
ISOLATE: A Type System for Self-recursion

Ravi Chugh

University of Chicago
rchugh@cs.uchicago.edu

Abstract. A fundamental aspect of object-oriented languages is how recursive
functions are defined. One semantic approach is to use simple record types and
explicit recursion (i.e. fix) to define mutually recursive units of functionality.
Another approach is to use records and recursive types to describe recursion
through a “self” parameter. Many systems rely on both semantic approaches
as well as combinations of universally quantified types, existentially quantified
types, and mixin operators to encode patterns of method reuse, data encapsula-
tion, and “open recursion” through self. These more complex mechanisms are
needed to support many important use cases, but they often lack desirable theo-
retical properties, such as decidability, and can be difficult to implement, because
of the equirecursive interpretation that identifies mu-types with their unfoldings.
Furthermore, these systems do not apply to languages without explicit recursion
(such as JavaScript, Python, and Ruby). In this paper, we present a statically
typed calculus of functional objects called ISOLATE that can reason about a pat-
tern of mixin composition without relying on an explicit fixpoint operation. To
accomplish this, ISOLATE extends a standard isorecursive type system with a
mechanism for checking the “mutual consistency” of a collection of functions,
that is, that all of the assumptions about self are implied by the collection itself.
We prove the soundness of ISOLATE via a type-preserving translation to a cal-
culus with F-bounded polymorphism. Therefore, ISOLATE can be regarded as a
stylized subset of the more expressive calculus that admits an interesting class of
programs yet is easy to implement. In the future, we plan to investigate how other,
more complicated forms of mixin composition (again, without explicit recursion)
may be supported by lightweight type systems.

1 Introduction

Researchers have studied numerous foundational models for typed object-oriented pro-
gramming in order to understand the theoretical and practical aspects of these languages.
Many of these models are based on the lambda-calculus extended with combinations
of explicit recursion, records, prototype delegation, references, mixins, and traits. Once
the dynamic semantics of the language has been set, various type theoretic constructs
are then employed in order to admit as many well-behaved programs as possible. These
mechanisms include record types and recursive types [7], bounded universal quantifi-
cation [9], bounded existential quantification [30], F-bounded polymorphism [6,2], and
variant parametric types [20,34]. A classic survey by Bruce et al. [5] compares many
of the core aspects of these systems.
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A fundamental aspect of an object calculus is how recursive functions are defined.
One option is to include explicit recursion on values (i.e. fix) as a building block. The
evaluation rule

fix (λ f .e) ↪→ e[(fix λ f .e)/ f ] where e = λ x.e′

repeatedly substitutes the entire expression as needed, thus realizing the recursion. Ex-
plicit recursion is straightforward to reason about: the expression fix e has type S → T
as long as e has type (S → T )→ (S → T ). Similar evaluation and typechecking rules
can be defined for recursive non-function values, such as records, using simple syn-
tactic restrictions (see, for example, the notion of statically constructive definitions in
OCaml [24]). This approach can be used to define objects of (possibly mutually) recur-
sive functions. For example, the following simple object responds to the “message” f

by multiplying increasingly large integers ad infinitum:

o1= fix (λthis.{f=λn.n * this.f(n + 1)})

o1.f(1) ↪→∗ 1 * o1.f(2) ↪→∗ 1 * 2 * o1.f(3) ↪→∗ ·· ·
On the other hand, in a language without explicit recursion on values, recursive com-

putations can be realized by passing explicit “self” (or “this”) parameters through func-
tion definitions and applications. The following example demonstrates this style:

o2= {f=λ(this,n).n * this.f (this,n + 1)}

o2.f (o2,1) ↪→∗ 1 * o2.f (o2,2) ↪→∗ 1 * 2 * o2.f (o2,3) ↪→∗ ·· ·
Notice that occurrences of this, substituted by o2, do not require any dedicated evalua-
tion rule to “tie the knot” because the record is explicitly passed as an argument through
the recursive calls.

Object encodings using either of the two approaches above — explicit recursion or
self-parameter passing — can be used to express many useful programming patterns of
“open recursion,” including: (1) the ability to define methods independently of their host
objects (often referred to as premethods) that later get mixed into objects in a flexible
way; and (2) the ability to define wrapper functions that interpose on the invocation of
methods that have been previously defined.

