Semantic Importance Sampling
for Statistical Model Checking*

Jeffery P. Hansen, Lutz Wrage, Sagar Chaki, Dionisio de Niz, and Mark Klein

Carnegie Mellon University, Pittsburgh, PA, USA
{jhansen, lwrage, chaki,dio,mk}@sei.cmu.edu

Abstract. Statistical Model Checking (SMC) is a technique, based on
Monte-Carlo simulations, for computing the bounded probability that a
specific event occurs during a stochastic system’s execution. Estimating
the probability of a “rare” event accurately with SMC requires many
simulations. To this end, Importance Sampling (IS) is used to reduce the
simulation effort. Commonly, IS involves “tilting” the parameters of the
original input distribution, which is ineffective if the set of inputs causing
the event (i.e., input-event region) is disjoint. In this paper, we propose
a technique called Semantic Importance Sampling (SIS) to address this
challenge. Using an SMT solver, SIS recursively constructs an abstract
indicator function that over-approximates the input-event region, and
then uses this abstract indicator function to perform SMC with IS. By
using abstraction and SMT solving, SIS thus exposes a new connection
between the verification of non-deterministic and stochastic systems. We
also propose two optimizations that reduce the SMT solving cost of SIS
significantly. Finally, we implement SIS and validate it on several prob-
lems. Our results indicate that SIS reduces simulation effort by multiple
orders of magnitude even in systems with disjoint input-event regions.

1 Introduction

As systems become more complex, there is a growing demand for efficient and
precise techniques to verify correctness of their behavior. In this paper, we target
a common probabilistic verification problem — estimating the probability of an
event @ (e.g., some sort of failure) during the execution of a system M that
takes stochastic inputs (e.g., sensor readings, task execution times, etc.) Analytic
solutions to this problem (e.g., probabilistic model checking, see Section 2) do
not scale to many real-world systems due to complexity. We focus on an alternate
approach called Statistical Model Checking (SMC) [16], which relies on Monte-
Carlo-based simulations to solve this verification task more scalably.

* This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0002083.

© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 241-255, 2015.
DOI: 10.1007/978-3-662-46681-0 21



242 J.P. Hansen et al.

g (x)
7

0.25
fx)  xe
¥

Fig. 1. Example of SIS; f = original input distribution; g = tilted distribution; g* =
distribution produced by SIS

SMC produces two results — the estimate p of the probability p of & and a
measure of precision e. The key challenge in SMC is “simulation explosion” — the
number of simulations required to achieve a high e becomes prohibitively large
if p is small (i.e., @ is rare). Importance Sampling [11,14] (IS) has been shown
to address this challenge. Suppose the random input « to M has distribution f.
In IS, we first perform SMC under a different input distribution ¢g that makes &
more likely (i.e., increases p), and then adjust the result back to f.

Traditionally, importance Sampling is implemented by “tilting” the parame-
ters of the input distributions to increase the likelihood of @. However, tilting is
less effective if the set of inputs that cause @, i.e., the input-event region denoted
zg, is disjoint. For instance, this happens when analyzing a program where @
only occurs if the execution follows one of several control-flow paths, each trig-
gered by a distinct input range. Figure 1(a) shows such a case. The actual input
distribution f is uniform in the range [0, 10], and z¢ = [2.99,3.01] U [6.99,7.01].
Figure 1(b) shows a tilted distribution g uniform in the range [2,10]. While g
makes & more likely than f, it still assigns positive weight to large parts — e.g.,
(3.01,6.99) — of the input space that do not belong to zg.

In this paper, we address this challenge, and make three specific contributions.
First, we develop a new technique to construct more precise input distributions
for IS — such as ¢g* shown in Figure 1(c) — even when the input-event region
is disjoint. This technique, which we call Semantic Importance Sampling (SIS),
takes as input a description of M and f, and recursively computes a precise
“over-approximation” of x4 in the form of an abstract indicator function (AIF).
In each step of the recursion, SIS constructs a verification condition using M
and f and checks its satisfiability with an SMT solver to eliminate parts of the
input space that are not in z¢. The algorithm outputs an AIF represented by a
set of “input cubes”, i.e., a disjunction of intervals [7] over the input variables
of M. Subsequently, SIS uses the AIF to construct a precise input distribution,
and perform SMC with IS. By using the semantics of M, SIS successfully ap-
plies concepts and techniques used widely in the verification of non-deterministic
systems (such as abstraction, SMT solving, and verification conditions) to the
analysis of stochastic systems, building new bridges between the two disciplines.



Semantic Importance Sampling for SMC 243

The most expensive component of SIS are the calls to the SMT solver. Our
second contribution is two optimizations to SIS that reduce the number of SMT
calls while maintaining correctness. Finally, we implement SIS in a tool called
0SMOSIS and use it to verify a number of stochastic systems with rare events. Our
results indicate that SIS reduces the number of simulations significantly, in some
cases by a factor of over 600, and verification time by an order of magnitude or
more. Furthermore, our optimizations reduce both the number of SMT calls and
overall SMT solving time, typically by a factor of 2. All our tools and examples
are available at andrew. cmu.edu/~schaki/misc/osmosis.zip.

