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Abstract. Color is one of the mostly applied features for object recog-
nition and tracking. Most work for color constancy is often based on
the assumption of spatial uniformity or smooth illuminant transaction,
which is not always true due to the presence of multiple light sources. In
this paper, without these assumptions, we deal with the problem of color
constancy in multiple light sources by computing the color constancy on
a given object rather than the whole image. It keeps the color constancy
for a given object under different outdoor lighting conditions, especially
for an object under different shadows. We first calculate a transfer vector
based on the given object and the illuminants ratio vector. This vector
is then added to the original image to make the object be perpendicular
to the illuminants ratio vector. Finally, an object color constant image
is obtained by performing an orthogonal decomposition along the illu-
minants ratio vector on the new image. Compared with color constancy
on whole image, this proposed method can reduce color distortion in
the object and keep mostly color constancy for an object to be recog-
nized and tracked regardless of lighting conditions. Both quantitative
and qualitative experiments validate our method.

Keywords: Object color constancy · Illumination invariant · Outdoor
multiple light sources · Object detection

1 Introduction

Although color is commonly experienced as an indispensable feature in describing
the world around us, the color variation caused by different lighting conditions
often introduces undesirable effects in digital images. It may negatively affect the
performance of computer vision methods for different applications such as object
recognition, tracking and surveillance [1,2]. Consider, for example, an object
recognition application which identifies the DARK SKIN checker of Macbeth
ColorChecker by color in Fig. 1. It may successfully identifies the DARK SKIN
checker in Fig. 1 (a) but fails when the ColorChecker partly lies in shadow
(Fig. 1 (b)) and totally lies in shadow (Fig. 1 (c)). This is because the change
in the illumination affects object color and further hampers the robustness of
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Fig. 1. Sequence of images under different lighting conditions

object recognition and tracking. Therefore, recovering the object color invariant
to changing lighting conditions (color constancy) is necessary and worthwhile.

A majority of methods advanced so far for illuminant invariant and color
constancy are usually based on the assumption of spatial uniformity. Assuming
that the spectral distribution of a light source is uniform across scenes, these
methods (such as grey-world [3], white-patch [4], and gamut mapping [5]) get
a color constant image by a color correction on original image after globally
estimating the color of the light source [2]. More recently, Gijsenij et al. [6]
proposed an photometric edge weighting color constancy algorithm based on
photometric properties of different edges. Although this assumption works well
in most cases, it is often violated as there might be more than one light source
illuminating the scene [7].

Retinex theory [8], which assumes that an abrupt change in chromaticity
is caused by a change in reflectance properties, is considered as one of the first
color constancy methods for multiple light sources. It implies that the illuminant
varies smoothly across the image. More specifically, the shadow removal prob-
lem [9–11] can be considered as a category of color constancy problem involving
two light sources. Even though these shadow removal methods exhibit impres-
sive results for shadow regions, they cannot yield an identical color consistent
result regardless of lighting condition (e.g., Fig. 1(c)). Recently, Gijsenij et al. [7]
proposed a color constancy method for multiple light sources by applying color
constancy locally on small sampled patches. Greatly affected by the effectiveness
of sampling method, this method may fail when the distribution of the lighting
source is varying.

In order to deal with complex multiple illuminants successfully, these previous
mentioned methods either resort to spatial uniformity assumption or smooth
illuminant transaction assumption, which are not often true in real situation. In
some applications, such as object recognition and tracking, the color constancy
on a whole image maybe not necessary, but only the color constancy on the given
object is required. In this paper, without spatial uniformity or smooth illuminant
transaction, we deal with the color constancy problem for outdoor multiple light
sources by computing the color constancy on a given object rather than the whole
image. It keeps the color constancy for a given object under different outdoor
ligting conditions, especially for an object under different shadows.

This work is based on our previous research on shadow linear model [10] and
the color illumination invariant image [12] from the view of atmosphere trans-
mittance effects. As be compressed, our previous color illumination invariant
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image has some color distortions. In order to make the color of the object keep
the same as the canonical color, in this paper, we first calculate a transfer vector
based on the given object and illuminants ratio vector. Then we add this trans-
fer vector to the original Log-RGB image to obtain a new transferred image.
This will make the object in the new transferred image be perpendicular to the
illuminants ratio vector. Finally, the object color constant image is obtained by
performing an orthogonal decomposition on the transferred image. Compared
with our previous color illuminant invariant on whole image, this method can
reduce color distortion in orthogonal decomposition processing and keep mostly
color constancy for an object to be recognized and tracked. Both the quantitative
and qualitative experiments and comparisons with other methods demonstrate
that the color information of our object color constant image can serve as a
stable feature for object recognition.

