (29)
2 n n
Proof: The theorem follows directly from (21) and theorem 1. ]

Note that this result is not quite as strong as it looks on face value because the set of priors
for which

y A dimp, (7*) logn
n,w* — 9

+ H(Pojs-) + 0 <1°i”> (30)
fails canvary withn, even though its measure becomes vanishingly small-asco. This
implies that for any individuak™ € II, (30) may fail for infinitely manyn. However, if
the sum over alh of the P; measure of the sets af for which (30) fails is finite, then by
Borel-Cantelli, for all but a set af of P measure zero, (30) will fail onlfinitely often.

Settinga = H(Pg|,+) andb = dimp; (7*), theorem 2 shows that the expected amount
of information required per task to learn artask training set approaches

bl
n ogn

= (31)
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except for a set of priors of vanishingly small measure as oo, which in turn approaches
a—the minimum amount of information required to learn a task on averaigalfe amount

of information required if the true prior is knowa.f. (17)). Observe that the advantage in
learningn tasks is controlled by the relative size®findb, and is greatest whein>> a.

As b is a measure of our uncertainty concerning the true prior, the greatest advantage in
learning multiple tasks occurs when the true model is small, but we have little idea about
what the true model should be. It is a plausible hypothesis that many pattern recognition
problems (such as speech, face and character recognition) fit this bill.

3.2. Learningn tasks sequentially

Consider the same set-up as above, but now instead of learningdlks simultaneously,
the learner receives each task one at atime. So foreaeh, 2, . . . the learner has already
seemn — 1 tasks,0"~! = (6y,...,0,_1), drawn according to the true priptd|7*). The
learner then:

e generates the posterior distribution dnp(7|60"~!) according to Bayes’ rule (13),

e uses the posterior distribution to generate a predictive distributigs,on

p(6l0") = /H p(0]m)p(]0™) dr, (32)

e and suffers a IossZm,*, equal to the expected amount of extra information needed
to encode each task using the predictive distribugi¢#{¢™ 1), over and above the
amount of information that would be required if it was using the true prior:

p(O'|m")

L7l77‘—* = E@n—l‘ﬂ-* E@/‘ﬂ.* log W

(33)

Note thatL,, .- is the expected loss of the learner over all initial sequefites and over
all new tasks)’. The quantity analysed in this section is thenulative loss

n—1
671,71’* = sz)+1,ﬂ'*7 (34)
k=0

i.e.the total loss incurred by the learner aftesteps of the above process.
Theorem 3 Under the same conditions as theorem 1,

. dimp, (7*)

Crope = 5 logn + o (logn). (35)

Proof: Direct calculation shows that
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On,w* = DK(P®"|7T*

Pon) (36)

wherePg- is the mixture prior of®™ induced by the hyper-pridey (recall equation (19)).
The result now follows from theorem 1. ]

The nice thing about (35) is that the cumulative loss only diverges logarithmically, so the
expected loss per triad},, .+ /n, tends to zero at a rateg n/n.

3.3. Example: learning an LDR

Recall from section 2.4 that for the problem of learning a Low Dimensional Representation
(LDR), © was split into(01,pr, Oour). Each priorm € II was chosen to be a delta
function over soméy,pr, multiplied by a fixed distributiorf (dour) over©our. In order

to apply the results of the previous subsection the delta function needs to be smoothed out,
otherwise the correct prior is identifiable from the observation of a singlé tasko instead
assume the prior corresponding to eadl of the form

p(fout, Lpr|T) := p(fLpr|7) f(fouT) (37)

wherep(6rpr|7) is @ Gaussian with small varianeg and mead;,pr (7). In addition, for
H(Pg|~) to be well definedi(e. finite) the output weight§ou need to be quantized, so
let each weightv be coded wittk bits and (somewhat arbitrarily) choose the distributfon
over the discretize® oy to be uniform for each prior. Denote the number of weights
in ©1pr by Wrpr and the number of weights ®ouT by Wour. Finally, choose the
hyper-prior distributionP; onII to be uniform over some compact subse€eiHr.