Compared to explicit recursion, however, the self-parameter-passing approach is sig-
nificantly harder for a type system to reason about, requiring a combination of equire-
cursive types, subtyping, and F-bounded polymorphism (where type variable bounds
are allowed to be recursive). Such combinations often lack desirable theoretical proper-
ties, such as decidability [28,2], and pose implementation challenges due to the equire-
cursive, or “strong,” interpretation of mu-types. Nevertheless, mainstream languages
like Java and C# incorporate these features, but this complexity is not suitable for all
language designs. For example, the popularity of dynamically typed scripting languages
(such as JavaScript, Python, Ruby, and PHP) has sparked a flurry of interest in designing
statically typed dialects (such as TypeScript and Hack). It is unlikely that heavyweight
mechanisms like F-bounded polymorphism will be easily adopted into such language
designs. Instead, it would be useful to have a lightweight type system that could reason
about some of the programming patterns enabled by the more complicated systems.
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Contributions. The thesis of this paper is that the two patterns of open recursion under
consideration do not require the full expressive power of F-bounded polymorphism and
equirecursive types. To substantiate our claim, we make two primary contributions:

– We present a statically typed calculus of functional objects called ISOLATE, which
is a simple variation and extension of isorecursive types (with only a very limited
form of subtyping and bounded quantification). We show that ISOLATE is able to
admit an interesting class of recursive programs yet is straightforward to imple-
ment. The key feature in ISOLATE is a typing rule that treats records of premethods
specially, where all assumptions about the self parameter are checked for mutual
consistency.

– To establish soundness of the system, we define a type-preserving translation of
well-typed ISOLATE programs into a more expressive calculus with F-bounded
polymorphism. As a result, ISOLATE can be regarded as a stylized subset of the
traditional, more expressive system.

In languages without fix and where the full expressiveness of F-bounded polymor-
phism is not needed, the approach in ISOLATE provides a potentially useful point in the
design space for supporting recursive, object-oriented programming patterns. In future
work, we plan to investigate supporting additional forms of mixin composition (beyond
what ISOLATE currently supports) and applying these techniques to statically typed
dialects of popular scripting languages, which often do not include a fixpoint operator.

Outline. Next, in §2, we provide background on relevant typing mechanisms and iden-
tify the kinds of programming patterns we aim to support in ISOLATE. Then, in §3,
we provide an overview of how ISOLATE reasons about these patterns in a relatively
lightweight way. After defining ISOLATE formally, we describe its metatheory in §4.
We conclude in §5 with discussions of related and future work.

2 Background

In this section, we survey how several existing typing mechanisms can be used to de-
fine objects of mutually recursive functions, both with and without explicit recursion.
We start with a simply-typed lambda-calculus and then extend it with operations for
defining records, isorecursive folding and unfolding, and parametric polymorphism. We
identify aspects of these systems that motivate our late typing proposal. This section is
intended to provide a self-contained exposition of the relevant typing mechanisms; ex-
pert readers may wish to skip ahead to §2.3.

Core Language Features and Notation. In Figure 1, we define the expression and
type languages for several systems that we will compare in this section. We assume
basic familiarity with the dynamic and static semantics for all of these features [29]. In
our notation, we define the language L to be the simply-typed lambda-calculus. We
use B to range over some set of base types (int, unit, str, etc.) and c to range over
constants (not, (*), (++), etc.).
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Base Language L :

e ::= c | λx.e | x | e1 e2 T ::= B | T1 → T2

Extensions to Expression Language (Denoted by Subscripts):

Lfix e ::= · · · | fix e

L{} e ::= · · · | { f = e } | e.f

Liso e ::= · · · | fold e | unfold e

LΛ e ::= · · · | ΛA.e | e[T]

Extensions to Type Language (Denoted by Superscripts):

L {} T ::= · · · | { f:T }

L μ T ::= · · · | A | μA.T

L ∀ T ::= · · · | A | ∀A. T

L ∀A<:T T ::= · · · | A | ∀A<:T. T ′ | top

L ∀A<:T(A) T ::= · · · | A | ∀A<:T (A). T ′ | top

Comparison of Selected Language Extensions:

LANGFIXSUB � L {},<:,∀
{},fix,Λ LANGMU � L

{},μ,∀
{},iso,Λ FSUBREC � L

{},μ=,∀A<:T(A)
{},Λ

fix Property A Property B Property C Property D “Simplicity”

LANGFIXSUB Y � � � � �
LANGMU N � � × � �
ISOLATE N � � � �− �

FSUBREC N � � � �− ×

Fig. 1. Core Languages of Expressions and Types

We define several extensions to the expression and type languages of L . Our nota-
tional convention is to use subscripts to denote extensions to the language of expres-
sions and superscripts for extensions to the language of types. In particular, we write
Lfix, L{}, Liso, and LΛ to denote extensions of the base language, L , with the usual
notions of fixpoint, records, fold and unfold operators for isorecursive types, and type
abstraction and application, respectively. We write L {} to denote the extension of the
base type system with record types, L μ for isorecursive types, L μ= for equirecursive
types, L ∀ for (unbounded) universal quantification, L ∀A<:T for bounded quantifica-
tion, and L ∀A<:T (A) for F-bounded quantification (where type bounds can recursively
refer to type variables). We attach multiple subscripts or superscripts to denote multiple
extensions. For example, L {}

{},fix denotes the statically typed language with records and
a fixpoint operator.

