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Abstract. In STOC 1987, Goldreich, Micali and Wigderson [GMW87]
proved a fundamental result: it is possible to securely evaluate any func-
tion. Their security formulation consisted of transforming a real-world
adversary into an ideal-world one and became a de facto standard for
assessing security of protocols.

In this work we propose a new approach for the ideal world. Our
new definition preserves the unconditional security of ideal-world execu-
tions and follows the spirit of the real/ideal world paradigm. Moreover
we show that our definition is equivalent to that of [GMW87] when the
input size is public, thus it is a strict generalization of [GMW87].

In addition, we prove that our new formulation is useful by showing
that it allows the construction of protocols for input-size hiding secure
two-party computation for any two-party functionality under standard
assumptions and secure against malicious adversaries. More precisely we
show that in our model, in addition to securely evaluating every two-
party functionality, one can also protect the input-size privacy of one of
the two players. Such an input-size hiding property is not implied by the
standard definitions for two-party computation and is not satisfied by
known constructions for secure computation. This positively answers a
question posed by [LNO13] and [CV12]. Finally, we show that obtaining
such a security notion under a more standard definition (one with a more
traditional ideal world) would imply a scheme for “proofs of polynomial
work”, a primitive that seems unlikely to exist under standard assump-
tions.

Along the way, we will introduce the notion of “executable proof”,
which will be used in our ideal-world formulation and may be of inde-
pendent interest.

Keywords: Secure computation · Ideal world · Input-size hiding · Proofs
of work · FHE · PCP of proximity

1 Introduction

Goldreich, Micali and Wigderson proved in [GMW87] that secure computation
is possible for any function, as long as there is a majority of honest players. They
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provided a compiler that on input a circuit computing the function produces a
protocol that parties can run to obtain the correct output without revealing any
additional information.

Following this result, a long line of works ([GMW87],[GL91],[MR92],[Bea92],
[Can05]) developed what is now considered the de facto standard for proving
security of a protocol. This notion, which we will refer to as the real/ideal-
world paradigm, consists of showing that for any attack that can be carried
out by a real-world adversary A during the execution of the protocol there is
a corresponding attack which could be carried out by the ideal-world adversary
Sim. Since the setting where Sim works is secure by definition, the real-world
protocol must be secure against A.

We note that for general functionalities, the real/ideal world is the only way
we know to meaningfully capture security against arbitrarily malicious adver-
saries. In what follows, we will use secure to mean secure against malicious
parties, unless otherwise stated, and we will focus, as in [GMW87] on the stand-
alone setting.

Beyond the standard real/ideal-world definition. The real/ideal-world paradigm
has long been the main measure to evaluate what can and can not be securely
computed. The difficulties (and sometimes impossibilities) of proving security
under the traditional real/ideal-world formulation have been considered an inher-
ent price to pay for a solid security notion. This has motivated a variety of
alternative definitions circumventing such difficulties/impossibilities by explic-
itly decreasing the security guaranteed by the standard real/ideal world defi-
nition. Examples of weaker security notions are those involving trusted third
parties, set-up assumptions, superpolynomial-time simulation and so on. This
motivates the following question:

Open problem 1: Are there other ways of defining the ideal/real world which
would capture all the desirable properties mentioned above, but which might allow
us to circumvent some difficulties and impossibilities of the traditional defini-
tion?

1.1 A Case Study: Hiding the Input Size

In 2003 Micali, Rabin and Kilian [MRK03] identified an important limitation of
the traditional real/ideal-world paradigm. They noticed that in the real world
there are interesting cases where a player would like to protect the size of his
input. This seems increasingly relevant in today’s world of big data: one might
imagine settings where the number or sensor readings, the size of the customer
database, the quantity of user profiles collected, or the total amount of informa-
tion stored in an advertising database might be considered extremely private or
confidential information.

[MRK03] models input-size hiding by saying that the protocol must hide the
party’s input in a setting where there is no fixed upper bound on the size of the
input: although of course honest parties will run on polynomial-length inputs,
there is no limit on what those polynomials may be. This guarantees that nothing
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is revealed about the input size, and has the additional advantage that it requires
protocols where parties’ efficiency does not depend on an upper bound, but only
on the size of their actual input and the complexity of the functionality for that
input.1 As discussed by [MRK03], known previous results do not allow one to
obtain such security (e.g., the [GMW87] compiler inherently reveals the size of
the input).

Previous work on input-size hiding. Micali et al. explored the case of a player P0

holding a set Φ of polynomial but unrestricted size (i.e., not upperbounded by
any fixed polynomial) and another player P1 holding an element x. Their function
f always outputs x to P0 and outputs 1 to P1 if x ∈ Φ and 0 otherwise. They
gave a game-based solution called “Zero-Knowledge Sets” (ZK sets or ZKS), but
achieving standard simulation-based security remained an open problem.

There have been a few other works in this direction. [IP07] studied the eval-
uation of branching programs as another interesting application of input-size
hiding secure computation. Their solution to the above problem in the setting
of secure two-party computation (2PC) is round efficient, however it does not
provide input-size hiding by the above definition (the length of the program that
corresponds to the input of P0 is bounded), and they do not achieve simulation-
based security. More recently, [ACT11] focused on achieving input-size hiding
set intersection and obtained an efficient scheme. Their solution only addresses
semi-honest adversaries, and security is proved in the random oracle model.
[CV12] proposed a construction that satisfies a modified real/ideal-world defi-
nition specifically for the set membership functionality studied in [MRK03]; we
will discuss below some of the challenges in extending this to cover general func-
tionalities. The importance in practice of input-size hiding secure computation
was considered in [CFT13] where the authors presented an efficient protocol for
size and position hiding private substring matching2.

Very recently, [LNO13] discussed the case of general functionalities, but again
their constructions are limited to the case of semi-honest adversaries. This leads
to the obvious question:

Open problem 2: Is it possible to construct input-size hiding protocols for gen-
eral functionalities that are secure against malicious adversaries, or is revealing
the size of players’ inputs inherent in any general 2PC that achieves security
against malicious adversaries?

Our variant of input-size hiding. Lindell et al. [LNO13] also provide a gen-
eral definition of input-size hiding secure computation, essentially extending the
1 It also has advantages in terms of concrete security in that it results in protocols

where the efficiency of the simulator depends only on the complexity of the adversary
(and not on some assumed upper bound on its input size).

2 In this type of protocol the first party could for instance run on input a digitized
genome while the second party could run on input a set of DNA markers. The goal
in such an use of the protocol is to securely check whether the genome matches
the markers, without revealing any additional information, not even the number of
markers.
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real/ideal-world paradigm in the natural way, and a classification of different
types of input-size hiding. Here we will focus on the case where the output
size is fixed, and where only one party wants to hide the size of his input. For
example, consider the setting where one party wants to run a set of proprietary
computations on each element of another party’s large private database, and
obtain some aggregate results. If the computations can be described in fixed size
but the size of the database is private, then our results apply.

As noted by Ishai and Paskin in [IP07] and formally proven in [LNO13] there
exist some interesting functionalities for which two-sided input-size hiding is not
possible, and similar cases where it is impossible to hide the size of the players’
output. Thus, given that we want to achieve results for general functionalities,
we restrict ourselves to the one-sided input-size hiding, fixed output-size setting.

We stress that in this work we do not aim to construct protocols for func-
tionalities that work on superpolynomial-sized inputs but only protocols that
work for any polynomial-sized input, without a fixed polynomial upper bound
on the possible input size.

1.2 Limitations of the Real/Ideal-World Paradigm in the Input-Size
Hiding Setting

Why input-size hiding secure 2PC is so tough to achieve. We first begin by
recalling the [LNO13] semi-honest input-size hiding protocol, again restricting
to the case where only one party’s input size is hidden (say P0) and where the
output size is fixed and known. The protocol proceeds roughly as follows: First P1

generates an FHE key pair and sends the public key along with an encryption
of his input x1 to P0. Then P0 uses his input x0 and the FHE evaluation to
evaluate f(x0, x1). He sends the result back to P1, who decrypts and outputs
the result.3 The result is secure in the semi-honest model as long as the FHE is
semantically secure and circuit private.

We can immediately see that this protocol is not secure against a malicious
P �
0 , since there is no guarantee that the ciphertexts that P �

0 returns corresponds
to f(x0, ·) for some valid x0. Instead P �

0 could return an incorrect ciphertext to
influence P1’s output or to choose his input conditioned on x1. More fundamen-
tally, if we consider the real/ideal-world paradigm (which as we noted above is
the only way we know to accurately capture security against malicious adver-
saries for general functionalities), we see that the simulator needs to be able to
extract an input x0 to send to the functionality.

Traditionally, this problem is solved by requiring that the malicious party
includes a proof of knowledge (PoK) of his input. In the input-size hiding setting,
we could imagine using an input-size hiding PoK where the proof does not reveal
the size of the witness (although as we will discuss later, these are not so easy

3 For simplicity we consider the case where only P1 receives output, but similar issues
occur in the setting where only P0 receives output, or where both parties receive
input.
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to achieve). The simulator could then extract from this PoK and send the result
to the functionality.