A simple calculation shows the Hellinger and Kullback-Liebler distances to be given by

Ag(m,n) = 2 (1 — exp (—8%||9LDR(7T) - HLDR(T&'/HQ)) , (38)
on
Bl ) = 5 l0uor(m) = o) (39)
II

Note that a$H(7T,7T/) — 0, AH(W,T(,) — ﬁHGLDR(W) — QLDR(W/)”z. Substituting
II
this expression into the definition dfm p, () we find

dimpn (71') = WLDR (40)

forall = € IL. Trivially, H(Pg|.) = kWour for all 7 € II. The fact that the prior ofl is
compactly supported coupled with the use of Gaussian prio& ensures thal i (7, ')
is bounded above byA g (7, 7’) for all 7, 7’ and somex < co. Hence the conditions of
theorem 2 are satisfied and we have
— Wipr 1 1
Rore = %ﬂ + EWour + 0 ( OTgL”) . (41)

n

The similarity of this expression to the upper bound on the number of examples required
per task for good generalisation in a PAC sens®@iour + Wipr/n) is noteworthy
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(see (Baxter, 1995b) for a derivation of the latter expression). Note how the amount of
information required to learn each task decay& oy as the number of tasks being
learnt increaseskWour is the minimumamount of information necessary to learn an
individual task,i.e. the amount of information needed if the true prior is known. Note
also that the advantage in learning multiple tasks is greatéistifg > Wour, i.€.if the
number of hyper-parameters greatly outweighs the number of model parameters.

4. Sampling multiple tasks

Theorems 2 and 3 were derived under the assumption that the learner receives information
about the task&directly. InfactR,, .- is (within one query) the average numbenakries
the learner will require per task to identify tasks if the queries are restricted to be of
the form “is6™ € A” where A is any subset o®™ and the learner uses the best possible
guerying strategy.

In general the learner will not be able to query in this way, but will instead receive
information about the parametérmdirectly via atraining set”™ = (zy, ..., 2, ), Sampled
i.i.d. accordingte(z|9). Ifthe learner is learning tasks simultaneously then it will receive
n such samples (called gn,m)-sampleén (Baxter, 1995b, Baxter, 1995a)):

Z11 --- R1lm
Z(’n,m) — (42)

Znl +-- Znm

Each row ofz(") is sampled according to(z]0;) whered, ..., 6,, are then tasks being
learnt. Letz(™™) denote the set of all suet>™). The correct hierarchical Bayes approach
to learning the: tasks4, . . . , 6,, is to use the hyper pridf; to generate a prior distribution
on O™ via

p(6") = /Hp(9”|7r)p(7r) dm
| o [ p(eir) dn

and then the posterigr(6™|z("™)) can be computed according to Bayes’ rule

p(z(n,m) ‘9”)])(9")

p(z(mm)
_ p(0") [T TG p(2i510:) 43)
p(z(mm)

wherep(z(»™) f@ﬂ O™ 11, H] 1 p(2i516;) dO™.

p(en |Z(n,m)) —
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4.1. Loss as the extra information required to predict the next observation

One way to measure the advantage in learnmirigsks together is by the rate at which the
learner’s loss in predicting novel examples decays for each task. This is the same as the
approach taken in section 3.2, but now we are considering the more realistic situation in
which the learner receives information about each taskdirectly via a sample™ from

Py9,. So fix the number of tasks, samplen tasksf™ = 64, ..., 6,, according to the true

prior Pg|,-, and then for eacin = 1,2, ... the learner has already seen— 1 examples

of each task

211 -+ Z1lm-—1

Zpl -+ Znm-—1

where each row is drawn according@?;1 (or equivalently, each column is drawn ac-
cording toPz~g»). The learner then:

e generates the posterior distribution &, p(6™|z(™™~1)) according to Bayes’ rule
(43),

e uses the posterior distribution to generate a predictive distributicti'on

p(e ) = [ e gz ) do (@5)

e and suffers a Iossfmn, equal to the expected amount of extra information needed
per taskto encode a novel example of each task using the predictive distribution
p(z"|z("™=1)), over and above the amount of information that would be required
if it was using the true distributiom,(z"|6™):

= 1 p(="6")
Lym = EEZ"\G" log p(zn [y’ (46)
Note that
_ 1 Z” 9”
Ln,l = _EZ"|0" log ]LL)7 (47)
n p(z")

wherep(z™) is the learner’s initial distribution oa™ before any data has arrived,
pe)= [ vy = [ [ oo mar s @)
on nJenr|r

To understand better the meanindgf,,,, consider the loss associated with learning a single
classification task. In this caseé = X x {0,1}. If we assume that only the conditional
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distribution on class labels is affected by the model, thend) = p(z)p(y|z, #), and for
the predictive distributionp(z|z™) = p(z)p(y|z, z™). Leta(z) := p(y = 1|z,0) and
B(z) := p(y = 1]z, 2™). Substituting these expressions into (46) and simplifying yields

— a(x) 1— a(z)

Lim=Fx |a(x)log—+ (1 —a(z))log ———= | . 49

L = Bx |a(a)log 55+ (1 = a(@) log 75 (49)
The expression in square brackets is zerdif) = 3(z), i.e.if the conditional distributions
on class labels are the same for the true and predictive distributions. It increases slowly as
a(z) andg(z) diverge.
The quantity analysed in this section is again¢beulative risk

J— m71 —

Cn,m,ﬂ'* = Z E@”|7T*EZ("J€)\O"Ln,kJrl? (50)
k=0

i.e. the expectedotal loss incurred by the learner after steps of the above process.
Note that the expectation is over all sequences @fsksf™ and all(n, k)-samples drawn
according ta(z"|0™).