2 Related Work

Probabilistic model checking [15] (PMC) is an automated, algorithmic approach
for computing numerical properties of stochastic systems. In PMC, the system
is modeled as a finite state probabilistic automaton, e.g., a discrete time Markov
chain (DTMC), a continuous time Markov chain (CTMC), or a Markov decision
process (MDP) which is exhaustively explored in the analysis. The property is
expressed as formula in a temporal logic, e.g., probabilistic Computation Tree
Logic (PCTL) [8]. Verification consists of exhaustive exploration of the states-
pace to construct equations which are then solved numerically. In contrast, we
follow the SMC approach, which is based on Monte-Carlo simulations. An ex-
cellent comparison between PMC and SMC is provided by Younes et al. [17].

SMC [16,2] has been applied to a wide variety of systems including stochastic
hybrid automata [4], and real time systems [5]. Methods proposed to increase
SMC performance include importance splitting [10], and importance sampling
[14]. Importance sampling, upon which our approach is based, has been long
known in the statistics literature[11] and has recently come to the attention of the
SMC community[3]. Approaches proposed to finding the importance sampling
bias function include Cross-Entropy Method[2,9] and Coupling [1].

Borges et al., [13] proposes a technique for estimating failure probabilities in
software based on stratified sampling. Their technique differs from ours in that
they partition the input space based on path conditions in the model, whereas
we use an approach that modifies the input distribution.

Luckow et al. [12] have developed techniques for exact and approximate analy-
sis of stochastic systems with non-determinism. They use symbolic execution and
learning to iteratively construct schedulers under which worst-case (or best-case)
behavior of the system is observed. This approach can be seen as an extension
of statistical model checking to concurrent systems. They do not use importance
sampling, and could benefit from our techniques.

3 Background

Consider a system M with finite vector of random inputs . Assume that M is
deterministic, i.e., its behavior is fixed for a fixed value of z. The SMC problem
is to estimate the probability that M satisfies a property @, denoted M = &,


andrew.cmu.edu/~schaki/misc/osmosis.zip

244 J.P. Hansen et al.

given a joint probability distribution f on z, i.e., to estimate p = Pr[M | &].
We assume that whether M = & under input z can be determined by simulating
M for finite time. Specifically, we assume that M is a program that terminates
under all inputs, and M = @ under input z iff the execution of M under input
x violates an assertion (representing a desired safety property) in M.

Let us write x ~ f to mean z is distributed by f. SMC involves a series of
Bernoulli trials, modeling each trial as a Bernoulli random variable having value
1 with probability p, and 0 with probability 1 — p. For each trial i, a random
vector z; ~ f is generated, and the system M is simulated with input z; to
generate a trace o;. The trial’s outcome is 1 if @ holds on o;, and 0 otherwise.

Define an indicator function Iy :  — {0,1} that returns 1 if M &
under input z, and 0 otherwise Then, when x~ f, the probability that M = &
holds will be p = E[Ipeo ()] = [ Ipm=a(2) f(2)de which can be estimated as:

N
ﬁ:ZIM\=¢($z‘) (1)

where N is the number of trials and x; ~ f. We will refer to this estimator as
the Crude Monte-Carlo (CMC) estimator. The precision of p is quantified by its

“relative error” RE(p) = \/V(“:] where Var(p) is the variance of the estimator.

It is known[2] that for Bernoulli trials, relative error is related to the number of
trials IV and the probability of the event p as:

N Jl-p 1 N .
RE(p) = \/ N JpN N= pRE*(p) ~ pRE2(p) ?

Importance Sampling. From (2) we see that the number of simulations
needed to achieve a fixed precision with SMC increases rapidly as the target
event becomes rarer. Importance Sampling [14] (IS) has been applied [2] to
address this challenge effectively by reducing Var(p). The key idea behind IS is
to first simulate M under a different input distribution g to reduce the variance
of the estimator, and then mathematically adjust the result back to the original
distribution f as:

p= [ tura@! D g0rs = [LuatW@o@as @)

fa (w) is a weight function. The estimator for this form is:

where W : x —

Trmpa(z)W (2:) (4)

||Mz

where the z; ~ g. The biggest Challenge in applying IS effectively is choosing
a “good” g that will reduce Var(p). Typically this is done by “tilting” f by
changing its distribution parameters (mean, variance etc.) However, as discussed,
tilting is not effective if @ is disjoint in the input space. In effect, SIS constructs
a good g even in such cases. We describe SIS in detail in the next section.