In addition to the syntactic forms defined in Figure 1, we freely use syntactic sugar
for common derived forms. For example, we often write let x= e1 in e2 instead of
(λ x.e2) e1 and we often write let f x y= e1 in e2 instead of let f =λ x.λ y.e1 in e2.
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We assume the presence of primitive if-expressions, which we write as e1 ? e2 : e3. We
also write val x :: T as a way to ascribe an expected type to a let-bound expression.

Comparison of Systems. We define aliases in Figure 1 for three systems to which we
will pay particular attention. We write LANGFIXSUB to refer to the language of records,
explicit recursion, and subtyping; LANGMU to refer to the language of records and
isorecursive mu-types; and FSUBREC to refer to the language of records, equirecursive
mu-types, and F-bounded polymorphism. In addition, each of these systems has univer-
sal quantification, which is unbounded in LANGFIXSUB and LANGMU and F-bounded
in FSUBREC. Notice that LANGMU and FSUBREC do not include explicit recursion,
indicated by the absence of fix in the subscripts. The name FSUBREC is a mnemonic
to describe the often-called System Fsub extended with recursive bounds and recursive
types.

Next, we will compare these three languages. The table at the bottom of Figure 1
summarizes their differences along a number of dimensions that we will discuss. Prop-
erties A through D are four programming patterns that are of interest for this paper, and
“Simplicity” informally refers to implementation and metatheoretic challenges that the
type system presents. Then, in §3, we will explain how our ISOLATE calculus identifies
a new point in the design space that fits in between LANGMU and FSUBREC.

2.1 LANGFIX and LANGFIXSUB: Recursion with fix

We will start with the language LANGFIX � L {}
{},fix of records and explicit recursion

(without subtyping), in which mutually recursive functions can be defined as follows:

Ticker � { tick:int→ str; tock:int→ str }

val ticker0 :: Ticker

let ticker0 = fix \this.

let f n = n > 0 ? "tick " ++ this.tock (n) : "" in

let g n = n > 0 ? "tock " ++ this.tick (n-1) : "" in

{ tick = f; tock = g }

ticker0.tick 2 -- "tick tock tick tock "

As mentioned in §1, typechecking expressions of the form fix e is simple. We will
build on this example to demonstrate several programming patterns of interest.

[Property A] Defining Premethods Separately. In the program above, all components
of the mutually recursive definition appear together (i.e. syntactically adjacent) inside
the fixpoint expression. For reasons of organization, the programmer may want to in-
stead structure the component definitions separately and then combine them later:

val tick, tock :: Ticker -> int -> str

let tick this n = n > 0 ? "tick " ++ this.tock (n) : ""

let tock this n = n > 0 ? "tock " ++ this.tick (n-1) : ""
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let ticker1 = fix \this.

let f n = tick this n in

let g n = tock this n in

{ tick = f; tock = g }

ticker1.tick 2 -- "tick tock tick tock "

Furthermore, if the programmer wants to define a second quieter ticker that does not
emit the string “tock”, defining the component functions separately avoids the need to
duplicate the implementation of tick:

val tock’ :: Ticker -> int -> str

let tock’ this n = this.tick (n-1)

let ticker2 = fix \this.

let f n = tick this n in

let g n = tock’ this n in

{ tick = f; tock = g }

ticker2.tick 2 -- "tick tick "

Notice that the implementations of tick, tock, and tock’ lay outside of the recursive
definitions ticker1 and ticker2 and are each parameterized by a this argument.
Because these three functions are not inherently tied to any record, we refer to them
as premethods. In contrast, we say that the functions f and g in ticker1 (respectively,
ticker2) are methods of ticker1 (respectively, ticker2) because they are tied to that
particular object.1 The method definitions are eta-expanded to ensure that the recursive
definitions are syntactically well-founded (e.g. [24]).

[Property B] Intercepting Recursive Calls. Another benefit of defining premethods
separately from their eventual host objects is that it facilitates “intercepting” recursive
calls in order to customize behavior. For example, say the programmer wants to define
a louder version of the ticker that emits exclamation points in between each “tick” and
“tock”. Notice that the following reuses the premethods tick and tock from before:

let ticker3 = fix \this.

let f n = "! " ++ tick this n in

let g n = "! " ++ tock this n in

{ tick = f; tock = g }

ticker3.tick 2 -- "! tick ! tock ! tick ! tock ! "