Definition 3 For anyn = 1,2,..., and for all 6,0" € O, definedimp,,, (6™),
Ay (0™, 0™) andAk (6™, 0™) by replacing all occurrences @f by ©™ and all occurrences
of © by Z™ in definition 1.

Theorem 4 For this theorem fixx € N and take all limiting behaviour to be with respect
to m. Suppose there existis< co such that for allf, 6 € ©,

Ar(6,0) < aAg(0,0), (51)
and thatdimp,,, (6™) exists for almost allPs~) 6™ € ©™. Then,

— . logm . n
Cn,m,ﬂ-* =(I1,Pn) 2gn E@"\Tr* dlmP@n (9 ) + O(IOg m) (52)

Proof: Direct calculation shows that

— 1

Cn,m,ﬂ'* = EE(—)”\W*DK(PZ(TL”"L)|97L PZ("L,"'L))- (53)
As A (07,0™) = S0 Ak(6;,6;), the conditionA(0,0) < aAy(6,6) ensures that
Ag(0™,0™) < naAg(0™,0™). So the conditions of theorem 1 are satisfied (véth
replaced byZ (™) TI replaced by9", andn replaced byn). Hence,

D (Pynmjgn || Pynmy) dimp,, (6™
| =(en,Pon) —PZ ) +o(1). (54)

logm

More specifically, equation (54) means that forak- 1,2, .. ., there existg (m) such that
f(m) — 0 and the sets
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DK(Pz(n,m)‘gn Pz(n,m)) - dimP@n (9”)
logm N 2

or = {9" com +f(m)} (55)

satisfy Po- (OF

m

) — lasm — oco. As Pon(0O}),) = EnPon|-(07,), we must have
Pon|x(O0,) =a,py) 1 +0(1) (56)

for eachn. Hence

DK(PZ(”,'NL)‘GH Pynm) dimp,,, (6™)

Eonyn= = Egnjpr —2"~= 1 57
on|r Tog m (1,Py) Eeon|r 5 +o(1), (57)
which completes the proof. ]

Theorem 4 gives an expression for the expeatedhulativerisk for a learner that is
simultaneously learning tasks using a hierarchical model. In contrast, if the learner does
not take account of the fact that thetasks are related, then each time it comes to learn a
new task it will start with the same prip(9) = [;; p(6|m)p(w) dr. Inthis case the learner’s
expected cumulative risk when learningasks is given by

— logm
Cn m,m* =
’ k) 2

Eg|x+ dimp, (0) 4 o(log m) (58)

(the proof of this is similar to the proof of theorem 4). Thus the difference between the
learner’s risk when taking task relatedness into account (52) vs. ignoring task relatedness
(58) is to first order controlled by the difference between

1 , N
~ Bz~ dimp,,, (0™) (59)

and
Eo|r- dimp, (6). (60)

In the next section expressions (59) and (60) are calculated for a general class of hierarchical
models that includes the LDR model.

4.2. Dimension of(a, b)-models

Definition 4 Let (X, p) be a metric space. We say a second metriocally dominates
at z if there existg, ¢, ¢’ > 0 such that for ally € B.(«, p) (thee-ball aroundz underp),

cp'(x,y) < plx,y) < p'(x,y). (61)

Definition 5 An(a, b)-model is a hierarchical model in whidih = R, © = R* x R and
the following conditions hold:
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1. The priorsp(d|r) are of the form

p(0 = (2, mb)lﬂ-) = 5(37[) — 7)gr(Ta) (62)

whereé(-) is theb-dimensional Dirac delta function angk is a continuous function on
Re.

2. The hyper-priorP has a continuous densip(7) and the true priorr* has positive
densityp(7*).

3. The conditional distributiong(z|#) are twice continuously differentiable functions of
6.

4, A}f is locally dominated by the Euclidean distarite|| on ©, except possibly for a
set oft) of Pg).--measure zero.

5. There exists an < oo such that for allb, § € ©, A (6,0) < aAy(6,60).

Conditions 1-3 of arfa, b)-model formalize the idea of a smooth hierarchical model in
which there are + b parameterd of which are effectively hyper-parameters and are fixed
by the prior and the remaining of which are model parameters. Conditions 4 and 5 are

technical restrictions needed to make the proofs go through. In many cases the following

results would still hold without these restrictions, but different proof techniques would be
required. Recall that sugpis the smallest closed set &fprobability 1.