Semantic Importance Sampling for SMC 245

4 Semantic Importance Sampling

To explain SIS, we begin with a known result [2] that there always exists an
optimal IS distribution:
ITmpa(z)f(2)

g°(x) = ) (5)

for which Var(p) = 0, i.e., if IS is done with g = ¢°, then a single sample is
sufficient to compute p. However, there are two challenges to using ¢°® for IS: (i)
¢° depends on p, the answer we are actually looking for; and (ii) ¢° also depends
on the indicator function I g, but since this function represents M = @ itself,
it may be too complex to represent analytically.

The key insight behind SIS is to construct an abstract indicator function (AIF)
Iyg o © = {0,1} such that: (i) Vo Iyee(z) = 1 = Ij,_4(z) = 1; and (ii)
I34g is simple enough to represent analytically. Note that {z | I}, _4(z) = 1}
is an over-approximation of the set of inputs under which M | &. This AIF
induces the following IS distribution and weight function:

Iy (@)f (@)
p*
f(x) f(x)p* p*
W (z) = = \ (7)
g*(x) IM|=¢(x)f(a:) IM\— (z)
where p* = E[I}_g ()] is the probability that for an 1nput e~ f, Dyg(@) = 1.
Note that as the function Ij\/ll » approaches Iym—g, g* also approaches g°. In
the limit, IMl o = Impg implies g* = g°.
Probability Estimation and Relative Error in SIS. Substituting W*(z)
from (7) into (4), we get the SIS estimator for p = E[lp=a(x)] given 2~ f as:

9" (x) = (6)

*

N
D= ;ZIM|:¢(%')W (z;) = NZI/\/H @ xz)I* P (8)

i=1 i=1 M= <15( )

with a; ~ ¢* used in this importance sampled estimator. Note from (6) that
Ij\/t|=<z>(xi) is always 1 when x; ~ g*, thus this term can be dropped from the
summation. Also, since p* is a constant (8) simplifies to:

« N
5 — Z])\] ZIM|=¢,(.’£Z) (9)
i=1

This can be split into a raw part and a scalar part as p = p* X praw, where:

N
R 1
Praw = N ;IM\:é(l‘i) (10)

Since praw is an unweighted average of Bernoulli random variables, its relative
error can be estimated [2] as:

1

PP o

(11)



246 J.P. Hansen et al.

Furthermore, since p = p* X praw, and p* is a constant, the relative error for p
is the same as the relative error of praw, i.e., RE(p) = RE(Praw)-

4.1 The SIS Algorithm
The SIS algorithm involves the following steps:

1. Recursively construct the AIF I}, e

2. Calculate p*.

3. Use SMC to estimate praw with desired RE(p) = RE(praw), using s
to draw random inputs from g*. Output p = p* X praw-

The core of SIS is Step 1, the generation of the AIF. We describe this in
the following sections by first discussing our representation of the AIF, then
describing the recursive algorithm.

ATF as a Cube Set. We assume that the input = to M is a vector of
M independent!, but not necessarily identically distributed random variables.
For each dimension z; in z, let F; be the Cumulative Distribution Function
(CDF), Fj_1 be the inverse CDF (or quantile function), and u; = Fj;(x;) be
the quantile domain variable. Now let £ be an M-dimensional axis-aligned input
domain hypercube defining an interval [I;, h;] on each input variable ; for 1 <
j < M. We also define the quantile domain hypercube ¢ defined by the ranges
[Fj(l;), Fj(h;)] for each dimension. We use the notation ¢ = F(£) and £ = F~1(c)
to transform cubes between the input and quantile domains. We will use the
terms input cube and quantile cube to refer to cubes in the input and quantile
domains, respectively. When the term cube is used without qualification we will
assume quantile cubes. We can now represent the AIF in terms of a quantile

cube set C* as:
. _f1lifFceCt |F@)eec
IM|=¢ (z) = { 0 otherwise "

where (Vz Ipg(r) = 1) = (3c € C*|F(z) € c) (i.e., all inputs where M |= &
holds are covered by some cube in C*).

Cube Splitting. Let £y be the input cube defining the support of the input
distribution function f. The corresponding quantile domain cube cy = F(&y)
will have a range of [0, 1] on each dimension. We call this the level-0 cube. We
write ¢/j to mean the cube formed by splitting the interval on u; in ¢ in half, and
retaining only the upper half. Similarly, ¢/j is the result of a similar operation
where the lower half of the interval is retained. Note that we can split on the
same variable multiple times. A level-k cube is the result of &k splits on the level-0
cube. For example if ¢y is the level-0 cube, then ¢y /1/1 is the level-2 cube in
which the interval for w; is [0.5,0.75]. After each split, the probability that an
input drawn from f falls in the result is halved. Thus, the probability of an input
drawn from f falling in a level-k cube is Zlk.

! Non-independent random inputs y are replaced by a function h(z) of independent
random variables x, which is folded into Inq—¢(y) to yield In(—a(h(x)).