However, here we run into trouble: Recall that the protocol cannot fix any
polynomial upper bound on the length of the prover’s input (otherwise it would
not really be input-size hiding). Now, suppose that an adversary P �

0 decides
to run the protocol using a superpolynomial-length input. Note that using a
superpolynomial-length input does not necessarily mean that the adversary must
be superpolynomial; it may be that the adversary is working with a compact rep-
resentation a much longer input. And suppose that the adversary can find a way
to efficiently run the protocol and generate a proof given only this short repre-
sentation. Then finding a corresponding polynomial-time ideal-world adversary
will be impossible: this ideal adversary would have to send the functionality an
equivalent input (of superpolynomial size!) and this would require superpolyno-
mial time. (Concretely think of the set membership function; if the set Φ chosen
by P �

0 consists of all k-bit strings such that the last bit is 0, then P �
0 has in

mind an input of exponential size, and thus efficiently extracting this input will
be impossible. Notice that P �

0 could still be efficient because it is possible to
represent that huge set as a small circuit.)

We could of course simply assume that we can design a PoK or more gener-
ally a protocol which an honest party can run on any polynomial-sized input, but
for which no polynomial-time adversary can execute the protocol on any super-
polynomial input. However, we argue that this seems inherently non-standard:
essentially, we would be assuming an object which is easy on any polynomial-
sized input but becomes computationally infeasible as soon as the input is even
slightly superpolynomial. This is therefore the inherent major difficulty. Even if
P �
0 is guaranteed to be efficient (polynomial time), we have no way of guaran-

teeing that the input that P �
0 is implicitly using is of polynomial size.

Formalizing the limitation of the real/ideal-world definition w.r.t. hiding the
input size. Lindell et al. [LNO13] conjectured that their construction (which
is shown to be secure against semi-honest adversaries) could be augmented with
a “proof of work” in order to be secure against malicious adversaries; essentially
the idea was to solve the problem described above by requiring the adversary
to prove that the size of his input is polynomial. Unfortunately currently there
is no candidate construction for proofs of work under standard assumptions;
moreover, as we just mentioned, non-standard assumptions seem inherent, in
that a proof of work makes an assumption on the abilities of a polynomial-time
adversary on a problem instance that is only guaranteed to be superpolynomial
(rather than exponential). This prompts the following question.

Open problem 3: is it possible to achieve input-size hiding secure 2PC for
all functionalities in the traditional real/ideal world without relying on proofs of
work?

In Section 2.1, we formalize this notion of proofs of work, which we refer
to as a proof of polynomial work or PPW. On the positive side, this seems
to capture the intuition for what [LNO13] use in their proposed extension to
security against malicious adversaries. On the other hand, as we have discussed,
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these proofs of work seem inherently to require non-standard assumptions. This
then presents the next open question:

Open problem 4: How can we meaningfully define input-size hiding secure
2PC if we are interested in constructions under standard assumptions?

1.3 A New Ideal World

Given the above limitations, we take a step back and consider what we need from
our security definition. The traditional real/ideal-world paradigm has three key
features: 1) In the ideal world it is clear from inspection what functionality
is provided and what an adversary can learn or influence. Indeed, players are
simply required to send their inputs to a trusted functionality F that will then
evaluate the function and distribute the outputs to the players. This guarantees
that even if P0 is corrupted4: a) the output is correct and consistent with some
valid input x0, b) P0’s choice of input x0 cannot depend on P1’s input x1, and
c) P0 cannot cause a selective failure, i.e. P0 cannot cause the protocol to fail
conditioned on the input chosen by P1. 2) In the ideal world, security holds
unconditionally. Again, this is important because we want it to be obvious that
the ideal world provides the desired security. 3) The ideal world is efficient (i.e.,
the ideal functionality F and the ideal adversary Sim are polynomial time). This
is crucial when we want to use secure computation as a part of a larger protocol:
if a protocol achieves a real/ideal-world definition, then we can argue that we
could replace it with F and Sim. However if F and Sim are inefficient, then
the resulting game will not be polynomial time, and any reductions to standard
hardness assumptions will fail.

Our key observation then is that in order to enforce these properties the
functionality does not actually need to receive P0’s input x0. Instead it only
needs a) to ensure that x0 is fixed and independent of x1, and b) an efficient
way to compute f(x0, x1) consistently with x0.

The new ideal world. This leads to the following relaxation of the ideal world.
Instead of requiring P0 to send his input directly, we instead require P0 to send an
implicit representation of his input. The only requirement on this representation
is that it must uniquely define the party’s true input x0.5 We will use Rep(x0) to
denote some implicit representation corresponding to x0. (Our ideal world will
take the specification of this representation as a parameter; the definition will
require that there exist a valid representation under which the real and ideal
worlds are identical.)

Then in order to allow the functionality to compute P1’s output, the ideal
P0 will also send a circuit C describing how to compute the output given any
input x1 from P1. Finally, we require that this circuit C on input x1 produce not
4 We use corrupt P0 as an example: clearly the analogous properties also hold if P1 is

corrupt.
5 For our ideal world to be realizable, it must hold that any polynomial-sized input

has a polynomial-sized representation.
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only the output f(x0, x1), but also some evidence that this output is correctly
computed according to x1 and the input defined by Rep(x0). Intuitively, because
P0 sends Rep(x0), this guarantees that x0 is fixed and independent of x1, and
because C provides evidence that its output is correct, we are guaranteed that
(if the evidence is valid), the output provided to P1 is indeed f(x0, x1). Finally,
we note that the only way for P0 to cause a selective failure is for C(x1) to
output invalid evidence - in all other cases the functionality will send to P1 a
valid output.

That leaves two issues to resolve: 1) how to formalize this “evidence”, and
2) what happens if C(x1) produces evidence that is invalid.

Executable proofs. Ignoring the implicit input for a moment, we might consider
an ideal world which works as follows: F receives from one of the parties P0 not
only the input x0 but also a circuit C. Then, instead of computing the output
directly, F , having obtained input x1 from P1, runs C(x1) to obtain (y, w), where
w is an NP witness for the statement y = f(x0, x1). F verifies w and outputs y
to P1 iff the verification succeeds.6 Clearly this is equivalent to the traditional
notion of security because the NP witness unconditionally guarantees that F
produces the correct output.

Now, what if we want F to be able to verify statements which may not be
in NP? 7

We might want to consider cases where, rather than an NP-witness, F is
given some other kind of proof. As long as the proof is unconditionally sound
and efficiently verifiable we still have a meaningful notion of security. If we want
to consider more general languages, we might imagine providing F with a PCP
to verify instead of an NP witness. Because PCPs are unconditionally sound,
this would still satisfy the first property. However, even if they can be verified
efficiently, the PCPs for the language could still be exponentially long while as
argued above, we want our ideal parties and F to run in polynomial time, so
it might be impossible for the ideal party to output an entire PCP. Thus we
introduce the notion of an “executable proof”. This is a new concept of proof
that has similarities with classical proofs, interactive proofs and PCPs. However
executable proofs differ from the above concepts since they focus on a giving to
a verifier the capability of checking the veracity of a statement (potentially not
in NP) by running a circuit (i.e., an executable proof) locally.

In particular we will make use of executable PCPs. An executable PCP is
a circuit which on input i produces the ith bit of a PCP (i.e., a circuit repre-
sentation of a PCP). Given a description of such a circuit, F can run the PCP
6 Addressing the case where verification fails is somewhat more subtle. See below for

more discussion.
7 For example in the context of input-size hiding protocols, as discussed above, we

might consider the case where F is given only a compact representation of x0 while
the actual x0 may be of superpolynomial length. In this case it may be that verifying
f(x0, x1) = y given only x1 and the representation of x0 is not in NP. (Note that in
this case a witness that includes the explicit x0 would have superpolynomial length,
and so would not be a valid NP witness.)
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verifier to unconditionally verify the statement. If the circuit representation is
polynomial sized, this verification is efficient.

The nice point here compared to just using a witness for the statement is
that the description of the executable PCP can be much shorter than a standard
witness (it essentially depends on the complexity of describing the given witness);
this will play a fundamental role in our constructions.

Ideal Errors. We solve the second issue by slightly modifying the notion of
real/ideal-world executions. In the ideal world F will verify the proof π and then
complete the protocol only if the proof was accepting. If π failed in convincing
F , then F will send P1 a special message “ideal error”, indicating that the ideal
input was invalid. Finally, our definition for secure computation will require
that the real-world execution never produce this “ideal error” as output of P1.8

This guarantees that in any secure realization any real world adversary must
have a corresponding ideal world adversary who causes this error to occur in
the output of the ideal P1 only with negligible probability. (This is because any
ideal world execution in which the ideal honest player P1 outputs such an error
with non-negligible probability would be instantly distinguishable from the real
world where such an output for P1 cannot appear by definition).