Theorem 5 In an (a, b)-model, for alld™ in the interior ofsuppPe- (except for a set of
Pgn|-+-measure zero),

dimp,, (") = na + b, (63)
In addition, for anyr, if 6™ is in the interior ofsupg Pen ), then
dimpen‘ﬂ(ﬁn) = na, (64)

again except for a set dfg |- -measure zero.

Proof: See appendix B. [ |

Note that the set of” not covered by the first part of theorem 5 Has. measure zero
becausePe~ is absolutely continuous with respectfg» .- and thePe~» measure of the
boundary of supfPs- ) is zero (becauseg, is continuous). A similar conclusion applies
to the Po- |- measure of the set 6f' not covered by the second part of the theorem.

The requirement thad™ be in theinterior of supd Po-) in theorem 5 is sometimes
necessary. To see this, consider a distribuktam [0, 1] that has an analytic density with one
zeroatr = 1/2. Inthis case sugP) = [0, 1] and the interior of sup{®) = [0, 1] —{1/2}.
For anyz in the interior of suppP), dimp(z) = 1, but forz = 1/2, dimp(z) = 3.
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Theorem 6 In an (a, b)-model, the learner's cumulative risk (50) satisfies

Crmome = loim (a + z> + o (logm) (65)

if the tasks are learnt hierarchically, and

— 1
Comm = °g2 ™ (a4 b) + o (logm) (66)

if they are learnt independently. Furthermore, if the true prior is known then

Core = 2™ () + o (logm) ©7)

Proof: Equation (65) follows immediately from theorem 4 and the first part of theorem
5 (noting the comment after theorem 5), while equation (66) follows from equation (58)
and the first part of theorem 5 with= 1. Equation (67) follows by replacingimp; by
dimpy |7 in theorem 4, and then applying the second part of theorem 5. ]

Theorem 6 shows that the hierarchical approach always does better asymptotically in an
(a,b)-model (even for = 2), and is most advantageous when the hyper-parameters dom-
inate the parameter$ (> a). Comparing (65) with (67), we see that the effect of lack
of knowledge of the true prior can be made arbitrarily small by learning enough tasks
simultaneously, the same conclusion that was reached in section 3.

The following theorem gives sufficient conditions for || to locally dominat%ll,j{2 in
an(a, b)-model.

Theorem 7 If the mapPzy — 0 is continuousi(e. Pzjg — P9, = 0 — 6 where
convergence on the left is weak convergence) on some open set continany the
Fisher information matrix

0 0
T(0) = By | o7 1o p(216) 5~ log p(=10) (68)
i J

ij=1,.,a+b

exists and is positive definite &f, then|| - || locally dominatesﬁ}f2 até,.

Proof: See appendix C ]

4.3. Learning an LDR revisited

Consider the LDR model of section 2.4. $et Wyt andb = Wipgr, whereWour

is the number of weights in an output node dm@pyr is the number of weights in the
LDR (recall Figure 1). Assume the prioggf|r) are given by equation (62). Suppose
that the weights are restricted to lie in some compact subsBt6f (so that the hyper-
prior p(7) has compact support and so do the functigns To complete the model,
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suppose that for each € R**?, p(z|0) is of the formp(y = 1,z(0) = p(z)fo(z) and

p(y = 0,z|0) = p(x)(1 — fo(x)), wherefy(x) is the output of the network with weightis
and inputz, andp(z) is a continuous density on some compact subsé&“ofAssume the
sigmoid iso(z) = tanh(z), except at the output node wherér) = (1 + tanh(z))/2.

Theorem 8 For the neural-network LDR model as above, the cumulative risk (50) satisfies

. logm
2

Cn,m,ﬂ'*

1%
(WOUT + I;lDR> +o(logm), (69)

Proof: The theorem would follow immediately from theorem 6 if the neural-network
LDR model was ar{a, b)-model. Indeed, conditions 1,2,3 and 5 of definition 5 all hold
(condition 5 is the only nontrivial one—it holds because of the compactness assumptions
and the boundednesstfnh(x)). Unfortunately, condition 4 does not hold because there
are various weight-vector transformations that leave the network invariant—such as hidden-
node permutations and sign-flips of all incoming and outgoing weights at a node. This also
causes the continuity assumption to fail in theorem 7. [@etlenote the set of all weight
vectors that produce the same behaviout. &sefferman (Feferman, 1994) showed that for
all but a set of weights of Lebesgue measure zero, node permutations and sign-flips are the
onlytransformations that leave a multi-layemh network invariant. Hence, for almost all
(Prr) priors7*, and for almost all g - ) parameterd, [0] is finite.