1 The term premethod is sometimes used with a slightly different meaning, namely, for a lambda
that closes over an implicit receiver variable rather than than explicitly taking one as a parame-
ter. We use the term premethod to emphasize that the first (explicit) function argument is used
to realize recursive binding.
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[Property C] Mixing Premethods into Different Types. Having kept premethod def-
initions separate, the programmer may want to include them into objects with various
types, for example, an extended ticker type that contains an additional boolean field to
describe whether or not its volume is loud:

TickerVol � { tick:int→ str; tock:int→ str; loud:bool }

Intuitively, the mutual requirements between the tick and tock’ premethods are inde-
pendent of the presence of the loud field, so we would like the type system to accept
the following program:

let quietTicker = fix \this.

let f n = tick this n in

let g n = tock’ this n in

{ tick = f; tock = g; loud = false }

This program is not type-correct in LANGFIX, because the types derived for tick and
tock’ pertain to Ticker rather than TickerVol. Extending LANGFIX with the usual
notion of record subtyping, resulting in a system called LANGFIXSUB, addresses the
problem, however.

In addition, LANGFIXSUB can assign the following less restrictive types to the same
premethods from before: tick :: Tock→ int→ str, tock :: Tick→ int→ str, and
tock’ :: Tick→ int→ str. Notice that the types of the this arguments are described
by the following type abbreviations, rather than Ticker, to require only those fields
used by the definitions:

Tick � { tick:int→ str } Tock � { tock:int→ str }

[Property D] Abstracting Over Premethods. The last scenario that we will consider
using our running example is abstracting over premethods. For example, the follow-
ing wrapper functions avoid duplicating the code to insert exclamation points in the
definition of ticker3 from before:

val wrap :: all A,B,C,C’. (C->C’) -> (A->B->C) -> (A->B->C’)

let wrap g f x y = g (f x y)

val exclaim :: all A,B. (A -> B -> str) -> (A -> B -> str)

let exclaim = wrap _ _ _ _ (\s. "! " ++ s)

let ticker3’ = fix \this.

let f n = (exclaim _ _ tick) this n in

let g n = (exclaim _ _ tock) this n in

{ tick = f; tock = g }

ticker3’.tick 2 -- "! tick ! tock ! tick ! tock ! "

The two calls to exclaim (and, hence, wrap) are made with two different premethods
as arguments. Because these premethods have different types in LANGFIXSUB, (un-
bounded) parametric polymorphism is required for typechecking. Note that we write
underscores where type instantiations can be easily inferred.
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“Open” vs. “Closed” Objects. As we have seen throughout the previous examples, the
type of a record-of-premethods differs from that of a record-of-methods. We refer to
the former kind of records as open objects and the latter as closed objects. Once closed,
there is no way to extract a method to be included into a closed object of a different
type. The following example highlights this distinction, where the makeLouderTicker
function takes a record of two premethods and wraps them before creating a closed
Ticker object:

PreTicker � { tick:Tock→ int→ str; tock:Tick→ int→ str }

val makeLouderTicker :: PreTicker -> Ticker

let makeLouderTicker openObj = fix \closedObj.

let f n = (exclaim _ _ openObj.tick) closedObj n in

let g n = (exclaim _ _ openObj.tock) closedObj n in

{ tick = f; tock = g }

let (ticker4, ticker5) =

( makeLouderTicker { tick = tick; tock = tock }

, makeLouderTicker { tick = exclaim _ _ tick; tock = tock } )

ticker4.tick 2 -- "! tick ! tock ! tick ! tock ! "

ticker5.tick 2 -- "! ! tick ! tock ! ! tick ! tock ! ! "

The first row of the table in Figure 1 summarizes that LANGFIXSUB supports the
four programming scenarios outlined in the previous section. Next, we will consider
how the same scenarios manifest themselves in languages without an explicit fix. Such
encodings may be of theoretical interest as well as practical interest for object-oriented
languages such as JavaScript, in which the semantics does not include fix.

2.2 LANGMU: Recursion with Mu-Types

We will consider the language LANGMU of records, isorecursive mu-types, and un-
bounded universal quantification. The standard rules for isorecursive types are:

T = μA.S Γ � e : S[T/A]

Γ � fold T e : T

T = μA.S Γ � e : T

Γ � unfold e : S[T/A]

We define the syntactic sugar e$ f(e′) � (unfold e).f(e)(e′) to abbreviate the com-
mon pattern of unfolding a recursive record, reading a method stored in one of its fields,
and then calling the method with the (folded) record as the receiver (first argument) to
the method.