We stress that the flow of data follows the standard notion of the real/ideal
paradigm where players send data to F first, and then F performs a computation
and sends outputs (waiting for the approval of A for fairness reasons) to players.
By the unconditional soundness of the proof given by π, it is clear that the
adversary is committed to an input and the output is consistent with that input
(as long as “ideal error” does not occur). And finally, our ideal adversary runs in
polynomial time, and the implicit input and the circuit C are produced by the
ideal adversary; this means that F will also run in polynomial time9. Thus, our
new formulation has all the desirable properties mentioned above. As a sanity
check, we note that our definition is equivalent to the traditional real/ideal-world
definition in the case where the input lengths are fixed known polynomials.

1.4 Constructing Input-Size Hiding Under the New Definition

Finally, we show that our new definition is realizable. We show a protocol that
satisfies our input-size hiding secure 2PC and that builds on top of several
recent advanced tools, and follows the outline from the semi-honest construction
of [LNO13] described above. Roughly, we will use fully homomorphic encryption
(FHE) as in [LNO13] so that the adversary P0 can evaluate the function given
only an encryption of P1’s input, which will give privacy for P1. To guarantee
8 Technically we can guarantee this by requiring that the real execution replaces any

“ideal error” in its output by ⊥.
9 To see this note that a polynomial time adversary must produce polynomial sized

circuits for the ideal input and the circuit C, F ’s operation consists of evaluating
the circuit C and running a polynomial time verification algorithm on the proof
produced by C, and polynomial sized circuits can always be evaluated in polynomial
time and produce polynomial length output.
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that the adversary P0 must behave correctly we will require that P0 commit to
(via an input-size hiding commitment) and prove knowledge of his input before
receiving the ciphertext from P1. However, in designing this proof of knowledge,
we are faced with the issue discussed above of extracting a potentially very long
input from a short proof of knowledge. To address this we will use a special
proof of knowledge introduced by [CV12] called a “universal argument of quasi
knowledge” (UAQK) that has short communication complexity and provides a
(non-black box) extractor that outputs a short “implicit” representation of the
witness. Therefore the issue of efficiently extracting from an adversary that has
in mind a very large input is solved by extracting a small implicit representation
of this input. Looking ahead to the proof, it is this implicit represent that will be
used as Rep in the ideal world. After applying the FHE evaluation to compute
an encryption of f(x0, x1), P0 is required to give a UAQK to prove knowledge
of a PCP of proximity proving that her work on ciphertexts was done correctly.
With a PCP of proximity, a verifier can verify the proof while accessing only
selected bits of the statement and proof. Again looking ahead, the simulator will
use the code of an adversary P0 and the extractor of the UAQK to generate
a circuit which can output single bits of the PCP of proximity; such a circuit
is used to instantiate the executable PCP in the ideal world. Here the use of
PCPs of proximity is critical since they allow us to verify proofs by reading only
small parts of statements and proofs. (This allows the functionality to verify
correctness of the claimed output given only an implicit representation of P0’s
input.)

Concretely, our protocol can be instantiated by assuming FHE and CRHFs,
this proves that our notion can be achieved under standard assumptions, avoiding
random oracles [BR93,CGH98], non-black-box extraction assumptions [Dam92]
(see [Nao03] about their non-falsifiability), superpolynomial-time simulation,
and proofs of work.

1.5 Short Summary of Our Results

In this work we embark on the challenging task of defining and achieving input-
size hiding security against malicious adversaries under a simulation-based defini-
tion, following the spirit of [GMW87]. In Section 2.2 we give a new definition of an
ideal world that has all the desirable properties of the real/ideal paradigm men-
tioned above, and allows us to capture input-size hiding, thus answering the last
open question. We pair this result with another contribution: in Section 2.1 we
show that achieving input-size hiding secure 2PC under the standard real/ideal-
world formulation implies the existence of proofs of work. This solves the third
problem and gives evidence of the power of our new formulation. Finally, in
order to show that our size definition is realizable under standard assumptions,
in Section 3 we provide a construction which can be instantiated under FHE
and CRHFs. Thus we also provide a solution to the second open problem. All
together these results provide an answer to our first question: a demonstration
of how considering a modified security model can still give meaningful security
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while allowing us to circumvent impossibility results inherent in the traditional
definitions.

1.6 Discussion

Other variations on the ideal world. One obvious alternative would be to simply
allow for an unbounded functionality F : F could then extract the entire (poten-
tially exponentially long) input from the implicit input C, and then compute the
appropriate output. However, our aim here is a definition giving guarantees as
close as possible to standard secure 2PC and, as mentioned above, one crucial
property of secure 2PC is that the functionality is efficient.

We compare our variation of the ideal world with the simulation-with-aborts
definition used for fairness issues. Simulation-with-aborts is a simple variation
of [GMW87] and must be used in light of an impossibility result. However it intro-
duces a security weakness in the ideal world that is reflected in the real world.
While our variation is somewhat less straightforward, it can be used to achieve
a stronger security notion under standard assumptions. Our variation applied to
the simulation-with-aborts definition, does not introduce any additional security
drawback that can be reflected in real-world protocols. Moreover, it allows us to
capture input-size hiding, and as we will see, it has the indisputable benefit that
it can be realized under standard assumptions.

Timing attacks: input-size hiding is relevant also in practice. While input-size
hiding computation may be theoretically interesting, one might ask whether it
makes sense in practice. As already pointed out in [IP07,CV12], any protocol
may be vulnerable to a basic timing attack in which an adversary can guess the
size of the honest player’s input purely based on the time he takes to perform
each computation.

We note, however, that there are many practical scenarios where such attacks
are not applicable. Indeed, in order to mount such an attack the adversary needs
to be able to accurately estimate the resources of the other player; in many cases
this may be difficult. Furthermore, in many applications a player may have
time for preprocessing or access to large clusters (as in computations that are
run only infrequently, or protocols involving cloud computing companies). Since
the adversary will not know how much precomputation/parallelization has been
used, it cannot conclude much about the size of the honest party’s input. For
example, the standard protocols for ZK sets allow for preprocessing: all computa-
tion that depends of the size of the input can be performed before any interaction
occurs. We note that our definition does not preclude the existence of protocols
for interesting functionalities that make use of precomputation/parallelization
to prevent these basic timing attacks.

Comparison with [CV12]. Chase and Visconti [CV12] made a first step in this
direction by defining and realizing a real/ideal-world notion for a functionality
modeling ZK sets called “secure database commitment”. The solution of [CV12]
is based on two key ideas: 1) defining a modified ideal world; 2) simulating by
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relying on a new tool that implements a special form of proof of knowledge with
short communication complexity. More specifically, they define an ideal world
where (roughly) player P0 sends F a circuit C which implicitly defines a set,
while player P1 directly sends its input x. F will then compute (x, y = C(x))
and send x to P0 and y to P1. This ideal world is still perfectly secure because
any circuit C uniquely defines a set (i.e., the set of all strings on which the circuit
outputs 1).

Given this ideal world, they are still faced with the issue discussed above
of extracting a potentially very long input from a short proof of knowledge.
This was the original motivation for the introduction of UAQKs: The issue of
efficiently extracting from an adversary that has in mind a very large input is
solved by extracting a small implicit representation of this input. [CV12] then
shows how to construct an ad-hoc circuit that can be sent by Sim to F from
such an implicit representation.

Unfortunately, while the result of [CV12] solves the problem left open by
[MRK03], their solution does not extend to other functionalities. One limitation
of the approach in [CV12] is that it gives input-size privacy and input privacy
for P0 but no input privacy at all for P1. This is appropriate for the function-
ality they consider, but obviously undesirable in general. The more significant
issue, however, is that in the “secure database commitment” functionality the
correctness of P0’s input (the input whose size must be hidden) can be verified
simply by inspection. Indeed F can simply check that the provided circuit C has
k input wires and only one output wire. This means that for every k-bit string
x, C decides the membership or non-membership of x with respect to the unique
set that is implicitly defined by C itself. Note that C both defines P0’s input set
and efficiently computes the set membership functionality. The obvious question
then is whether this approach can be generalized.

Unfortunately for other functionalities the above approach fails spectacularly.
The first issue is the possibility that P0 might send a circuit C whose behavior is
not consistent with any valid input. For example, consider the function f(Φ, x)
that outputs the number of elements of Φ that are greater than x. Now, if an
adversary P0 sends a circuit C which is supposed to compute f(Φ, ·) to the
functionality, there is no way for the functionality to verify that this circuit C
does compute such a function. For example, it is possible that C(x) > C(x′) when
x′ < x, which clearly can not be consistent with any set Φ. Thus, a functionality
F which simply receives a circuit C from A = P �

0 , and sends C(x) to P1, would be
clearly insecure. A second issue involves P �

0 learning P1’s input. Indeed, consider
a circuit C that on input x1 instead of giving in output (y0, y1) = f(x0, x1) (i.e.,
y0 for P0 and y1 for P1) outputs (x1, y1). In this case P1 would get the correct
output, but P �

0 manages to learn P1’s private input. A third issue is that of
selective failure, in which P �

0 can adaptively corrupt P1’s output depending on
P1’s input. For example, P �

0 could compute a circuit that depending on the input
x1 will output a value that is not in the output space of the function; F might
send this invalid output to P1 or send an error message, but in both cases P1’s
reaction would allow P �

0 to learn something about his input. Notice that the 1st
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and 3rd issues above also apply in case only P1 receives an output, while the
2nd issue also applies when only P �

0 receives an output.
Our work avoids these issues by including the executable proof and an “ideal

error” in the ideal world. A valid executable proof guarantees that the function-
ality will only output a result if it does correspond to f(x0, x1) for the specified
x0. The “ideal error” will guarantee that if C ever produces and invalid exe-
cutable proof then the two worlds are clearly distinguishable; this holds because
in the ideal world the functionality sends “ideal error” to P1 while by definition
“ideal error” can not appear as output of P1 in the real world.