Similar arguments to those used in the proof of lemma 12 and theorem 7 can be used to
show that finiteness @] and positive definiteness df(#) ensures that there existc, ¢’
such that for alD < ¢ < ¢,

U B (011 € B (0.84*) € | B (0,111 (70)
0’€[0] 0’€0]

A slightly modified version of the proof of theorem 5 can then be used to show that theorem
5 holds in this case as well, which coupled with theorem 4 proves (69). Hence, the only thing
left to show is that for almost alli;) priors7*, and for almost all g |.~) parameters,
J(0) is positive definite. Note thai(¢) is always nonnegative-definite (to see this observe
that
@2

J(0)].. = ————Dg(Py || P, 71

[J(0)];; 50,00, K (Por||Po) . (71)
and use the factthdx (P||Q) > 0 with equality if and only ifP = Q a.s.) So suppose that
det[J(#)] = 0 onasetof of positive probability. Butlet[.J(6)] is analytic, henceifitis zero
on a set of positive probability it must be zero everywhere. Butin that case there must exist
a smooth re-parameterizatign= ¢(¢) of smaller dimension tha#isuch thatPy = Py,
which violates the finiteness @] a.e. HenceJ(0) is positive definite almost everywhere.

[ |

If the true model has a small set of features thHépyT is small (V oy is always just the
number of features plus 1 for the threshald, Figure 1). If our uncertainty concerning the



30 J. BAXTER

correct set of features is large then the LDR net will have to be large aid sg will be
large. Equation (69) shows that under these circumstances multiple task learning is most
advantageous.

4.4. Learning the prior on the mean of a Gaussian

To demonstrate the wider applicability of this Bayesian multi-task sampling model, in this
section we consider an altogether simpler model: that of learning the prior on the mean of
a Gaussian.

SoletZ = R?,© = R® x R, 11 = R® and

P10 = (1,0)) = Lexp{—u},

\/ﬁg 20’2
p(p,olm) = 6(p—mU(o),
p(m) = B(m),

whereU (o) is the uniform distribution otl, 2], and B(w) is the uniform distribution on
the unit ball inR®. In this model the prior fixes the mean of the distributionnand
then each learning problem corresponds to a different value of the vaangkich is
uniformly distributed in[1, 2]. In this case the true priar* is the mean of the distributions
in the environment.

Theorem 7 holds for alf in this model (see (Clarke & Barron, 1990)), and so condition
5 of the definition of ar{a, b)-model (1, d) in this case) holds. Conditions 1,2 and 3 hold
trivially, and the use of compact support for the mean and variance ensures condition 4
holds. Hence, this is él, ) model and so a direct application of theorem 6 yields

— logm
Cn m,m* =
’ k) 2

(1 + %) +oflogm), (72)

if n tasks are learnt hierarchically.

5. Conclusion

The problem of learning appropriate domain-specific bias via multi-task sampling has been
modeled from a Bayesian/Information-Theoretic viewpoint. The approach shows that in
certain high-dimensional, essentially non-parametric modeling scenarios, most of the model
parameters are more appropriately regarded as hyper-parameters. Performing hierarchical
Bayesian inference within such a model, using multiple task sampling, is asymptotically
much more efficient than a non-hierarchical approach.

There are many interesting avenues for further research. Much more experimental work
needs to be done to verify that bias learning actually works in practice. An ideal place
to start would be learning domains in which there are a large number of related tasks and
for which traditional approaches based on hand-coded feature sets have already produced
good results. Face recognition, speech recognition and fingerprint recognition all fit this
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description. One way to test the theory would be to try to learn feature sets for these domains
using the neural net architecture described in figure 1.

Caruana (Caruana, 1993) has observed that adding extra output nodes to a single-hidden
layer net and training them to perform correctly on related tasks can improve performance
on a reference problem. This scenario is not covered by the Bayesian model presented
here, nor by the VC/PAC type models of (Baxter, 1995b, Baxter, 1996b), because these
models assume that independent training sets are available for each output node. It would
be interesting to derive theoretically the behaviour observed by Caruana.

Another open problem is to determine the conditions under which Jeffrey’s prior is the
optimal hyper-priorto use for the hierarchical models discussed here. This question has
only recently been settled for ordinary Bayes models (Barron & Clarke, 1994). Another
important question is to what extent the assumptioreafizability (i.e. 7* € II) can be
relaxed. Also, the results of (Haussler & Opper, 1995b) can be used to derive asymptotic
bounds on the KL divergence even when the model is infinite dimensional. It would be
interesting to apply those results to the hierarchical case.