Semantic Importance Sampling for SMC 247

1) CubeSet aifGen(SMT ¢,Cube c)

(2) {

(3 if (Solve(y, F~1(c)) == UNSAT) return 0;
(4) if (level(c) == Lyax) return {c};

(5) int j = (level(c)/G) % M;

(6) Cube co = c¢/j; Cube ¢1 = ¢/j;

(&) return aifGen(p, co) U aifGen(yp, c1);
(8) }

Fig. 2. Basic AIF Generation Algorithm; G=variable grouping factor, M =number of
inputs, Lmax=recursion depth limit, Solve = satisfiability check via SMT solver

Recursive AIF Construction. Generation of the AIF I}, 4 is performed
recursively through the hierarchical use of an SMT solver. The basic algorithm
aifGen is shown in Figure 2. It takes as input the SMT representation ¢ of the
indicator function Iy(—(x), and the input cube ¢ over which to generate an
abstraction. It is assumed that ¢ is constructed so as to be SAT for inputs x iff
IM|=¢(x) = 1. Constant L.y is the maximum recursion depth. aifGen returns
the subset of level-Ly,.x cubes in C* within cube ¢. C* representing the AIF
as defined in (12) can then be determined by calling aifGen, and passing the
level-0 cube ¢y as c.

The algorithm works as follows. At Line 3, the SMT solver is applied to
the model ¢ over the cube ¢ = F~!(c). The cube is applied to the model by
modifying the assertions in the model corresponding to the intervals on the input
variables. The SMT solver can return SAT, UNSAT or UNKNOWN (e.g., if it
times out). If the result is UNSAT, then M = & does not hold in the input
space described by ¢, and so it returns the empty set. If the result is SAT or
UNKNOWN, we continue with the rest of the algorithm. While an UNKNOWN
result will reduce the efficiency of the algorithm, the result will still be sound.

At Line 4, the level of the current cube ¢ is checked against the specified
maximum recursion depth Ly, ... If we are at that maximum recursion depth, we
simply return the set containing just the cube c.

At Line 5, we choose an input variable index on which to split the current cube.
In our current implementation, we simply cycle through the variables round-
robin by using the current level modulo the total number of input variables M.
Integer division by a variable grouping factor G allows us to choose the same
variable G levels in a row before moving to the next variable. It is possible
that other methods of choosing the splitting order may lead to more efficient
abstractions, however we have not yet explored this area.

At Lines 6-7, we split the cube ¢ around the selected variable u; forming the
cubes cg, and c; for the lower and upper half of the CDF interval on variable u;
in ¢. We then recursively call the generation algorithm on those two sub-cubes
and return the union of the cube sets returned by each call.

Calculation of p*. Recall that p* = E[I},_g ()] given = ~ f. Since: (i)
all cubes in the set C* returned by aifGen are level-Lyax, (ii) they are non-
overlapping, (iii) there are 2Lmax level-Ly,., cubes, and (iv) each cube covers
equal probability in f, then p* can be calculated from the ratio of the number
of cubes in C* to the total number of level-L,,x cubes as:



248 J.P. Hansen et al.

N (O
— (13)

4.2 Optimized AIF Generation

The most expensive component of aifGen are the calls to Solve. We now present
two optimizations that can reduce the number of calls.

Optimization 1: Skip on UNSAT. Consider the algorithm in Figure 2.
Notice that at the point where we split the cube at Line 6, we already know
that cube ¢ is not UNSAT. The means that if one of the child cubes ¢y or ¢;
is UNSAT, the other one must be SAT?. To take advantage of this, we modify
the algorithm to take an additional boolean argument assumeSAT indicating we
should skip the call to Solve and assume it returns SAT when assumeSAT is
true. Then we make the first recursive call on ¢y with assumeSAT set to false. If
this call returns the empty set, then the result for that half was UNSAT, and
we pass true for assumeSAT when making the recursive call on ¢y, otherwise we
make the recursive call with assumeSAT set to false and execute Solve as normal.

Optimization 2: Counter-Example Reuse. A second optimization is pos-
sible by making use of the counter-example returned by Solve when the result
is SAT. In this case, we assume that Solve returns, as counter-example, a cube
&4 containing a satisfying solution. We convert &, to a quantile cube ¢4 = F(&,).
If ¢4 is completely contained by one of the child cubes in the recursive call, we
can skip the call to Solve for that call. We require ¢4 to be completely contained
since the counter-example cube &; returned by Solve is a cube in which there
exists a solution to the SMT formula, but not all points in the cube are necessar-
ily a solution. In most cases cq will be contained by one or the other of the child
cubes in the recursive calls, but it is possible that ¢4 could fall on an edge and
thus not be applicable to either recursive call. In this case, it is still possible that
Optimization 1 can apply. We assume that Solve will return the empty cube
when the result is UNKNOWN which will suppress use of this optimization for
the child invocations. It can be shown that if there are k calls to Solve without
this optimization, that there will be L’;J + 1 with this optimization as long as:
(i) Solve never returns UNKNOWN, and (ii) the counter-example cq returned
by Solve always falls in one of the two sub-cubes. This sets an upper bound of
1/2 on the amount by which calls to Solve can be reduced.