1.7 Open Problems and Future Work

We observe that there are several new ideas here that might be interesting for
future study. First, executable PCPs: what languages have polynomial-sized exe-
cutable PCPs? Note that an efficient executable PCP is different from a PCP
with efficient prover - the latter would require that the PCP be of polynomial
length, whereas the PCP represented by an efficient executable PCP might be
exponentially long; we only require that each bit be efficiently computable.

Our new ideal world also presents several interesting questions. First there is
the use of executable PCPs (or more generally, any type of unconditionally sound
proofs) in the ideal world: might this allow us to avoid some of the impossibility
results in secure computation? Similarly, we propose an ideal world in which F
only receives an implicit representation, evaluates a program produced by one
of the parties to obtain the output, and then merely verifies that the result is
correct. Again, one might ask whether this gives more power than the traditional
ideal world where F receives the explicit input and computes the output itself.

We also introduce the idea of proofs of polynomial work (PPW) and show
one possible application. Other interesting questions would be to look at possible
constructions of PPW, or to formally show that PPW requires non-standard
assumptions, or to consider other applications where PPW could be useful. One
could also consider how to achieve input-size hiding using superpolynomial-time
simulation.

We only study the simplest possible world here - we do not for example
address the problem of composition, or of obtaining efficient protocols or those
that would allow for preprocessing or parallelization. Finally, we leave the ques-
tion of addressing the case of hiding the input-size of both players (at least for
some functionalities) for future research.

2 Secure 2-Party Computation and Proofs of Work

2.1 Input-Size Hiding and Proofs of Polynomial Work

We now show that when the standard ideal world is considered, input-size hiding
is hard to achieve under standard assumptions since it implies some form of proof
of work that we call proof of polynomial work. There have been many works
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studying proofs of work, going back to [DN92]. However, as far as we know our
notion is not captured by any of the previous definitions.

Roughly, for security parameter k, a PPW is a protocol between P ,V where
P and V take as input a number n represented as a k-bit string. For honest
players we expect n to be polynomial in k. For any polynomial time A playing
as P we want a polynomial upper bound for the n’s on which he can cause V to
accept. Intuitively this means that if A can convince V to accept an n, we know
that it is bounded by a polynomial (i.e., there exists a polynomial p such that
V will reject any n > p(k)).

Definition 1. A proof of polynomial work (PPW) is a pair (P, V ) such that the
following two properties hold: 1) (correctness) there exist fixed polynomials poly
and poly′ such that the running time of P and V for security parameter k and
input n < 2k, is respectively poly(n) and poly′(k), and the output of V is 1. 2)
(security) for every polynomial-time adversary A, there exists a polynomial p
and a negligible function μ such that for sufficiently large k, for any n ≥ p(k),
V on input n, interacting with A outputs 1 with probability at most μ(k).

Theorem 1. One-sided input-size hiding secure 2PC (secure with respect to the
standard ideal world) implies the existence of a proof of polynomial work.

Proof. First, consider a PPW with a somewhat weaker security property, which
only guarantees that A succeeds on n ≥ p(k) with probability at most 1/2+μ(k)
for some negligible function μ. Note that given a PPW with this weak security
property, we could easily construct a PPW with the above property just by
sequential composition. Thus, we focus here on showing that input-size hiding
with a standard ideal/real-world security definition would imply a weak PPW.

We now show how to construct a weak PPW (P, V ) by starting from a
protocol for input-size hiding secure 2PC (P0, P1). Consider the functionality F
that receives a set of integers from P0 and an integer n from P1 and proceeds
as follows: if the set is the list of numbers from 1 to n, then F outputs 1 to P1,
otherwise it outputs ⊥ to P1. Now, suppose we had a protocol for F that hides
the size of P0’s input under the standard simulation-based definition of secure
2PC. If there exists an input-size hiding 2PC protocol for F then we obtain
the following PPW (P, V ): P plays as P0 on input Φ = {1, . . . , n} and wants
to make V running on input n output 1; both parties use security parameter
k. By efficiency of the 2PC we have that if n is represented as a k-bit strong,
then V runs in time polynomial in k and P runs in time polynomial in n. And
clearly by observation honest V (n) outputs 1 when interacting with honest P (n).
Therefore correctness is satisfied.

We then consider security. Suppose for contradiction that the weak PPW
property does not hold. Then there exists a polynomial-time adversary A such
that for all polynomials p and all negligible functions μ, there are infinitely many
k such that on some n > p(k) (where n is represented as a k-bit string), A causes
V (n) to output 1 with probability greater than 1/2 + μ(k).

2PC guarantees that for any A there is a 2PC simulator and a negligible
function μ′ such that for all sufficiently large k, for all inputs n represented as
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k-bit strings, the real and ideal executions can be distinguished with probability
at most 1/2 + μ′.

Let p′ be the running time of the 2PC simulator for A, let p = 2p′, consider
μ = 2μ′, and let D be the 2PC distinguisher that outputs 1 if V (n) outputs
1, and a random guess otherwise. Note that the simulator is assumed to have
expected running time p′(k) = p(k)/2, so with probability at least 1/2, it will
run in time at most p(k). However, in order to cause V (n) to output 1 it must
output the set {1, . . . , n} which requires at least n time. Thus, for n > p(k), in
the ideal game V (n) outputs 1 with probability at most 1/2.

Now, if the weak PPW property does not hold, as explained above there are
infinitely many k such that on some n > p(k), A causes V (n) to output 1 with
probability greater than 1/2 + 2μ′(k). For every such n, D clearly succeeds in
distinguishing real and ideal executions with probability greater than 1/2+μ′(k).
However, by 2PC security as we have said before, for all sufficiently long n, D
must have advantage at most 1/2+μ′(k). Thus, we have reached a contradiction.

We do not have any candidate constructions based on standard assumptions,
and in fact this seems difficult. We could of course construct them by direct
relying on some number-theoretic assumptions, but this would require strong
generic-group assumptions.

2.2 Our New Definition: A New Ideal World

We give a new general formulation for 2-party computation; we will show later
that under this formulation we can achieve 1-side input-size hiding secure com-
putation for any functionality.

First let us informally review the standard ideal-world for secure 2PC of an
efficient function f = (f0(·, ·), f1(·, ·)), considering the simulation-with-aborts
variation. An ideal-world player Pb for b ∈ {0, 1} sends his input xb to a func-
tionality F and gets as output fb(x0, x1). An adversary P �

b after getting her
output, can decide whether P1−b should receive his output or not. The commu-
nication is always through F .

In this work we consider the setting of static inputs and corruptions (e.g.,
inputs of both parties are specified before the execution of any protocol and the
adversary corrupts one of the two players before the protocol starts). Further-
more, we consider secure computation protocols with aborts and no fairness.
This notion is well studied in literature [Gol04]. More specifically, the adversary
can abort at any point and the adversary can decide when (if at all) the honest
parties will receive their output as computed by the function.

Before presenting our new definition, we will discuss a few necessary concepts.

Input sizes. In the discussion and definition below we will assume w.l.o.g. that
P0 is the party who wishes to hide the size of his input. We use k to denote the
security parameter. Honest P0’s input length is assumed to be poly(k) for some
polynomial poly, although this polynomial is not fixed by the protocol or known
to P1. The input of P1 is then of a fixed length, so w.l.o.g. we assume it is a k-bit
string; we also assume that the output of the function f is always a k-bit string.
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All parties (honest and malicious) run in time polynomial in k. As discussed in
Section 1, we want our ideal functionality F to run in time polynomial in the size
of the messages it receives from the parties; since the ideal parties are polynomial
time (in k), the functionality will be as well (this polynomial may depend on the
adversary). Throughout the discussion, unless otherwise specified “polynomial”
means a polynomial in the security parameter k which may depend on P �

0 .

Implicit representation of data. As discussed in Section 1, we will consider an
ideal world in which one party only submits an implicit representation of this
input. The only properties that we require for our definition is that this repre-
sentation be efficiently computable for any polynomial-size input, and that the
input is uniquely defined by its implicit representation. More formally, we say
that an implicit representation is defined by a potentially unbounded function
Decode : {0, 1}∗ → {0, 1}∗, which maps each implicit representation back to
an input string, and an efficiently computable injective function Rep : {0, 1}∗ →
{0, 1}∗ which computes an implicit representation of each input. We require that
for all x ∈ {0, 1}∗, Decode(Rep(x)) = x, and for any string x we refer to Rep(x)
as an implicit representation of the explicit string x.