Appendix A

Proof of theorem 1

Let I(II; ©™) denote themutual informationbetweenIl and ©" (i.e. I(II;©") :=
EH*DK(P@"MT* P@n)).

Theorem 9 ((Haussler & Opper, 1995a), theorem 1)For all n > 1,

n

—Eq log Ee” #4807 < [(II; ©") < — By« log Ee ™ "Ax (™), (A.1)

Using the assumption of theorem 1 thsk (7, 7’) < aAg (7, ") we have:

—En- IOg EHe_%AH(W*m) < Bn- DK(P(~)”|7T* ||P@n) < —FEq- log Ene_naAH(ﬂ'vﬂ'*)
(A.2)

For any pair of random variablé® andV and any real-valued functiom(w, v), we have
the following inequality due to Feynman:
—Ey log By e (™% < —log By efve(w:v), (A.3)

Using (A.3) we can effectively “lop off” the expectation ovaF in the upper bound of
(A.2) to give an upper bound ab ¢ (Pgn -+ || Por ).

Lemma 10 Forall n > 1 andx* € 1II,

D¢ (Ponjz||Pon) < —log Eye” "8 (™" (A.4)
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Proof: The proof is via the same chain of inequalities used to prove the upper-bound in
theorem 9.

Porn) = Egn|«log ————
© ) on|r g E (9n| )

[)

log (O™ |m)
= —FEgn |z~ log Eyye = »@7 1)

D (Pon |z

(0™ |7)

Egn|r* log PO

IN

—log Erre
= *lOgEHefDK(P@"Iw*HPG"\W)
= —logEHe—"AK(mw*)

S _logEHe—naAH(ﬂm*).

The penultimate line follows because the KL divergence is additive over the product of
independent distributions (seqy.(Cover & Thomas, 1991)). ]

Lemma 11 If dimp, (7*) exists then for ang < o < oo,

—1 E —nalAgy(m,m") di *
lim og Li11€ _ 1M py (7T ) (A5)
n—oo log n 2

Proof: The arguments used in the proof of lemma 11 are similar to those used in
(Haussler & Opper, 1995a) for proving corresponding global metric entropy bounds. Set-

tinge = \/% we have
. (A2 25))?
_logEHe—naAH(‘ir,rr ) B _logEHe (iAH (m, )) (A 6)
logn N —2loge — log a '

Sete sufficiently small to ensure that2loge — log o > 0. Now,

1/2 w1 2 1/2 )2
flogEnei(%AH (m,m )) = —log (/ p(ﬂ)ei(%AH (m,m )) dr
B (m*)

IN

—log (/ p(m)e tdr
Be ()

1/2 «1) 2
+/ p(ﬂ)e_(%AH (r7)) d7r>
Bg(m*)

—log [iPH(BE(ﬂ'*))]
~log Py (B-(x")) + 1,

IN
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and so

(A2 (25 ? .
lim su —log Ee (o) lim su —log Pu(Be(r")) + 1
e—0 P —2loge — loga e—0 P —2loge — log &

IN

dimpn (7‘('*)
—
To get a matching lower bound note that forsalb 0,

—logEn‘e_eA;’m(ﬁ’w*))2 = —log (/ p(ﬁ)e_eAy(”’”*))de
B, (7*)

1/2 )2
—i—/ P(ﬂ)e_(éAH ) d7r>
B (m*)

> —log [PH (B (7)) + 6_(2)2} .

Settingr = ¢!~ for any0 < 6§ < 1 gives

1/2 «1) 2
“log Bre~ (32K )" 5 _jog (PH (Boaos (1%)) + e*fé) (A7)

Now, if dim p, (7*) exists then we know thdty (B,.-s(7*)) decreases no faster than some

power of'~%, which for small enough will dominatee™ e , because the latter expression
decreases faster than any fixed polynomial &ass — 0. Thus

~log (P (Bos—s (n%)) + ¢ )

éh_I)I(lJ “Toge = (1 - 6)dimp, (1), (A.8)
and so
— lAl/z(‘n' 77*))2
. . .—logEne <5 AR 1-6 . .
> .
llgn_}(r)lf —2loge — log -2 dimpy (7°) (A.9)
forall0 < ¢ < 1. Lettingé — 0 finishes the proof of lemma 11. ]

Without loss of generality, we may assume from now on thatp_ () exists for all
7 € II (by assumptionlim p,, (7) exists except for a set @f; measure zero, so we can just
remove all thoser whose dimension is undefined).

From lemmas 11 and 10,

Dx(Ponix|[Pon)  di
lim sup Ly l(z)gn| or) < lm;“<7r).