Optimized AIF Generation Algorithm. Figure 3 shows the fully opti-
mized abstract indicator function incorporating both of the optimizations dis-
cussed above. Line 3 tests for conditions that allow us to skip the SMT check.
In the case that we are skipping a check, we can pass the existing ¢4 to the child
recursive calls since it may apply to one of those calls as well. When doing the
SMT check with Solve at Line 4, we include an additional return parameter &4
in which the counter-example cube is returned. We assume that the empty cube
() is returned if the result is not SAT. At Line 5 we convert the input cube &4

2 It could be UNKNOWN if result from cube ¢ is UNKNOWN, but without loss of
soundness we treat an UNKNOWN as SAT for the purpose of this optimization.



Semantic Importance Sampling for SMC 249

(1) CubeSet aifGen(SMT /,Cube c,boolean assumeSAT,Cube cg)
(2)

(3) if (lassumeSAT && cq '= 0 && !(cq C ) {

(4) if (Solve([l, F_l(c), &xigz) == UNSAT) return ();
(5) cqa = F(&a);

(6)

(7) if (level(c) == Lmax) return {c};

(8) int 7 = (level(c)/G) % M;

(9 Cube co = ¢/j; Cube c1 = ¢/j;

(10) CubeSet sop = aifGen([, co, false, cg);

(11) CubeSet s; = 0;

(12) if (sg == 0) s; = aifGen(I, c1, true, cq);

(13) else s; = aifGen([, c1, false, cgq);

(14) return sg U s1;

(15) }

Fig.3. Optimized Abstract Indicator Function (AIF) Generation Algorithm;
G'=variable grouping factor, M=number of input, Lmax=recursion depth limit

to a quantile cube ¢4. Lines 12 to 13 implement Optimization 1. If sg = (), then
the result of the test for ¢y was UNSAT and we can assume that the test for c;
will be SAT.

4.3 Statistical Model Checking

After generating the AIF ijzé, and computing p* with (13), the last step in
SIS is the actual SMC. As previously mentioned, we draw samples from the
distribution g* as defined in (6), then use (10) to estimate the raw probability
Praw and scale this by p*.

Random Input Generation. To generate a random input from g*, we rec-
ognize that this is the equivalent of generating an input x from f and accepting
only those for which I3, ;(x) = 1. We do this by first randomly selecting a
cube ¢ from C* with uni%orm probability since each cube has equal probability
of containing a sample drawn from f. We then choose a uniform vector v € ¢
and use the inverse CDF to generate the input vector as z = F~1(u).

No. Of Samples. From (2), the number of samples N* needed to estimate
p'raw is:

x 1 = praw o 1_p/p*
PrawRE?(Praw) — p/P*RE?*(Praw)

From (9), we know that RE(p) = RE(Praw). Assuming small p and p* > p, the
speedup due to SIS can be estimated as:

(14)

1—
N PRE (p) _1-p 1
N* 1—p/p* Tk oy

p/p* RE?(Praw) p L

(15)

5 Osmosis

We implemented SIS in a tool called 0sM0s1S. The input to OSMOSIS is a descrip-
tion of M in an annotated version of C, with the target property & defined as



250 J.P. Hansen et al.

Verification dReal B €7 .
Cond. Gen. >{svr2 + Refinement T 2Lmax P
Syntactic] Prob. T
w_[Extractionj > dists
e Dynamic Monte-Carlo Praws RE P =Prawp”
9 Exec (.so)

Fig. 4. Architecture of osmosis Tool

=
=
=

ASSERT () statements. OSMOSIS calculates the probability of an ASSERT () failure
via SIS, using dReal[6] as the back-end SMT solver.

Osmosis Architecture. Figure 4 shows the architecture of osmosis. The
input model is processed by: (i) gcc to generate a dynamic executable; (ii) a
syntactic extractor which looks for //@dist declarations to determine the input
space and distributions; and (iii) a verification condition generator that generates
an SMT formula corresponding to the C model. Then aifGen (from Figure 2 or
Figure 3) is used to build the AIF I}“w‘:(p. This AIF is used to calculate p*, and
in conjunction with the dynamically loaded executable for M to estimate praw
and RFE(praw). Finally, p is calculated using p* and praw-.

Osmosis Input Format. Figure 5(a) shows an example OSMOSIS input
model. The annotations at Lines 4 and 5 indicate the inputs to the model.
Line 4 defines a random input named “a” with a uniform distribution between
0 and 5. Line 5 defines a random input named “b” with a normal distribution
with mean 3, standard deviation 1 which has been censored to be between 0 and
5. Where appropriate, we refer to the model input collectively as the vector x.

There are two special functions/macros in 0SMOSIS models: (i) ASSERT() de-
fines a condition that is expected to be true; and (ii) INPUT_D() accesses a
random input declared in an annotation. The suffix _D on INPUT_D() indicates
the return type of double. In Figure 5(a), Lines 8 and 9 access inputs “a” and
“b” and place them in C variables also named “a” and “b”. Some computations
are performed on lines 10 and 11, then finally an assertion is made on Line 13.
The #include on Line 1, allows the model include the special 0SMOSIS functions
to be compiled by a standard compiler such as gcc for use in the SMC phase.