[Properties A and B]. Defining premethods separately and interposing on recursive
calls are much the same in LANGMU as they are in LANGFIXSUB. Using the type-
checking rules for isorecursive types above, together with the usual rule for function
application, we can write the following in LANGMU:
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Ticker � μA.{ tick:A → int→ str; tock:A → int→ str }

val tick, tock, tock’ :: Ticker -> int -> str

let tick this n = n > 0 ? "tick " ++ this$tock(n) : ""

let tock this n = n > 0 ? "tock " ++ this$tick(n-1) : ""

let tock’ this n = this$tick(n-1)

let wrap g f x y = g (f x y)

let exclaim = wrap (\s. "! " ++ s)

let (ticker1, ticker2, ticker3) =

( fold Ticker { tick = tick ; tock = tock }

, fold Ticker { tick = tick ; tock = tock’ }

, fold Ticker { tick = exclaim tick ; tock = exclaim tock })

ticker1$tick(2) -- "tick tock tick tock "

ticker2$tick(2) -- "tick tick "

ticker3$tick(2) -- "! tick ! tock ! tick ! tock ! "

[Property D]. As in LANGFIXSUB, unbounded universal quantification in LANGMU

can be used to give general types to functions, such as wrap and exclaim above, that
abstract over premethods.

[Property C]. Premethods in LANGMU cannot be folded into different mu-types than
the ones specified by the annotations for their receiver arguments. Consider the follow-
ing example that attempts to, as before, define an extended ticker type that contains an
additional boolean field:

TickerVol � μA.{ tick:A → int→ str; tock:A → int→ str; loud:bool }

let quietTicker =

fold TickerVol { tick = tick ; tock = tock’ ; loud = false }

The problem is that the record type

{ tick,tock:Ticker→ int→ str; loud:bool }

does not equal the unfolding of TickerVol

{ tick,tock:TickerVol→ int→ str; loud:bool }

as required by the typing rule for fold. In particular, Ticker �= TickerVol. Unlike
for LANGFIX, simply adding subtyping to the system does not address this difficulty.
In the above record type comparison, the contravariant occurrence of the mu-type would
require that TickerVolbe a subtype of Ticker, which seems plausible by record width
subtyping. However, the standard “Amber rule”

Γ , A1 <: A2 � T1 <: T2

Γ � μA1.T1 <: μA2.T2
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for subtyping on mu-types requires that the type variable vary covariantly [8,29]. As
a result, TickerVol �<: Ticker which means that the code snippet fails to typecheck
even in LANGMU extended with subtyping.

The only recourse in LANGMU is to duplicate premethods multiple times, one for
each target mu-type. The second row of the table in Figure 1 summarizes the four pro-
gramming scenarios in the context of LANGMU, using an × to mark that Property C
does not hold.

2.3 FSUBREC: Recursion with F-bounded Polymorphism

Adding subtyping to LANGMU is not enough, on its own, to alleviate the previous lim-
itation, but it is when combined with a more powerful form of universal quantification.
In particular, the system we need is FSUBREC, which contains (1) F-bounded polymor-
phism, where a bounded universally quantified type ∀A<:S. T allows its type bound S
to refer to the type variable A being constrained; and (2) equirecursive, or “strong” re-
cursive, types where a mu-type μA.T is considered definitionally equal to its unfolding
T [(μA.T )/A] in all contexts. That means that there are no explicit fold and unfold op-
erations in FSUBREC as there are in languages with isorecursive, or “weak” recursive,
types like LANGMU.

To see why “weak recursion is not a good match for F-bounded quantification,” as
described by Baldan et al. [2], consider the type instantiation rule

Γ � e : ∀A<:S. T Γ � S′ <: S[S′/A]

Γ � e[S′] : T [S′/A]

which governs how bounded universals can be instantiated. Notice that the particular
type parameter S′ must be a subtype of the bound S where all (recursive) occurrences
of A are replaced with S′ itself. A recursive type can satisfy an equation like this only
when it is considered definitionally equal to its unfolding, because the structure of the
types S and S′ simply do not match (in all of our examples, S′ is a mu-type but S is a
record type).

[Properties A and C]. Having explained the motivation for including equirecursive
types in FSUBREC, we return to our example starting with premethod definitions:

Tick(A) � { tick:A → int→ str }

Tock(A) � { tock:A → int→ str }

TickPre(B,C) � (∀A<:Tick(A). A → B →C)

TockPre(B,C) � (∀A<:Tock(A). A → B →C)

val tick :: TockPre (int, str)

val tock, tock’ :: TickPre (int, str)

let tick this n = n > 0 ? "tick " ++ this.tock(this)(n) : ""

let tock this n = n > 0 ? "tock " ++ this.tick(this)(n-1) : ""

let tock’ this n = this.tick(this)(n-1)



ISOLATE: A Type System for Self-recursion 267

There are two aspects to observe. First, the premethod types, which use F-bounded
universals, require that the this parameters have only the fields used by the definitions
(like in LANGFIXSUB). Second, the implementations of tick, tock, and tock’ do not
include unfold expressions (unlike in LANGMU), because the type system implicitly
folds and unfolds equirecursive types as needed.