(A.10)

Applying lemma 11 to equation (A.2) and invoking Fatou’s lemma twice gives

diInpH (71')

EHDK(P@"‘T{'HP@") - E'
— LII

A.11
n—o0 logn 2 ( )
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Now let

di
Msupbad == {7r € [I: limsup Dg (Pon ||| Pon) < M} (A.12)

n—oo 2

Suppose thaPr (supbaa) > 0. Then,

fo dim%“(”) = limsup B W (by (A.11))
= hff’o‘ip B W + liTILIL Sup Ene W
< ElLuppad li7rln_)SOl<1)p —DK(PIGO:;;PGH) + Engupbad li1rln_}solip —DK(]Zi;|;||P@n)
< FEllppad dim%n(ﬂ) +Eme dim%“(ﬂ) (by assumption and (A.10))
_ By dim;;n (m) ,

a contradiction. Thu® (Ilsupnaa) = 0. Hence, for almost alt,

Dx (Pon x|l Pon) _ dimpy ()

lim sup (A.13)
n— o0 logn 2
Now, for eachn = 1,2,...ande > 0 let
D P n|T P~n d

. = {m: 25Forinl Por)  dimpn(m) _ (A.14)

logn 2

Suppose thatimsup,,_, ., P (II,,.) = x > 0. So there exists an infinite sequence of
integersny < ng < ... such thatPy (IL,, .) > . From (A.10) we know that for ang,
0 < 6 < ek, there existg > 0 such that for ali > &,

DK(P@”i,‘ﬂ—HP@"i) < dlmpn('fr)

+er — 6. (A.15)
logn; 2

Hence, for all > k&,

EHDK(P@"i\n||P@’w) _ B, DK(P@"””HP@”)JFEHC Dk (Peni|x[|Pomi)
logn; e log n; i€ log n;
di di
< B, (T o)y, (TR s)
di di
< B, B0 oy TR
_ Endimpn(ﬂ') .y

2
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and so
d. D P " | P ng
o imp, () ~ lim By K (Poni|x||Pori)
2 i—00 logn;
< By dun];rI (m) 5,

which is a contradiction and so the assumptionsup,,_,., P (II,,,.) > 0 must be false.
Hence for alle > 0, lim,,_. o P (IL, ) = 0. Setting

—eor
logn 2 c logn 2

(A.16)

i (e D Pomelr) () o DiPorizl o) dimryir))
n,e ° )

we have proved so far thiin,, Pn(H;,E) = 0foralle > 0. Now defineny(1) =1
and for allm > 1,

1
m

no(m) = Min,,: Py (H;l L) < —  Vn>n. (A.17)

Note thatll’ , QHIn

Ym—+41
mo(n) = Max,:ng(m) < n (with mg(n) = oo if there is no maximium). Note that
mo(n) — oo and so—L— € o(1). Let

1 Song(m) is an increasing function of.. For alln > 1 define

s

mo(n)
. D (Pen|x||Pen) dimp, ()

H;z = {ﬂ-' = (l)og‘n = < ZH _mol(n)

, (A.18)
or DK(P(?;Q:LHP@n) - dum;n(w)}
By definition P(IT},) < -5, hencePy(IT7,) — 0. Thus
D P nlT P~n d
xPorirllPor) . dimpy(m) . (A.19)
logn 2
|
Appendix B

Proof of theorem 5

Lemma 12 Setd” = (04,...,0,). If A}L{Q is locally dominated by - || at eachd; then
there existg;, ¢/, § > 0, such that for all0 < ¢ < §,

Bee (0711 € Be (07, A3f%) € B (07.11-1) (®.1)



36 J. BAXTER

Proof: Let
D0, = | [peop:10)] " dz

D™, ") = /Z[p(znwn)p(z“én)r/2 s = ﬁD(Qi,éi).

Note thatA (6, §) = 2 (1 - D(e,é)) andA g (07,67) = 2 (1 ~ 11, D(Gi,éi)) Now
suppose thatforall Ay (6;,0;) < ¢/n. HenceD(6;,6;) > 1—¢/2n = [, D(6;,0;) >
(1—¢/2n)" >1—¢/2= A(0",0") < e. Next suppose tha:hH(H”,éﬁ) < e. Hence
[1, D(6:,6;) > 1—¢/2 = D(6;,0;) > 1—¢/2for eachi, becausé (6, 6) < 1 always.
ThusAg(6;,0;) < e for all i. These two results show that
1/2 1/2 n o Al/2
By (01, 837) % oo x By i (6087 € B2 (07, 3%
C B, 01,AZ2) X ...X B, (0,,,,AZ2) .
(B.2)