SMT Generation. In order to implement Solve, OSMOSIS translates the C
model into a verification condition represented as an SMT formula ¢, which
is in essence, a representation of the indicator function Inq-g, i.e., any input
value x satisfies ¢ iff Iy (2) = 1. In constructing ¢, stochastic inputs defined
by the //@dist annotations in the C model use the same variable name as the
declaration. The model is also converted to single-static-assignment form so that
each local variable is assigned once. A generation number is appended to each
variable name and is incremented for each assignment to that variable.

Conditional (if) statements are translated by generating a variable for the
condition, then translating both branches as consequences of implications of the



Semantic Importance Sampling for SMC 251

(1) (set-logic QF_NRA)

(2) (declare-fun a () Real)
(3) (declare-fun b () Real)
(4) (declare-fun a_1 () Real)
(5) (declare-fun b_1 () Real)
(6) (declare-fun c_1 () Real)
(7) (declare-fun d_1 () Real)
(8) (assert (>= a 0))

(9) (assert (<= a b))

(10) (assert (>= b 0))

(11) (assert (<= b 5))

(1) #include "osmosis_model.h"

(2)

(3)

(4) //@dist a=uniform(min=0,max=5)

(5) //@dist b=normal (mean=3,std=1,
min=0,max=5)

(6) void model()

™ A

(8) double a = INPUT_D("a"); _
(9)  double b = INPUT_D("b"); (12) (assert (= 2.l a))
- (13) (assert (= b_1 b))
(10) double ¢ = a + b;
(11)  double d = (a - b)/2.0; (14) (assert (= c_1 (+ a_1 b_1)))
(12) ’ (15) (assert (= d_1 (/ (- a_1 b_1) 2)))
. _ . (16) (assert (mot (<= (* (sin c_1)
Eiz; ) ASSERT (sin(c)*cos(d) <= 0.999); (cos d_1)) 0.999)))
(17) (check-sat)
(18) (exit)
(a) (b)
(assert (= _C1 (> a_1 b_1)))
if (a > b) (assert (or (mot _C1) (= a_2 (cos (* a_1 b_1)))))
a = cos(a*b); (assert (or _C1 (= a_2 a_1)))

() (d)

Fig. 5. (a) osMosIs Input Example; (b) SMT for osmosIs Input Example; (c) a con-
ditional statement; and (d) its translation to SMT

condition, or the compliment of the condition. If there are differing numbers
of assignments to a variable in the branches, then an additional assertion is
added to reconcile the generation numbers of the variables. For example, the
C statement in Figure 5(c) generates the SMT assertions in Figure 5(d). Loop
(while and for) statements are unrolled and must include an annotation to
indicate the maximum loop count. Note that the construction of ¢ is effective
and linear in the size of the model.

Finally, ASSERT() conditions are negated since we are interested in testing
if there are any inputs that can result in an assertion failure. All ASSERT ()
statements are merged into a single SMT assertion comprised of a disjunction
of the compliments of the expressions in the C input model.

Figure 5(b) shows the ¢ generated from the M given in Figure 5(a). Line
8 through 11 define the intervals in the stochastic inputs. Lines 12 and 13 are
the assignments from the stochastic inputs to the local C variables from Lines
8 and 9 of the input model. Lines 14 and 15 correspond to the local variables
assignments in Lines 10 and 11 of the C model. Finally, Line 16 is derived from
the ASSERT () statement on Line 13 of the C model.

Monte-Carlo Simulation. The final step of 0sM0sIS is Monte-Carlo simu-
lation to estimate praw using (10). Each Bernoulli trial in this simulation is con-
ducted by directly executing the dynamically loadable executable of the model.
The model source file is compiled by gcc, dynamically loaded, then repeatedly
called for each trial. Before each execution a random vector x ~ g* is generated
as described above and used to initialize a global array. A global flag variable
indicating success/failure is also cleared. The function INPUT_D () indexes and re-
turns a value from the input array. The ASSERT () statement tests the condition,



252 J.P. Hansen et al.

Table 1. AIF Generation Results; In=number of inputs; Lmax=recursion depth limit;
G=variable grouping factor, Time=generation time in seconds; none, 1, 2 and 1+2
indicate which optimizations were used

dReal Calls Time
Name In Lmax/G p* 1/p* none 1 2 142 none 142

10/1 5.859 x 1072 169 49 38 26 26 015 0.1

simple -2 91 2197 x 107 455 73 57 40 40 021 0.1
hockey o 10/1 3516 x 1072 284 255 213 142 137 315 228
12/1 1.148 x 1072 87.1 391 328 214 211 364 255
10/4 1.797 x 107" 5.6 479 451 240 240 33 14
backoff 6 19,4 1797x 107! 56 1583 1551 792 792 61 28
10/1 2997 x 1072 33 117 86 59 59 91 53
bounce 29y 1.221 x 1072 81 221 163 111 111 150 84

and if the condition fails it sets the global flag to true and returns. Success or
failure of the trial is recorded based on the value of the flag variable. Trials result-
ing in an ASSERT () fail correspond to inputs x; where Iy g (7;) = 1, and those
where the ASSERT() does not fail correspond to inputs where Iy —g(x;) = 0.
Trials are conducted until a target relative error is met.