We can now mix the premethods into various target mu-types, such as Ticker and
TickerVol as defined in LANGMU, by instantiating the F-bounded universals appro-
priately. In the following, we use square brackets to denote the application, or instanti-
ation, of an expression to a particular type.

let (normalTicker, quietTicker) =

( { tick=tick[TickerVol]; tock=tock [TickerVol]; loud=false }

, { tick=tick[TickerVol]; tock=tock’[TickerVol]; loud=false } )

normalTicker.tick(normalTicker)(2) -- "tick tock tick tock "

quietTicker.tick(quietTicker)(2) -- "tick tick "

[Property B]. Interposing on recursive calls in FSUBREC is much the same as before:

val ticker3 :: Ticker

let ticker3 =

let f this n = "! " ++ tick [Ticker] this n in

let g this n = "! " ++ tock [Ticker] this n in

{ tick = f; tock = g }

ticker3.tick 2 -- "! tick ! tock ! tick ! tock ! "

[Property D]. Abstracting over premethods in FSUBREC, however, comes with a caveat.
Symptoms of the issue appear in the definitions of f and g in ticker3 above: notice that
the tick and tock premethods are instantiated to a particular type and then wrapped.
As a result, f and g are methods tied to the Ticker type rather than premethods that
can work with various host object types. We can abstract the wrapper code in ticker3

as in LANGFIXSUB and LANGMU, but the fact remains that wrap and exclaim below
operate on methods rather than premethods:

val wrap :: all A,B,C,C’. (C->C’) -> (A->B->C) -> (A->B->C’)

let wrap g f x y = g (f x y)

let exclaim = wrap _ _ (\s. "! " ++ s)

let loudTicker =

{ tick = exclaim _ _ (tick [TickerVol])

; tock = exclaim _ _ (tock [TickerVol])

; loud = true }

loudTicker.tick(loudTicker)(2)

-- "! tick ! tock ! tick ! tock ! "
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If we wanted to define a function exclaim’ that truly abstracts over premethods (that
is, which could be called with the uninstantiated tick and tock values), the type of
exclaim’ must have the form

∀R. (∀A<:R. A → int→ str)→ (∀A<:R. A → int→ str)

so that the type variable R could be instantiated with Tock(A) or Tick(A) as needed at
each call-site. This kind of type cannot be expressed in FSUBREC, however, because
these type instantiations need to refer to the type variable A which is not in scope.

As a partial workaround, the best one can do in FSUBREC is to define wrapper
functions that work only for particular premethod types and then duplicate definitions
for different types. In particular, we can specify two versions of the type signatures

wrapTick :: ∀B,C,C′. TickPre(B,C)→ TickPre(B,C′)
wrapTock :: ∀B,C,C′. TockPre(B,C)→ TockPre(B,C′)

exclaimTick :: TickPre(int,str)→ TickPre(int,str)

exclaimTock :: TockPre(int,str)→ TockPre(int,str)

and then define two versions of the wrappers as follows:

let wrapTick B C C’ g f x y = \A. g (f[A] x y)

let wrapTock B C C’ g f x y = \A. g (f[A] x y)

let exclaimTick = wrapTick _ _ _ (\s. "! " ++ s)

let exclaimTock = wrapTock _ _ _ (\s. "! " ++ s)

let loudTicker’ =

{ tick = (exclaimTock tick) [TickerVol]

; tock = (exclaimTick tock) [TickerVol]

; loud = true }

loudTicker’.tick(loudTicker’)(2)

-- "! tick ! tock ! tick ! tock ! "

With this approach, the wrapper functions take premethods as inputs and return premeth-
ods as outputs. This code duplication is undesirable, of course, so in the FSUBREC row
of the table in Figure 1 we qualify the check mark for Property D with a minus sign.

Undecidability of FSUBREC. Equirecursive types and F-bounded polymorphism are
powerful, indeed, which is why they are often used as the foundation for object cal-
culi, sometimes with additional constructs like type operators and bounded existential
types [5]. This power comes at a cost, however, both in theory and in practice. Sub-
typing for System Fsub (i.e. bounded quantification) is undecidable, even when type
bounds are not allowed to be recursive [28], and the addition of equirecursive types
poses challenges for the completeness of the system [16,2]. There exist decidable frag-
ments of System Fsub that avoid the theoretically problematic cases without affecting
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many practical programming patterns. However, mainstream languages (e.g. Java and
C#) include features beyond generics and subtyping such as variance, and the sub-
tle interaction between these features is an active subject of research (e.g. [23,17]).
Furthermore, an equirecursive treatment of mu-types demands more work by the type
checker — treating recursive types as graphs and identifying equivalent unfoldings —
than does isorecursive types, where the recursive type operator is “rigid” and, thus, easy
to support [29]. As a result of these complications, we mark the “Simplicity” column
for FSUBREC in Figure 1 with an ×. In settings where the full expressive power of
these features is needed, then the theoretical and practical hurdles that accompany them
are unavoidable. But for other settings, ideally we would have a more expressive system
than LANGMU that is much simpler than FSUBREC.