Hence, by the local domination «zﬁ}f by || - || at each¥;, there existg, ¢’ such that for
sufficiently smalle,

Beeyym (00,11 11) X+ X Beeyym (Ons | - DS B (67, ] - 1)
C Bere (01, | - [) X+ X Bere (0, [| - )

(B.3)
which implies that there exists ¢’ such that

Bee (0", 1)) € B (6", A7) € Bu (6", - 1) (8.4)

|

Now fix 6" = (Aa1,0p1, - . .,0an,0s,). By property 4 of an(a, b)-model (definition 5),
with Pgn |~ probabilty 1,|| - || locally dominatesA}q/2 at eachd; = (04, 6;). Again by
the definition of ar(a, b)-model,

(o (ea) =
B.(0m.a}/?

N /ﬂgRb p(7) / 6(0p1 — ) ... 6(0p, — )

Bg(én,A}jg)
9r(0a1) - - G (Ban) dBy1 - . Byl . .. dOund
/ p(m) / 9 (0u1) - o (Oun) dBur . . dOandn(B.5)
I

B:/E\/;(é”HH)

[ p(6 () dr o
) 11

IN
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where BT (07|} == {07 = (Bur, 7, 0un, m): [0 — 07| < e/}, and we
have invoked lemma 12. The condition th#t be in the interior of supPe-) in the
statement of theorem 5 meafisp(6™ |7)p(r) dr > 0, or

Ammfﬁ@m—m%@mmmm. (B.6)

i=1
This can only hold if there is somesuch that(#) > 0 andf; = 7 andgs (6a;) > 0 for
alli = 1...n. Hence (B.5) is an integral over am + b dimensional ball of a function
p(?‘r)gﬂ(ea )...gx(04n) thatis positive at the centé@al, FrerOun, ? #). By assumption,
p(+) andg,(-) are continuous and so for small enough{B.5) will be bounded above by
Kenetb for someK > 0. A similar argument, using the left-hand inequality in lemma 12,

shows thatPg~ (BE (9”, A}{Q)) > K’e"etb which shows that

dimp,, (") =na +b, (B.7)
as required for the first part of theorem 5. The second part of theorem 5 follows from a
similar argument. []
Appendix C

Proof of theorem 7
- 1 - 112
Bu0.8) = [ [plel0)t - plel)? ]| a:
zZ

2 (1= [ [pelowt=i0)]” az) 1)

By assumptiom(z|0) is twice differentiable and so
s % 1 1 _1 a
/Z [pG10p(10)] " @z = /Z p(=19) [ue) p(=lf) ™% (6: — 01) 55-p(=19)
1

~0(E10) 0, = 0 310 (106, = )

1 1 ~ 92 ~
+§P(Z|9) (0; — Gi)mp(z\ﬂ)(ﬁj —0;)| dz

o(ll6 —a]*)
_ 1_iw—aﬂmw—®+oma—ﬂﬁ, (C.2)

IOy = [ pe10) Goplelf) p(elo) d:

B) B
= Ezw[ log p(2(0) —logp z|0)

00;
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which is theFisher information matrbatd. In the above derivation the Einstein summation
convention of summing over repeated indices has been used. Substituting (C.2) in (C.1)
gives

An(0,6)= 540~ 81706~ 6) +O(l6 - 8. (C3)

Let Anin(0) and A\p,ax(0) denote the minimum and maximum eigenvalues/d). By
assumption/ () is positive definite, SOy, (¢) > 0. Working in the basis in which'(¢)
is diagonal gives

/\mm(e)”é - 9”2 < <9 - é|J(9)|9 - é> < )‘maX(e)Hé - éHQ’ (C4)

which coupled with (C.3) yields

Apin(®)] 2 71 e 304
—mins - 0—0|+0(]|0—0|2< Az(0,0
[ 2] o — )+ Oflo ~ 1< 8760.0) cs)
Amax (0) | 2 n e
< [22s2] % 19— 41) + (0 - a1,

By assumption, the mapy, — 0 is continuous in the topology of weak convergence,
which implies it is continuous in the topology generated by the Hellinger distance, and

hence for any > 0 there will exist & > 0 such that ifA;ﬁ(G, 0) < 6, then||6 — 0| < e.
Combined with (C.5), this proves thAt}f is locally dominated by - ||. [ ]
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Notes

1. In reality the prior cannot be directly sampled to dat 62,..., only the conditional distributions
p(z|01),p(2|62), ... can be sampled. This is discussed further in section 4, however for the moment the
fiction that we have direct access to the parameters will be maintained.

2. We will put the delta function back in the next section where we consider the more realistic scenario in which
the learner receives information abduin the form of examples chosen according tp(z|6), rather than
receivingd directly.
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