One implicit representation which we will use often is the circuit represen-
tation, by which we mean a circuit that when queried on input i outputs the
i-th bit of the explicit string.10 This representation can be of much shorter size
(depending on the data), even potentially logarithmic in the length of the string.
As an example, consider the 2k-bit string s where all odd positions are 0s while
all even positions are 1s. Clearly, one can construct a circuit of size O(k) (there-
fore of size logarithmic in the size of s) that on input i outputs the i-th bit of s.
Given a circuit representation s′ of a string s, we denote by s′(i) the i-th bit of
the underlying explicit string.

Ideal errors. As discussed in Section 1, our formulation is based on an ideal-world
experiment whose output clearly specifies whether the computation has been per-
formed correctly or whether something went wrong. Therefore, the honest player’s
output will be either (this is the good case) the canonical output corresponding
to an element in the range of the function, or (this is the bad case) a special mes-
sage ideal error that does not belong to the output space of the function. The
ideal-world adversary in standard 2PC is allowed to stop the delivery of the out-
put to the honest player, (to avoid fairness impossibility results proved in [Cle86]),
but will not be allowed to stop delivery of the ideal error message. (This ideal
error represents a failure that should never happen in a secure real-world imple-
mentation, and we need it to be visible in the output of the ideal-world experi-
ment.) This is similar to the way that ideal world inconsistencies are handled in
UC definitions (see for example FSIG in [Can03]11).
10 To make this formally injective we can define all invalid circuits to be implicit rep-

resentations of 0.
11 That functionality outputs an error and halts, which also makes the two games clearly

distinguishable (the functionality never produces output for the honest party). We
chose to make this explicit by defining the ideal error, but it has the same effect.
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We require by definition that ideal error does not occur in the real world.
A real protocol is considered to be secure for a function f if: 1) for all real-world
adversaries there exists an ideal-world adversary such that the executions in the
real and ideal worlds are indistinguishable: 2) the honest parties in the real world
execution do not ever output ideal error.12

This means that for every real-world adversary, there must be an ideal-world
adversary that causes the ideal honest party to output ideal error with at most
negligible probability, but produces the same execution output (i.e., adversary’s
view and honest player output). This is because any ideal adversary that causes
ideal error with non-negligible probability would make the two executions
clearly distinguishable.

Our ideal error helps to define security because it characterizes the “bad”
events of our ideal world; combining this with the fact that the real-world pro-
tocol never produces an ideal error and with the fact that any adversary of
the real-world can be simulated in the ideal world, we get the desired security
guarantees.

Special unconditionally sound proofs: executable PCPs. Our ideal functionality
will be parameterized by an unconditionally sound proof system. We will say
that a protocol satisfies input-size hiding for a given function if there exists an
unconditionally sound proof system such that (for all adversaries there exists
a simulator such that) the executions of the ideal and real worlds are indistin-
guishable. The only requirements we will make on this proof system are that
it be unconditionally sound, with negligible soundness error, and that verifica-
tion time be polynomial in the size of the proof. This does mean that we have
some cryptographic tools in the ideal model, however the unconditional sound-
ness means that security of the ideal model is not based on any computational
assumption. As discussed in the intro, the ideal P0 will send to the functionality
a circuit C which computes both the output and a proof; this proof will allow the
functionality to verify correctness of that output in polynomial time (since the
ideal-world adversary is polynomial time, this proof will have polynomial size).
We require unconditionally sound proofs so that in the ideal world correctness
holds unconditionally. Computational assumptions may risk the basic guarantee
that the functionality be trivially secure.

When we prove security of our size-hiding protocol, we will instantiate the
proofs in the ideal world with executable PCPs. An executable PCP for language
L is defined by a probabilistic polynomial-time verifier V , and satisfies perfect
completeness (∀x ∈ L, ∃π such that Pr[V (x, π) = 1] = 1) and unconditional
soundness (∀x /∈ L, ∀π, Pr[V (x, π) = 1] is negligible in the length of x), where the
probabilities are over V ’s random coins. Equivalently, we can view it as a circuit
version of a PCP: the prover sends the verifier a circuit “computing” the PCP. In
order to verify the PCP, the verifier will run the circuit on inputs corresponding
to his PCP queries; the circuit’s output will be viewed as the corresponding bit
12 This can be enforced by requiring that a real-world experiment checks whether the

honest party outputs ideal error, and if so replaces this output with ⊥.
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of the PCP; hence the name “executable PCP”. (We will equivalently use the
term executable proof.) We emphasize that the soundness is unconditional, so
as argued above, we can use it in the ideal world. We will denote by EXπ a
scheme implementing an executable proof, and by π an individual proof that
can be verified by F .

Functionalities. In 2PC, the output computed by the functionality F is a func-
tion f(x0, x1) of the inputs x0 and x1 received from P0 and P1; traditionally f
is described by a circuit. This means that the size (or at least an upperbound)
of inputs and outputs is fixed as specified by the domain and range of f . For
instance, if f is the set intersection function, we have that the domain of f fixes
a bound on the number of elements in each player’s set. Instead, in our set-
ting we want honest players to have inputs of unrestricted length, because any
fixed polynomial bound inherently reveals some information about the size of
the inputs. For every input length there should be a different function for imple-
menting the same functionality. We need therefore a concise formalization of a
functionality that corresponds to a family of functions accommodating different
input lengths.

The natural way to formalize this consists of describing the functionality as
a deterministic efficient machine M , than on input a pair (1i, 1j) outputs the
circuit Cfi,j

. For each i, j, such a circuit describes the function fi,j that has
the appropriate domain to accommodate inputs of size i and j. (Note that we
will assume throughout that the length of the output is always bounded and
independent of i and j.) We will focus here on the case of hiding the size of the
input of only one player, so we will only need to consider families indexed by
a single size parameter (i.e., M(1i), Cfi

and fi). We denote by f the family of
functions.

On using circuits instead of Turing machines. Circuits have the advantage that
any circuit produced by a polynomial time machine will run in polynomial time
on all inputs; using them for implicit input makes clear that the functionality is
efficient. Using circuits for the functions fi,j is arbitrary but closer to other 2PC
work.

Putting this together. We follow the outline suggested in Section 1. Formally, we
require P0 to send to F an implicit representation x̄0 of its input x0, and a circuit
C that for any input x outputs the pair ((y0, y1), π) where (y0, y1) = f(x0, x).
Here π is a proof that can be used by F to check unconditionally that (y0, y1)
is correct according to f, x and x̄0. F will therefore check the correctness of
the proof given by π. If π convinces F , then y0 is sent to P0 and y1 is sent
to P1, keeping in mind that in this case output delivery to an honest player is
conditioned on the approval of the adversary. If instead F is not convinced by π,
then F does not send any output to P0 and sends ideal error to P1, without
waiting for P0’s approval.
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Execution in the ideal world. We now describe an ideal execution with a PPT
adversary Sim who has auxiliary input z and controls one of the parties. The
PPT trusted third party that computes f = {fi}i∈N will be denoted by F .
Without loss of generality, let P0 be the player interested in keeping the size of
his input private. We will first describe the execution in the setting in which the
adversary Sim controls P1, then follow with the setting in which the adversary
controls P0.

1. Inputs: Sim receives as input x1 and auxiliary input z, party P0 receives as
input x0 and constructs a triple (i, x̄0,C), where i = |x0|, x̄0 is an implicit
representation of x0, C as described above computes f|x0|(x0, ·) and the
executable PCP.

2. P0 sends input to trusted party: upon activation, P0 sends (i, x̄0, C) to F .
3. Sim sends input to F and receives output: whenever Sim wishes, it may send

a message x′
1 to F , for any x′

1 of its choice. Upon receiving this message,
F computes ((y0, y1), π) = C(x′

1), verifies π, and sends y1 to Sim. (Once an
output has already been sent to Sim, all further input messages are ignored
by F .)

4. Sim instructs F to answer P0: when Sim sends a message of the type end
to F , F sends y0 to P0. If inputs have not yet been received by F , then F
ignores message end.

5. Outputs: P0 always outputs y0 that it received from F . Sim may output an
arbitrary (probabilistic polynomial-time computable) function of its auxil-
iary input z, the initial input x1, and the output obtained from F .

The ideal execution of f = {fi}i∈N using implicit representation Rep and
an executable PCP EXπ (with security parameter k, initial inputs (x0, x1) and
auxiliary input z to Sim), denoted by
IDEALf,Sim,Rep,EXπ

(k, x0, x1, z) is the output pair of P0 and Sim from the above
execution. We now consider the case in which the adversary Sim corrupts P0

while P1 is honest.