3 The ISOLATE Calculus

We now present our calculus, ISOLATE, that aims to address this goal. Our design
is based on two key observations about the FSUBREC encodings from the previous
section: first, that the record types used to describe self parameters mention only those
fields actually used by the function definitions; and second, that when creating an object
out of a record of premethods, each premethod is instantiated with the mu-type that
describes the resulting object.

The ISOLATE type system includes special support to handle this common program-
ming pattern without providing the full expressive power, and associated difficulties,
of FSUBREC. Therefore, as the third row of the table in Figure 1 outlines, ISOLATE

satisfies the same Properties A through D as FSUBREC but fares better with respect to
“Simplicity,” in particular, because it is essentially as easy as LANGMU to implement.

3.1 Overview

Before presenting formal definitions, we will first work through an ISOLATE example
split across Figure 2, Figure 3, and Figure 4.

Premethods. Let us first consider the premethod definitions of tick, tock, and tock’

on lines 1 through 8, which bear many resemblances to the versions in FSUBREC. The
special pre-type (A :S) ⇒ T in ISOLATE is interpreted like the type ∀A<:S. A → T
in FSUBREC. Values that are assigned pre-types are special functions called premeth-
ods ςx :A<: S.e, which are treated like polymorphic function values ΛA<: S.λ x :A.e
in FSUBREC. A notational convention that we use in our examples is that the identifier
this signifies that the enclosing function desugars to a premethod rather than an ordi-
nary lambda. Notice that the types Tick(A) and Tock(A) describe only those fields that
are referred to explicitly in the definitions. A simple rule for unfolding self parameters
allows the definitions of tick, tock, and tock’ to typecheck.

Closing Open Records. ISOLATE provides special support for sending messages to
records of premethods. To keep subsequent definitions more streamlined, in ISOLATE

we require that all premethods take two arguments (in curried style). Therefore, instead
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1 type Tick(A) = { tick: A -> int -> str }

2 type Tock(A) = { tock: A -> int -> str }

3

4 val tick :: (A:Tock(A)) => int -> str

5 val tock, tock’ :: (A:Tick(A)) => int -> str

6 let tick this n = n > 0 ? "tick " ++ this$tock(n) : ""

7 let tock this n = n > 0 ? "tock " ++ this$tick(n-1) : ""

8 let tock’ this n = this$tick(n-1)

9

10 val const :: bool -> (A:{}) => unit -> bool

11 let const b this () = b

12 let (true_, false_) = (const true, const false)

13

14 let normalTicker = { tick = tick ; tock = tock ; loud = false_ }

15 let quietTicker = { tick = tick ; tock = tock’ ; loud = false_ }

16

17 normalTicker # tick(2) -- "tick tock tick tock "

18 quietTicker # tick(2) -- "tick tick "

Fig. 2. ISOLATE Example (Part 1)

of using boolean values true and false to populate a loud field of type bool, on
line 12 we define premethods true_ and false_ of the following type, where the type
Bool � (A :{ }) ⇒ unit→ bool imposes no constraints on its receivers.

Having defined the required premethods, the expressions on lines 14 through 18
show how to build and use records of premethods. The definitions of normalTicker
and quietTicker create ordinary records described by the record type

R0 � OpenTickerVol � { tick:PreTick; tock:PreTock; loud:Bool }

where we make use of abbreviations PreTick � (A :Tock(A)) ⇒ int→ str and
PreTock � (A :Tick(A)) ⇒ int→ str. We refer to these two records in ISOLATE

as “open” because they do not yet form a coherent “closed” object that can be used
to invoke methods. The standard typing rule for fold e expressions does not apply to
these open records, because the types of their receivers do not match (as was the diffi-
culty in our LANGMU example). To use open objects, ISOLATE provides an additional
expression form close e and the following typing rule:

Γ � e : R GuarA(R)⊇ RelyA(R) T = μA.Coerce(GuarA(R))

Γ � close e : T

The rule checks that an open record type R of premethods is mutually consistent (the
second premise) and then freezes the type of the resulting record to be exactly what is
guaranteed (the third premise). To define mutual consistency of a record R, we introduce
the notions of rely-set and guarantee-set for each pre-type (A :R j) ⇒ S j → Tj stored
in field f j:
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– the rely-set contains the field-type pairs ( f ,T ) corresponding to all bindings f :T
in the record type R j, where R j may refer to the variable A, and

– the guarantee-set is the singleton set {{( f j, A → S j → Tj)}}, where A stands for
the entire record type being checked for consistency.