6 Results

To evaluate our technique, we tried OSMOSIS on the following problems:

Simple. The example problem from Figure 5a.

Hockey. An air hockey puck is given a random impulse from a random direction.
We test if it stops on a target after zero or more bounces.

Backoff. An exponential backoff problem in which two senders attempt up to 3
communications. Failure occurs if transmission for either exceeds a deadline.

Bounce. A ball is launched at a random initial angle and velocity. We test if it
falls in a small hole after potentially bouncing a number of times.

Each of these problems has the characteristic that the failure region is disjoint
in the input space. For example, in the hockey problem there are multiple paths
by which the puck can reach the target. All experiments were performed under
Linux Ubuntu 12.04 on a 2.2GHz Intel Core i7 machine with 16 Gb of RAM.
We used a 60 second timeout for each call to dReal (after which it returns
UNKNOWN). However, we experienced no timeouts on any of our test problems.

Table 1 shows the results for AIF generation. For each example, we adjust
the recursion depth limit and the variable grouping factor (number of successive
times each input is split while recursing). We used a larger G for the “backoft”
example because we observed that a higher G improves performance for models
with many inputs. Recall from (15) that 1/p* is an estimate for the expected
speedup ]J\y* of SIS versus Crude Monte-Carlo (CMC). Note that while we use
Liax to limit the recursion depth while generating the AIF, a breadth-first



Semantic Importance Sampling for SMC 253

implementation of aifGen could potentially use p*, terminating when we have
achieved a sufficient gain, or when there is insufficient improvement from one
level to the next. The four columns under “dReal Calls” show the number of
calls that were made to dReal using no optimization, using Optimization 1 only,
using Optimization 2 only and using both optimizations (see Section 4.2).

We see that both optimizations are effective at reducing the number of calls,
but that Optimization 2 performs better, reducing the number of calls as well as
total SMT solving time by half in most cases. Also, while there is some benefit to
using both optimizations together, the additional advantage is relatively small.
This is because when using both optimizations together, Optimization 1 can only
be applied when the counter-example employed by Optimization 2 falls on a cube
boundary, or when analysis of a parent cube timed out and is UNKNOWN.

Finally, the “Time” column shows the time to generate I}‘w‘:(p in seconds.
Times using no optimization (none), and using both optimizations (1+2) are
shown to demonstrate the impact of the optimization techniques. Note that in
our current implementation, we do not parallelize the calls to dReal, which could
lead to additional gains.

Table 2. SMC Results; RE = RE(p)=target relative error; G=grouping factor

Time (sec.)

Name RE Lumax/G p N N/N*  SMC total
CMC  5.95 x 10~* 1.68 x 107 — 6 6

0.01 10/1  5.89 x 107* 8.95 x 10* 187  <0.1 0.1

simple 12/1  6.03 x 107* 2.64 x 10* 636  <0.1 0.1
CMC 5910 x 107*  1.69 x 10° - 580 580

0.001 10/1 5910 x 107*  8.92 x 10° 189 4 4.1

12/1  5.910 x 1074 2.72 x 10° 304 1 1.1

CMC  6.18 x 107* 1.58 x 107 — 6.8 6.8

0.01 10/1  6.18 x 107* 5.59 x 10°  28.3 0.3 2283

hockey 12/1 622 x 107* 1.74 x 10°  90.1 0.1  255.1
CMC 6215 x107*  1.61 x10° - 687 687

0.001 10/1 6214 x107* 556 x 10"  29.0 25 253

12/1  6.212x107*  1.74x 107 925 8 263

CMC 121 x 10~* 824 x 107 - 25 25

0.01 10/4  1.20 x 107* 1.50 x 107 5.5 6 20

12/4 1.21 x107* 1.50 x 107 5.5 6 34

backoff CMC  1.193x10™%  838x10° - 2,593 2,503
0.001 10/4 1.190 x 107*  1.51 x 10° 5.5 553 567

12/4 1194 x 107*  1.50 x 10° 5.6 543 571

CMC 296 x107°  3.337x10° - 133 133

0.01 10/4  3.00 x 107°  8.464 x 10° 39 4.1 57.1

12/4 297 x107°  4.104 x 10° 81 2.0 86.1

bounce CMC 2989 x 107° 3.345 x10'°  — 13,619 13,619
0.001  10/4 2993 x 107° 8474 x 10®  39.5 432 485

12/4 2,994 x 107°  4.068 x 10® 82 209 293



254 J.P. Hansen et al.

Table 2 shows the results from the SMC phase of 0sM0sIS. For each sample
problem, we show the results for target relative errors (RE) of 0.01 and 0.001.
At each target RE, we compare CMC with SIS using two different recursion
depth limits as shown in the Lyax/G column. The probability estimate for each
experiment is shown in the p column. We see that the estimates for CMC and
SIS are very close for each problem, and that as expected the agreement for
those at a relative error of 0.001 are closest.