1. Inputs: P1 receives as input x1, Sim receives as input x0 and auxiliary input
z.

2. P1 sends input to F : upon activation P1 sends x1 to F .
3. Sim sends input to F and receives output: whenever Sim wishes, it may

send a message (i′, x̄′
0, C

′) to F . Upon receiving this message, F computes
((y0, y1), π) = C ′(x1). F then verifies π to check unconditionally that the
pair (y0, y1) corresponds to fi′(x′

0, x1) where x′
0 is the explicit representation

of x̄′
0 and i′ = |x′

0|. If the proof given by π is not accepting, F sends ideal
error to P1. If the proof given by π is accepting, F sends y0 to Sim. (Once
output has been sent to either P1 or Sim, all further input messages are
ignored by F .)

4. Sim instructs F to answer P1: when Sim sends a message of the type end
to F , F sends y1 to P1. If inputs have not yet been received by F or ideal
error was sent to P1, F ignores message end.
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5. Outputs: P1 outputs whatever it received from F (i.e., ideal error or y1).
Sim may output an arbitrary (probabilistic polynomial-time computable)
function of its auxiliary input z, the initial input x0, and the output y0
obtained from F .

The ideal execution of f = {fi}i∈k using implicit representation Rep and an
executable PCP EXπ (with security parameter k, initial inputs (x0, x1) and
auxiliary input z to Sim), denoted by
IDEALf,Sim,Rep,EXπ

(k, x0, x1, z) is the output pair of Sim and P1 from the above
execution.

Execution in the real world. We next consider the real world in which a real two-
party protocol is executed (and there exists no trusted third party). Formally, a
two-party protocol Π = (Π0,Π1) is defined by two sets of instructions Π0 and
Π1 for parties P0 and P1, respectively. A protocol is said to be polynomial time
if the running times of both Π0 and Π1 are bounded by fixed polynomials in the
security parameter k and in the size of the corresponding inputs.

Let f be as above and let Π be a PPT two-party protocol for computing
f . In addition, assume that a non-uniform PPT adversary (with non-uniform
input z) controls either P0 or P1. We describe the case in which the party P1

is corrupted, and therefore we will denote it as A = P �
1 . The setting in which

party P0 is corrupted proceeds in a similar manner. The adversary A = P �
1 on

input x1 starts by activating P0, who uses his input x0 and follows the protocol
instructions Π0 while the adversary A = P �

1 follows any arbitrary polynomial
time strategy. Upon the conclusion of this execution P0 writes its output from
the execution on its output-tape while the adversary A = P �

1 may output any
arbitrary polynomial time function of its view of the computation. To enforce
the condition that ideal error never occurs in the output of the real execution
we require that if ideal error does occur in the output of the honest party,
the real-world execution will replace it with ⊥. The real-world execution of Π
(with security parameter k, initial inputs (x0, x1), and auxiliary input z to the
adversary A = P �

1 ), denoted by REALΠ,P �
1
(k, x0, x1, z), is defined as the output

pair of P0 and A = P �
1 , resulting from the above process.

Security as emulation of real-world attacks in the ideal world. We can now define
security of protocols. Loosely speaking, a 2-party protocol Π is 1-sided input-size
secure if there exist Rep and EXπ such that for every real-world PPT adversary
A = P �, there exists an ideal-world PPT adversary Sim such that for all pairs
of initial inputs (x0, x1), the outcome of the ideal execution using Rep and EXπ

with adversary Sim is computationally indistinguishable from the outcome of a
real protocol execution with A = P �. We now present a formal definition.

Definition 2. Let f and Π be as above. Π is said to securely compute f if there
exists an executable PCP EXπ and an implicit representation Rep such that
for every b ∈ {0, 1} and every real-world non-uniform PPT adversary A = P �

controlling party Pb there exists an ideal-world non-uniform probabilistic expected
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polynomial-time adversary Sim controlling Pb such that

{IDEALf,Sim,Rep,EXπ
(k, x0, x1, z)}k∈N ;z∈{0,1}∗;x0∈{0,1}poly(k);x1∈{0,1}k ≈

{REALΠ,P �(k, x0, x1, z)}k∈N ;z∈{0,1}∗;x0∈{0,1}poly(k);x1∈{0,1}k .

A sanity check. We note that our definition implies standard 2PC (with NBB
simulator) when the input size is a fixed polynomial: in that case the implicit
input is equivalent to explicit input (one can efficiently extract all the bits) and
the unconditional proofs ensure the correctness.

Discussion. This definition has all the desirable properties mentioned in Section
1. First, it is clear that no information is revealed to the adversary beside the
output yb. Moreover, as long as ideal error does not occur, it is clear by uncon-
ditional soundness of EXπ that the output is indeed equal to f(x0, x1) for the
input implicitly defined by x̄0. (Again, since the real protocol cannot output
ideal error, any attack on a real protocol translates into an ideal attack in
which ideal error does not occur.) We obtain the second property (uncondi-
tional security) directly because EXπ is unconditionally sound. The third prop-
erty follows because the ideal adversary must be efficient, and F just runs the
circuit received from Sim. (Efficient algorithms cannot produce inefficient cir-
cuits.)

3 Realizing Input-Size Hiding Secure 2-Party
Computation

Here we show that input-size hiding is possible. We begin by introducing the
tools that are used in our construction. Then we give an informal description of
our protocol, followed by a more formal specification.

Special commitment schemes. We will require a special type of commitment
scheme that we call “size hiding”, which will allow the sender to commit to a
string and later to open only some bits of the string, in such a way that the
commitment (and opening) does not reveal the size of the committed message.
We will denote it by (Gen,Com,Dec,Ver) where Gen is run by the receiver to
generate parameters13, Com commits to a string whose length is not a priori
bounded, Dec reveals a bit of the committed string and Ver verifies the opening
of a bit. A size-hiding commitment scheme can be constructed by using any com-
mitment scheme along with a Merkle tree. One can also use a zero-knowledge14

set scheme [MRK03]. For more details see the full version.

Error-correcting codes. We will use error-correcting codes (ECC) with constant
distance. See the full version.
13 Note that this is a 2-message commitment rather than a CRS-model commitment,

so the hiding properties must hold even against adversarially chosen parameters.
14 Actually indistinguishability as discussed in [CDV06] is sufficient here.
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ZKUAQKs. We use the standard definitions (see the full version) of interactive
proof systems, zero knowledge (ZK) and proofs of knowledge. We also use zero-
knowledge universal arguments of quasi knowledge (ZKUAQKs) as introduced
by [CV12]. In the full version we give the definitions introduced in previous
work for zero knowledge for interactive arguments, for the proof of knowledge
property for a universal argument (UA) and for quasi-knowledge for universal
arguments. Informally, a universal argument of quasi knowledge (UAQK) is a
universal argument with a special proof of knowledge property. Being a universal
argument, it can be used to prove that a machine on input a certain string
produces a certain output in a given number of steps T . The communication
complexity and the running time of the verifier do not depend on T , which
means that one can have a polynomial-time verifier even when T and the witness
used by the prover are superpolynomial in the size of the statement. The special
proof of knowledge property guarantees that for any polynomial time adversarial
prover there always exists an extractor that runs in expected polynomial time
and outputs bits of a valid witness. Moreover if the success probability of the
prover is non-negligible, then for any polynomially computable set of indexes Φ,
the extractor queried on each input i ∈ Φ with overwhelming probability outputs
the i-th bit of a valid witness.

[CV12] gives a constant-round construction of a ZKUAQK based on the exis-
tence of CRHFs, building on the zero-knowledge universal argument of [Bar04].
(Since a universal argument is an interactive argument, the definition of a
ZKUAQK is simply a UAQK which also satisfies the ZK property.) Indeed
by plugging the zero-knowledge UA of [Bar04] in the witness indistinguishable
UAQK of [CV12] (this works since ZK implies WI) we have that the quasi knowl-
edge property follows directly. To see the ZK property, note that in the protocol
in [CV12] the prover runs a ZK verifier, sends some commitments, and runs
several ZK proofs sequentially. Thus, a simulator can easily run such steps by
making use of the the simulator for the ZK proofs and sending commitments
of random messages. Zero knowledge therefore follows from sequential composi-
tion of the ZK property of the UA [Bar04], and from the hiding property of the
commitment.

Fully homomorphic encryption [Gen09]. A fully homomorphic encryption (FHE)
scheme is a semantically secure encryption scheme (KeyGen,Enc,Dec) augmented
with an additional algorithm Eval that allows for computations over encrypted
ciphertexts. See the full version for details.