2 Background and Our Previous Work

In this section we first give a brief introduction of the formation of an outdoor
image [10] and then we present our pixel-wise orthogonal decomposition for color
illumination invariant image [12].

Light emitted from the sun will scattered by atmospheric transmittance
effects that causes the incident light to be split into direct sunlight and diffuse
skylight. It’s revealed that the sRGB tristimulus values of a surface illuminated
by daylight are proportional to those of the same surface illuminated by skylight
in each of the three color channels [10], i.e.,

log(FH) =
log(KH)

2.4
+ log(fH) (1)

where FH denotes the RGB values of a surface in non-shadow area and fH

denotes the RGB values for the same surface in shadow area, H = {R,G,B}.
The proportional coefficients KH are independent of reflectance and are approx-
imately equal to constants determined by Eq. 2.

KH= arg min
700∑

λ=400

|QH(λ) · (Eday(λ) − KH · Esky(λ))| (2)

Expanding Eq. 1 and letting u = (uR, uG, uB)T defines a Log-RGB value
vector of a pixel, uH = log(vH), we have

Au = I (3)

where A =

⎡

⎣
1 1 −β1

1 −β2 1
−β3 1 1

⎤

⎦ and I = (I1, I2, I3)T . I represent a shadow invari-

ant for a pixel in a image [12]. The β1, β2 and β3 in matrix A are calculated as
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following,

β1 =
log(KR) + log(KG)

log(KB)
, β2 =

log(KR) + log(KB)
log(KG)

, β3 =
log(KG) + log(KB)

log(KR)
(4)

According to the definitions and calculations of β1, β2 and β3, we have rank(A) =
2. Then for a Log-RGB value vector u, from algebraic theory, we can obtain an
orthogonal decomposition (for more information please refer to [12]):

u = up + αu0 (5)

where u0, satisfying Au0 = 0 and ‖u0‖ = 1, is the normalized free solution
of Eq. 3; α ∈ R and up is a particular solution of Eq. 3 such that up⊥u0.
The symbol ‖·‖ denotes L2 norm. Here the free solution has no relationship
with the image itself but is determined by matrix A, i.e. illumination condition.
up, up⊥u0, is only determined by illumination invariant I and (β1, β2, β3)T . It
means that for a pixel with Log-RGB value vector u, no matter how different the
values of the pixel are with different lighting conditions (within shadow, without
shadow or other illuminating), up is invariant and only α reflects the variation
of pixel RGB values caused by shadow or different illuminating.

Shown in Fig. 2, we use three Macbeth ColorCheckers taken in outdoor scenes
at different times on a sunny day to verify these illuminants invariant. It shows
that although the three original images are different largely, their color illumina-
tion invariant images are almost the same (Fig. 2 (r2)). However, even this color
illumination invariant image eliminates the influence of illumination, there still
exist some color distortions, which may bring some wrong results for computer
vision algorithms, such as object recognition and tracking.

Fig. 2. Orthogonal decomposition and object color constancy. (r1) Original images
under different lighting conditions (the WHITE check marked with object is the object
needs to keep color constancy); (r2) Our color illumination invariant images; (r3) Our
object color constant images.
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3 Object Color Constancy

For a good prerequisite processing method for object recognition and tracking,
it is expected that it can keep the similarity of the object in different lighting
conditions meanwhile eliminate or diminish the similarity between the object
and the background. In this section, from this point of view, we will introduce
a color constancy algorithm for a given object, which will make the color of the
object in different lighting conditions keep constant.

Even though the previous color illumination invariant image eliminates the
influence of illumination, there still exist some color distortions. In order to
make the object have no color distortion, a transfer vector should be added to
the object’s Log-RGB value vector to make this vector be perpendicular to the
illuminants ratio vector. Let the Log-RGB value vector of the object we want to
keep color constancy be u and its normalized illumination invariant vector ut

p

can be calculated according to Eq. 5. Then this transfer vector can be calculated
as following,

T = ‖u‖ · ut
p − u (6)

After this transfer, the Log-RGB value vector of this object is perpendicular to
the illuminants ratio, which will make the object have no color distortion in our
orthogonal decomposition operation.