The column labeled N shows the number of samples needed to achieve the
target relative error for each experiment, and the column labeled N/N* shows
the improvement of SIS over CMC. We can see improvements ranging from a
factor of 5 to a factor of over 600. When we compare the measured N/N* to
the values predicted by 1/p* in Table 1, we see good agreement. For example, in
the “hockey” problem with a recursion depth of 10, we got 28.4 as the predicted
improvement, compared to measured improvements of 28.3 for a target RE of
0.01 and 29.0 for a target RE of 0.001. Note our predictor is based on the
assumption that p* > p, and so is slightly less accurate for examples such as
“simple” where this does not hold.

That last two columns show the verification time for the SMC phase alone, and
for the total time including the abstract indicator function generation time shown
in Table 1. We see that SIS outperforms CMC in all cases where verification
is expensive, often by an order of magnitude or more. Also since the cost for
generating the abstract indicator function is fixed regardless of the target RE,
there will always be some target RE for which SIS outperforms CMC.

7 Conclusion

Statistical model checking (SMC) is a prominent approach for rigorous analysis
of stochastic systems using Monte-Carlo simulations. In this paper, we devel-
oped a new technique, called Semantic Importance Sampling (SIS), to advance
the state-of-the art in applying SMC to compute the probability of a rare event
using a small number of simulations. SIS uses the semantics of the target system
to recursively compute an abstract indicator function (AIF), which is subse-
quently employed to perform SMC. We also present two optimizations to SIS
that reduce the number of calls to SMT solvers needed to compute the AIF.
We have implemented SIS in a tool called 0sMO0sIs, and experimented with a
number of examples. Our results indicate that SIS reduces cost of SMC by or-
ders of magnitude, and our optimizations, in combination, reduce the cost of
SMT solving by half. We believe that extending SIS to analyze stochastic sys-
tems compositionally, and combining it with symbolic simulation techniques, are
important directions for future research.



Semantic Importance Sampling for SMC 255

References

10.

11.

12.

13.

14.

15.

16.

17.

Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for
statistical model checking. In: Flanagan, C., Konig, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 331-346. Springer, Heidelberg (2012)

Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1-12. Springer,
Heidelberg (2011)

Reijsbergen, D., et al.: Rare event simulation for highly dependable systems with
fast repairs. In: Proceedings of the 7th International Conference on Quantitative
Evaluation of Systems (2010)

David, A., Du, D., Guldstrand Larsen, K., Legay, A., Miku¢ionis, M.: Optimizing
Control Strategy Using Statistical Model Checking. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352-367. Springer, Heidelberg (2013)
David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for Statistical
Model Checking of Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349-355. Springer, Heidelberg (2011)

Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT Solver for Nonlinear Theories over
the Reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 208-214.
Springer, Heidelberg (2013)

Gurfinkel, A., Chaki, S.: BOXES: A Symbolic Abstract Domain of Boxes. In: Cousot,
R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287-303. Springer, Heidelberg
(2010)

Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing (FACJ) 6(5), 512-535 (1994)

Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327-342. Springer, Heidelberg (2012)
Jegourel, C., Legay, A., Sedwards, S.: Importance Splitting for Statistical Model
Checking Rare Properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 576-591. Springer, Heidelberg (2013)

Kahn, H.: Stochastic (monte carlo) attenuation analysis. Tech. Rep. P-88, Rand
Corp. (1949)

Luckow, K.S., Pasareanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and
approximate probabilistic symbolic execution for nondeterministic programs. In:
Proc. of ASE (2014)

Borges, M., et al.: Compositional solution space quantification for probabilistics
software analysis. In: Proceedings of PLDI: Programming Language Design and
Implementation (June 2014)

Srinivasan, R.: Importance Sampling: Applications in Communications and Detec-
tion. Engineering online library, Springer (2002)

Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric
systems. Ph.D. thesis, University of Nijmegen, the Netherlands (2002)

Younes, H.L.S.: Verification and planning for stochastic processes with asyn-
chronous events. Ph.D. thesis, Carnegie Mellon University (2004)

Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statis-
tical probabilistic model checking. STTT 8(3), 216-228 (2006)



	Semantic Importance Sampling for Statistical Model Checking
	1 Introduction
	2 Related Work
	3 Background
	4 Semantic Importance Sampling
	4.1 The SIS Algorithm
	4.2 Optimized AIF Generation
	4.3 Statistical Model Checking

	5 Osmosis
	6 Results
	7 Conclusion