Probabilistic checkable proofs of proximity. A “PCP of proximity” (PCPP) proof
[BSGH+06] is a relaxation of a standard PCP, that only verifies that the input
is close to an element of the language. It has the property that the PCP verifier
needs only the description of the Turing machine M deciding the language and
oracle access to bits of the input (x0, x1) of M and to bits of the PCP proof π.
See the full version for details.
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3.1 High-Level Overview of the Protocol

Here we describe a protocol which provides size-hiding for P0 for functions in
which only P1 receives output. See the full version for protocols which allow
either or both parties to receive output. At a high level, our protocol follows the
outline described in Section 1 and consists of the following 3 steps:

1st Part. In the first part, P1 sends to P0 parameters for a size-hiding string com-
mitment scheme. Then P0 uses this scheme in order to send to P1 the commitment
com of its input x0 expanded by means of an error correcting code. P0 then proves
“quasi knowledge” of the committed value. This is done by using a ZKUAQK and
ends the first part. The above first part of the protocol implements the idea of P0

committing to its input along with a zero knowledge argument of “quasi knowl-
edge”. Looking ahead the simulator will use this argument to extract from P �

0 a
reliable implicit representation of the committed input. The ECC guarantees that
the explicit input will be well defined and correct even if the extracted circuit is
incorrect in a few positions. (Recall that quasi knowledge allows the extracted cir-
cuits to be incorrect on any negligible fraction of the positions.)

2nd Part. In the second part of the protocol, P1 sends the public key for
FHE. This key will later be used by P0 to perform the correct computation on
encrypted data. P1 also proves (in ZK) knowledge of the corresponding secret
key, and then sends an encryption e of its input x1. Intuitively, the ciphertext
e combined with the proof of knowledge of the secret key guarantees that P1

“knows” his input. Looking ahead to the proof, this is useful because it will
allow the simulator to decrypt e and extract P �

1 ’s input. This ends this part of
the protocol, which focuses on P1 committing to its input in a way that is both
extractable and usable to perform computations over encrypted data.

3rd Part. P0 uses the FHE evaluation algorithm and the ciphertext e received
from P1 in order to compute the encryption e′ of P1’s output according to the
function f with inputs x0 and x1. Then e′ is sent to P1. P0 also computes a PCPP
proof π proving that e′ has been correctly computed by applying the function
f(x0, ·) to e. Then P0 proves by means of a ZKUAQK, “quasi knowledge” of a
value x0 that is committed (after ECC expansion) in com and of a PCPP proof
π as described above corresponding to that x0. Finally, P1 decrypts e′ therefore
obtaining its output. This part of the protocol thereby focuses on P0 computing
P1’s output e′ and sending it to P1, and proving with a ZKUAQK that e′ was
computed correctly and there is a PCPP proof confirming it. Here, circuit privacy
of the encryption scheme guarantees that P1 learns nothing about P0’s input.
“Quasi knowledge” of the ZKUAQK allows the simulator to obtain from P �

1 a
circuit representation of a PCPP. Very roughly, the PCPP properties allow the
functionality to verify that e′ is correct given only this circuit representation
of the PCPP and the implicit representation of x0 that we extracted in step 1.
This is possible because the verifier a of PCPP (i.e., the functionality, in our
case) only needs access to few bits of the the PCP proof and only part of the
statement.
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3.2 Our Protocol for Input-Size Hiding Secure 2PC

We now give a specification of our protocol. For function family {fi} defined by
circuit M(·), our protocol appears in Fig. 1 and uses the following ingredients,
as defined above. (For extensions, see the full version.)
� A circuit private FHE scheme (KeyGen,Enc,Dec,Eval).
� A size-hiding string commitment scheme (Gen,Com,Dec,Ver).
� An error correcting code (ECC,ECCDec) with polynomial expansion and

constant distance δ.
� A PCPP (ProvePCPP,VerifyPCPP) with proximity parameter δ for the follow-

ing pair language: ((i, e, e′, pk), x′) ∈ LPCPP if there exists randomness r′

and input x such that e′ ← Eval(pk, C, e, r′) ∧ x′ = ECC(x) ∧ i = |x| ∧ fi is
as defined by M ∧ C is the circuit for fi(x, ·).

� A ZKPoK (PPOK,VPOK) for the following relation: (pk, σ) ∈ R3 iff (pk, sk) ←
KeyGen(σ).

� A ZKUAQK (ProverUAQK,VerifierUAQK) for the following relations.
R1: accept ((com, η), (i, x′, x, dec)) iff Ver(η, com, dec, x′) = 1∧x′ = ECC(x)∧

|x| = i). (By Ver(η, com, dec, x′) = 1, we mean that verification succeeds
on all bits of x′.) We denote by L1 the corresponding language.

R2: accept ((com, η, e, e′, pk), (i, dec, x′, r′, x, r′′, π)) iff Ver(η, com, dec, x′) =
1 and π = ProvePCPP(((i, e, e′, pk), x′), (r′, x); r′′) is an honestly generated
proof for ((i, e, e′, pk), x′)) ∈ LPCPP (generated using randomness r′′). We
denote by L2 the corresponding language.

Theorem 2. The protocol in Fig. 1 securely computes function family f defined
by M , under Definition 2 (i.e., for one-sided size-hiding secure 2-party compu-
tation).

Here we give the main ideas for the proof. For more details, see the full version.
First, we need to describe an implicit representation and an executable PCP

scheme that we will use for the ideal execution.
The implicit representation. In the ideal model we require that the implicit rep-
resentation uniquely determines the explicit input, i.e. there must exist some
(potentially inefficient) decoding algorithm Decode that maps every implicit
representation x′ to some explicit input. In our construction, this will consist
of taking an implicit circuit representation x′, extracting all the bits of the cor-
responding string x̃ by evaluating x′ on 1, . . . i′, where i′ is the length of an
encoding under ECC of a string of length i, and then running the ECC decoding
algorithm ECCDec(x̃) to produce x. Rep(x) simply outputs a circuit representa-
tion of ECC(x).
The executable PCP. The ideal world requires an executable PCP for check-
ing membership of a statement in the language: (i, x′

0, y, x1) ∈ LIdeal(Decode)
if there exists x0 such that Decode(x′

0) = x0,∧|x0| = i ∧ y = fi(x0, x1). The
executable PCP EXπ will be instantiated through a circuit representation of a
PCPP proof. Indeed proofs given by a PCPP are unconditionally sound but of
size polynomial in the length of the witness and this could be too long. However,
a circuit representation of a PCPP proof can have short size and still can be
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Players: P0 and P1 with private inputs x0 and x1 respectively.

Common input: the description of the machine M describing the function family
f = {fi}i∈N .

1. P1 → P0: P1 picks random coins σ, runs η ← Gen(σ) and send η to P0.
2. P0 → P1: P0 computes (com, dec) = Com(η, x′

0 = ECC(x0), r) with random coins
r and sends com to P1.

3. P0 ↔ P1: P0 and P1 run the ZKUAQK 〈ProverUAQK((com, η), (|x0|, x′
0, x0, dec)),

VerifierUAQK((com, η))〉 for language L1 to prove quasi knowledge of an opening
to com that can be correctly decoded. P1 aborts if VerifierUAQK rejects.

4. P1 → P0: P1 chooses random coins σ′ and runs (pk, sk) ← KeyGen(σ′). P1 sends
pk to P0.

5. P1 ↔ P0: P1 and P0 run the ZKPoK 〈PPOK(pk, σ′),VPOK(pk)〉 to prove knowledge
of the coins used to generate pk. P0 aborts if VPOK does not accept.

6. P1 → P0: P1 picks random coins re and computes e ← Enc(pk, x1, re). P1 sends
e to P0.

7. P0 → P1: P0 computes the circuit C for f|x0|(x0, ·), chooses a sufficiently long
random string r′ and then computes e′ ← Eval(pk, C, e, r′). P0 sends e′ to P1.

8. P0 ↔ P1: P0 runs π ← ProvePCPP((|x0|, e, e′, pk, x′
0), (r

′, x0); r
′′) after pick-

ing random coins r′′, thereby generating a PCPP π showing that e′ is cor-
rectly computed from e, pk and x0 such that x′

0 = ECC(x0). Then P0 and
P1 run the ZKUAQK 〈ProverUAQK((com, η, e, e′, pk), (|x0|, dec, x′

0, r
′, x0, r

′′, π)),
VerifierUAQK(com, η, e, e′, pk)〉 for language L2 to prove quasi knowledge of an
opening x′

0, dec to com and of a PCPP proof π computed with randomness r′′

showing that e′ is correctly computed with randomness r′ and inputs e, pk and
x0 such that x′

0 = ECC(x0). P1 aborts if VerifierUAQK rejects.
9. P1: P1 runs y = Dec(sk, e′) and outputs y.

Fig. 1. A secure protocol for with input-size hiding for P0 and output for P1

easily used to unconditionally verify the validity of the intended statement since
it can be executed a polynomial number (independent of the witness size) of
times to obtain the bits of the PCPP proof needed by the PCPP verifier. In
fact, the proof system that we use will be somewhat more involved: the proof
will include additional values σ, e, e′, x′′

0 as well as the circuit representing the
PCPP Cπ′ . Formally, we can define the required executable proof by defining its
verification algorithm.

The verifier Verify((i, x′
0, y, x1), π̄) for the executable proof proceeds as follows

(recall that (i, x′
0, C) will be the input received from the player that aims to hide

the size of his inputs, and (y, π̄) is the output of C(x1))

1. Parse π̄ = (σ, e, e′, x′′
0 , Cπ′), and view both x′

0 and x′′
0 as circuit representations

of i′-bit strings (again, i′ is the length of an encoded string of length i using
ECC). If π̄ cannot be parsed this way, output 0.