Given the object we want to keep color constancy in an image, the overview
color constancy algorithm can be calculated in the following four steps:

1) Calculating the transfer vector T according to Eq. 6;
2) Adding the transfer vector T to original Log-RGB image to get a new

transferred image It;
3) Making an orthogonal decomposition on the new transferred image It

according to Eq. 5 to get a new color illumination invariant image It
p. Since
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Fig. 3. An illustration of our object color constancy method.
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adding the same transfer vector T on original Log-RGB image does not change
the physical properties of the image, performing orthogonal decomposition on It

will still get an color illumination invariant image like previous section. This can
be shown more clearly in Fig. 3. Here, u denotes the pixel value of the pixel that
we need to keep color constancy (lies in the canonical lighting condition). u1

s and
u2
s denote the pixel values of the same pixel lie partly in shadow and totally in

shadow, respectively. It shows that, after be added with the transfer vector T ,
these pixels can still be projected along the vector u0 (illuminants ratio vector)
into an illumination invariant vector, u′

p. Also, as these newly obtained pixels
are perpendicular to the illuminants ratio vector, the orthogonal decomposition
operation will no longer cause color distortion on these pixels.

4) Subtracting transfer vector T from It
p to get the object color constant

image.
In Fig. 2, we show our object color constancy method for WHITE checker

under different lighting conditions. Unlike the color illumination invariant images
in Fig. 2 (r2), the object color constant images (Fig. 2 (r3)) maintain the color
information of the original WHITE checker. An more accurate experiment with
quantitative analysis will be shown in our experiment section.

4 Experiment

In our experiment, we applied our proposed method for object color constancy
on both Macbeth ColorCheckers and real images. We first compare our method
with Grey-World method [3] and Weighted Grey-Edge method [6] respectively.
And then a set of object recognition experiments based on our results of object
color constant images will show the utility of our method.

4.1 Analysis on ColorCheckers

Similar to the previous experiment for object color constancy, in this section we
will further give a more accurate experiment with quantitative analysis on those
outdoor Macbeth ColorCheckers. A comparison with Grey-World method and
Weighted Grey-Edge method will show the effectiveness of our method.

We use the angular error to evaluate the performance of our object color
constancy algorithm for its frequent use in the literature [13]. As the angular
error is computed pixel by pixel throughout the object, the overall metric of
performance of an algorithm for that set of objects can be the mean of errors.
For accuracy, in this paper we calculate both mean and median as well as the
max error as our measurement to compare different color constancy algorithms.
In Fig. 4, we give some examples of object color constant images based on Grey-
World, Weighted Grey-Edge methods and our method. The first checker (DARK
SKIN checker) marked with Object in Fig. 4 (r1,a) is the object we need to keep
color constancy. We use the color of this Object in daylight as the canonical
object color. It can be seen from Fig. 4 (b), the color of the object based on
our method are almost the same as the canonical color regardless of lighting
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Fig. 4. Examples of object color constant images based on our method, compared to
Grey-World method [3] and Weighted Grey-Edge method [6], along with their mean
angular error compared to the canonical object color. The first checker in (r1,a) (DARK
SKIN checker) marked with Object is the object we need to keep color constancy. The
color of this DARK SKIN checker is used as the canonical color (ground truth color).
The mean angular error is indicated in the left bottom corner of the object. For columns:
(a) Original images taken under different lighting conditions, (b) Object color constant
images by our method, (c) Color constant images by Grey-World method [3], (d) Color
constant images by Weighted Grey-Edge method [6].

conditions. Whereas, even though the Grey-world method [3] and the Weighted
Grey-Edge method [6] yield a pleasing result when the input image is illumi-
nated by a uniform illuminant (Fig. 4 (r1)), they cannot deal with images with
multiple varying lighting conditions (Fig. 4 (r2, r3)). The relevant quantitative
measurement is given in Tab.1. Both the qualitative and the quantitative mea-
surements demonstrate that our object color constant images are considerably
closer to generate an canonical object color regardless of lighting condition than
both the Grey-World method and Weighted Grey-Edge method.

Table 1. Angular errors for the ColorCheckers in terms of mean, median and max
errors for several color constancy algorithms.