2. Choose k random locations i1, . . . , ik ∈ {0, . . . , i′ − 1}, and halt and output 0
if x′

0(i) �= x′′
0(i) for any i ∈ i1, . . . , ik.
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3. Compute (pk, sk) ← KeyGen(σ), and halt and output 0 if Dec(sk, e) �= x1 or
Dec(sk, e′) �= y.

4. Run the PCPP verifier VerifyPCPP((i, e, e′, pk), x′
0) for language LPCPP, to

obtain index sets Iπ, Iz and decision circuit D. Compute x′
0(j) on each index

j ∈ Iz and compute Cπ′(j) on each index j ∈ I ′
π; call the resulting list of

bits X. Finally output the result of D(X).

Note that an honest prover when given x0 can efficiently generate an accept-
ing proof for each valid x1, y. Note also that PCPP proofs require the verifier to
access only a few bits of the statement and the proof in order to be convinced,
so we obtain an efficient verifier.

Lemma 1. The above proof system is unconditionally sound for the language
LIdeal(Decode).

Proof. The soundness of the PCPP guarantees that x′
0 is close to a valid code-

word. Then we have that if ECCDec(x′
0) �= ECCDec(x′′

0) then the probability that
we sample k random positions without finding any difference among x′

0 and x′′
0 is

negligible. Then, by soundness of the PCPP, if the verifier accepts, we know that
with all but negligible probability e′ ← Eval(pk, C, e, r′) for some r′, where C is
the circuit for fi(ECCDec(x′

0), ·) and i = |x0|. Finally, the verifier will generate
(pk, sk) ← KeyGen(σ) and check that x1 = Dec(sk, e) and y = Dec(sk, e′). By
the circuit privacy property, we then get that the distribution of e′ is statisti-
cally close to Enc(pk, C(x1)) and if we let x0 = ECCDec(x′′

0) = ECCDec(x′
0), this

means that Dec(sk, e′) = C(x1) = fi(x0, x1) = y as desired.

Security with Corrupt P1. Now we are ready to sketch the proof of security for
the case where P1 is corrupt. For any real-world adversary P ∗

1 , we will show
an ideal-world adversary Sim such that the ideal and real-world outputs are
indistinguishable. Sim will simulate P ∗

1 internally. It receives parameters for the
commitment scheme from P ∗

1 in step 1, commits to 0 in step 2, and runs the
ZK simulator for the UAQK with P ∗

1 in step 3. In step 4, it receives pk, and
in step 5 it runs the PoK extractor to extract σ′. Then in step 6 it receives e
and computes (pk, sk) ← KeyGen(σ′), and x1 = Dec(sk, e). It sends x1 to the
functionality and receives y. In step 7, it sends e′ = Enc(pk, y), and in step 8 it
runs the ZK simulator for the UAQK.

We argue that the ideal-world output with this simulator is indistinguishable
from the real-world output with P ∗

1 through a series of games. We define Game
0 to be the real game, and then proceed as follows:

– Game 1: UAQK Simulator. This is identical to the real game except that in
steps 3 and 8, P0 uses the ZK simulator. (This is indistinguishable by the
Zero Knowledge property of the ZKUAQK.)

– Game 2: Simulated commitment. This is identical to game 1 except that
in step 2 P0 forms a commitment to 0. (This is indistinguishable by hiding
property of the commitment scheme.)
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– Game 3: Extracting σ′. This is identical to game 2 except that in step 5 P0

uses the PoK extractor to extract σ′, and aborts if KeyGen(σ′) = (pk′, sk′)
such that pk′ �= pk. (This is indistinguishable by the PoK property.)

– Game 4: Decrypting e. This is identical to game 3 except that in step 7 P0

computes x1 = Dec(sk, e) and then sends e′ = Enc(pk, f|x0|(x0, x1)). (This is
indistinguishable by the circuit privacy property of the FHE scheme.)

– Game 5: Ideal Game. The only difference is that in Game 4 P0 computes
f|x0|(x0, x1) and encrypts it, while in the ideal game Sim sends x1 to the
ideal functionality, receives y = f|x0|(x0, x1), and encrypts that, so the two
games are identical.

Corrupt P0. Finally we consider the case when party P0 is corrupted. For any
real world adversary A, we will show an ideal-world adversary Sim such that the
ideal and real-world outputs are indistinguishable. Here we present the intuition
behind the proof. (For a more detailed treatment, see the full version.)

At a high level the idea is that the simulator will use the extractor for the
UAQK in step 3 to construct an implicit representation x′

0 of x0. Then, for C it
will construct a circuit which on input x1 1) continues to run A with an honest
P1 using input x1 in steps 4-7, 2) decrypts the ciphertext e′ received in step 7
to obtain y, and 3) uses the extractor for the UAQK in step 8 to construct an
implicit representation of the statistically sound proof (in particular of x′′

0 and
the PCPP π′). Finally, in order to ensure that the protocol is aborted with the
same probability in both worlds, the simulator will first run A once with honest
P1; it will rewind to step 3 and construct x′

0 and C as described above only if this
first run is successful. Since the simulator does not know x1, it will instead use
x1 = 0 for this run, and we will argue that the result will be indistinguishable.
The ideal world never produces ideal error except with negligible probability.
Recall that to verify the proof π produced by C(x1), the functionality will have
to check several things: 1) that x′

0 and x′′
0 are close, 2) that e, e′ decrypt to x1

and y, and 3) that the PCPP π′ verifies for the statement (i, e, e′, pk), x′′
0 .

Thus, we need only show that these three checks will succeed. The argument
goes as follows. First, we argue that x′′

0 extracted in step 8 must be very close
to x′

0 extracted in step 3. If not, we could use the UAQK extractors to extract
some pair of bits that differ along with a pair of valid openings for those bits,
and thus produce a contradiction to the binding property. The second check
is clearly satisfied by the way that e and y are computed. Finally, the quasi-
knowledge property of the UAQK implies that almost all of the bits of the
extracted PCPP will be correct, so the verification should succeed with all but
negligible probability.

P1’s output in the two games is indistinguishable given that the functionality
does not send ideal error. The issue here is that the functionality will run the
circuit C to obtain P1’s output, which is essentially like rewinding and rerunning
steps 4-8 of the protocol. (This is an issue because Sim will produce its ideal
output using A’s initial run, so we need to make sure that P1’s output is still
consistent with this initial run.) Thus, we have to argue that rewinding to step
4 can not change P1’s output. Above, we argued that C produces a valid proof
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that y = f|x0|(x0, x1) where x0 is as defined by the decoding of the implicit string
produced by the UAQK extractor in step 3. Similarly, we can argue that if we
extract from the UAQK in the first run-through, we can also produce a valid
proof that y produced in that run is also equal to y = f|x0|(x0, x1) for the same
x0. Finally, by the unconditional soundness of the proof described in Section 3.2,
we conclude that P1’s output y will be the same in both games.
The adversary’s output in the two games is indistinguishable. The main difference
is that in the real game, A is interacting with P1 whose input is x1, while in the
ideal game, Sim’s output is what A produces when run with P1 whose input is 0.
This follows fairly directly from semantic security. Note that we also need zero
knowledge to ensure that the proof in step 5 does not reveal anything about sk
or x1.

A technical issue. There is one technical issue that occurs because we are build-
ing on UAQKs. The issue is that for our simulator to work, we need to ensure
that the UAQK extractors run in polynomial time, and succeed with overwhelm-
ing probability. By definition, we are guaranteed that from a prover with success
probability p, a UAQK extractor will run in time 1/p and successfully extract
a witness with overwhelming probability assuming p is non-negligible. Here, we
need to ensure that the UAQK is given a prover that succeeds with non-negligible
probability. (Unless we have a real world adversary that aborts with all but negli-
gible probability - in that case our simulator will also abort with all but negligible
probability.) The issue is that that the adversary’s probability of aborting may
depend on the random coins that P1 uses up until that point, and in particular
on the randomness used in forming the key pair pk, sk and the encryption e.
Recall that our simulator uses the first run, with e = Enc(pk, 0, ·) to determine
whether to abort, and then rewinds and gives the ideal functionality a circuit
that extracts from a prover who is sent e = Enc(pk, x1, ·) (under a fresh public
key). It is possible that for some values of e, A always aborts; we may get unlucky
and in the first run get an e on which A successfully completes the protocol (so
we continue and form C), and then when C is run it ends up with an e for
which A aborts with high probability thus causing the extractor to fail and the
circuit C to not produce a valid proof π. However, if there is a non-negligible
probability with which A does not abort on the first run, then there must be a
non-negligible chance that it will produce valid proofs on the rewinding as well.
(This follows from semantic security because the only difference in the runs is
the value encrypted in e.) Thus, we will rewind many times, find one on which A
does produce valid proofs, and extract from that run. To determine how many
times to rewind (so that we can argue that at least one will be successful but the
process still runs in expected polynomial time), we will use estimation techniques
from [CV12]. For a more detailed proof see the full version.
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