Fig. 4 (r1) Fig. 4 (r2) Fig. 4 (r3)

Methods Mean Median Max Mean Median Max Mean Median Max

Do Nothing - - - 3.21◦ 2.08◦ 13.16◦ 5.33◦ 4.04◦ 17.12◦

Grey-World 3.79◦ 3.77◦ 8.09◦ 2.90◦ 2.60◦ 8.90◦ 3.48◦ 3.20◦ 14.00◦

Grey-Edge 0.87◦ 0.80◦ 6.54◦ 3.34◦ 2.32◦ 17.47◦ 6.43◦ 6.81◦ 14.27◦

Ours 0.86◦ 0.78◦ 4.94◦ 2.52◦ 2.57◦ 8.23◦ 2.05◦ 2.02◦ 6.30◦
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4.2 Applications of Our Object Color Constant Image

As a concrete test of the utility of our calculated object color constant image,
we carried out a set of object recognition experiments which identify the object
purely by color. Fig. 5 gives one example of this application. In this experiment,
we choose the book with bluish green envelope as the object for recognition.
These original images were imaged under three different illuminants, one without
shadow, one partly in shadow and one totally in shadow. In our experiment,
for original images, we adopt angular error to measure the color similarity of
different objects. Besides, for comparison, we also evaluate an object recognition
experiment based on an illumination and intensity invariant color descriptor:
rghistogram [14] . In our method for object recognition, the root mean square
error (RMSE) is used to measure the color similarity.

As shown in Fig. 5, the detection results shows that the using of angular error
and the rghistogram color descriptor are variant to the illumination changes.
Therefore, the recognition of this object on original images fails when the object
lies partly in shadow (Fig. 5 (r2, b)) or totally in shadow (Fig. 5 (r2, c)). Whereas
the object recognition on our object color constant image works quite well (Fig. 5
(r4)). These two experiments on real images show that our proposed method prop-
erly gets a color constancy for the given object in the presence of outdoor multiple
light sources and can be directly applied to object recognition or tracking.

In addition to the above qualitative experiments, we also give a quantitative
result on our proposed new dataset of five objects by comparing the recognition
results with the ground truth identified objects. Shown in Fig. 6, our dataset
contains 50 images, each of which consists of an original image and a manually
marked object image (ground truth identified object). The five objects marked
with “Object1, Object2, Object3, Object4 and Object5” are the objects

Fig. 5. Object recognition based on our object color constant images and the compar-
ison with original images using angular error and one color descriptor (rghistogram),
respectively. For columns: (a) Original images under different lighting conditions. The
book with bluish green envelope marked with Object is the object we want to iden-
tify and its color is used as the canonical color; (b), (c) and (d) The color difference
of the original color and the canonical color using angular error, rghistogram color
descriptor and our method, respectively; (e), (f) and (g) The recognition results based
on angular error, rghistogram color descriptor and our object color constant image,
respectively.
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Fig. 6. Example images from our proposed dataset of five object viewed under different
illuminants.

Table 2. Comparison of different methods for object recognition on our proposed
dataset.

Angular error Rghistogram Ours

Object dataset PPV TPR F1 PPV TPR F1 PPV TPR F1

Object1 0.6375 0.7332 0.6688 0.6099 0.7027 0.6394 0.9873 0.9367 0.9608

Object2 0.6339 0.4687 0.5375 0.6304 0.5742 0.6000 0.9968 0.9232 0.9570

Object3 0.6505 0.6145 0.6152 0.6655 0.6841 0.6739 0.9963 0.9911 0.9936

Object4 0.8305 0.4011 0.5212 0.7121 0.5185 0.5886 0.9901 0.9394 0.9636

Object5 0.4913 0.4529 0.4708 0.5828 0.5980 0.5866 0.9998 0.9839 0.9917

Mean 0.6487 0.5341 0.5627 0.6401 0.6155 0.6177 0.9941 0.9548 0.9734

that we use to evaluate our method. Each of the object were imaged with ten
different illuminants. The precision rate (PPV), recall rate (TPR) and F1 score
(F1) are used as the measurement to evaluate the recognition performance.

Table. 2 give the comparison of different methods for object recognition on
our dataset of five object. The mean recognition precision rate of the object
recognition on original image (angular error) is only 64.87%. Even the so called
illuminant invariant color descriptor rghistogram is applied, the precision rate
is still 64.01%. It reveals that this rghistogram color descriptor isn’t really illu-
minant and shadow invariant and it cannot improve the recognition performance
regardless of lighting conditions. While, the precision rate of the object recog-
nition based on our object color constant image has approached 99.41%. This
experiment on object recognition dataset clearly suggests that the color of our
object color constant image can serve as a stable feature for object recognition.

5 Conclusion

Approaches for color constancy on a whole image under single light source have
made considerable progress. However, color constancy on a whole image under
multiple light sources remains an open problem. Different from previous work
deriving color constancy for the whole image, this paper settles this problem by
focusing on the color constancy for a given object. It can keep the color constancy
for a given object under different outdoor lighting conditions, especially for an



378 L. Qu et al.

object under different shadows. This proposed method for object color constancy
can be directly applied to some applications such as object recognition and
tracking and can improve the performance of these methods.
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