The procedures Rely and Guar compute sets of field-type pairs by combining the rely-
set and guarantee-set, respectively, from each premethod in R. An open record type
R is consistent if GuarA(R) contains all of the field-type constraints in RelyA(R). The
procedure Coerce converts a set of field-type pairs into a record type in the obvious
way, as long as each field is mentioned in at most one pair.

Using this approach, close normalTicker and close quietTicker have type

μA.{ tick:IS(A); tock:IS(A); loud:A → unit→ bool }

where IS(S) � S → int→ str, because the following set containment is valid:

GuarA(R0) = {(tick, IS(A)),(tock, IS(A)),(loud,A → unit→ bool)}
⊇ RelyA(R0) = {(tick, IS(A)),(tock, IS(A))}

Notice that the use of set containment, rather than equality, in the definition of con-
sistency allows an open record to be used even when it stores additional premethods
than those required by the recursive assumptions of others. Informally, we can think of
the consistency computation as a form of record width and permutation subtyping that
treats constraints on self parameters specially.

Late Typing. Once open records have been closed into ordinary mu-types, typecheck-
ing method calls can proceed as in LANGMU using standard typing rules for unfolding,
record projection, and function application. A common pattern in ISOLATE is to close
an open record “late” (right before a method is invoked) rather than “early” (immedi-
ately when a record is created). We introduce the following abbreviation, used on lines
17 and 18, to facilitate this pattern (note that we could use a let-binding for the close

expression, if needed, to avoid duplicating effects):

e# f(e′) � (unfold (close e)).f(close e)(e′)

We refer to this pattern of typechecking method invocations as “late typing,” hence, the
name ISOLATE to describe our extension of a standard isorecursive type system. The
crucial difference between ISOLATE and LANGMU is the close expression, which
generalizes the traditional fold expression while still being easy to implement. The
simple set containment computation can be viewed as a way of inferring the mu-type
instantiations that are required in the FSUBREC encodings of our examples. As a result,
ISOLATE is able to make do with isorecursive types while still allowing premethods to
be loosely mixed together.

Extension: Unbounded Polymorphism. The operation for closing records of premeth-
ods constitutes the main custom typing rule beyond LANGMU. For convenience, our
formulation also includes (unbounded) parametric polymorphism. In particular, lines
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19 val wrap :: all A,B,C,C’. (C->C’) -> (A->B->C) -> (A->B->C’)

20 let wrap A B C C’ g f this x = g (f this x)

21

22 type OpenTickerVol =

23 { tick: (A:Tock(A)) => int -> str

24 ; tock: (A:Tick(A)) => int -> str

25 ; loud: (A:{}) => unit -> bool }

26

27 type TickerVol =

28 mu A. { tick, tock : A -> int -> str ; loud : A -> unit -> bool }

29

30 val louderClose :: OpenTickerVol -> TickerVol

31 let louderClose ticker =

32 let exclaim s = "! " ++ s in

33 let o1 = close normalTicker in

34 let o2 = unfold o1 in

35 fold TickerVol

36 { tick = wrap _ _ exclaim (o2.tick)

37 ; tock = wrap _ _ exclaim (o2.tock)

38 ; loud = \_. \_. true }

39

40 louderClose(quietTicker) $ tick(2) -- "! tick ! ! tick ! ! "

41 louderClose(normalTicker) $ tick(2) -- "! tick ! tock ! tick ! tock ! "

Fig. 3. ISOLATE Example (Part 2)

19 and 20 of Figure 3 show how to use parametric polymorphism to define a generic
wrap function, like we saw in FSUBREC.

The rest of the example in Figure 3 demonstrates a noteworthy aspect of combin-
ing late typing with message interposition. Recall that in FSUBREC, premethods had
to be instantiated with particular mu-types before wrapping (cf. the ticker3 definition
in §2.3). Using only ordinary unbounded universal quantification, however, there is no
way to instantiate a pre-type in ISOLATE. If trying to wrap record of mutually consis-
tent premethods, the same result can be achieved by first closing the open object into a
closed one described by a mu-type (line 33), unfolding it (line 34), and then using un-
bounded polymorphism to wrap its methods (lines 35 through 38). The louderClose

function abstracts over these operations, taking an open ticker object as input and pro-
ducing a closed ticker object as output. Therefore, we use unfold rather than close

(signified by $ rather than #) to use the resulting objects on lines 40 and 41.

Extension: Abstracting over Premethods. The previous example demonstrates how
to wrap methods using unbounded polymorphism and late typing, but as with the cor-
responding examples in FSUBREC, the approach does not help with truly wrapping
premethods. If we wish to do so, we can extend ISOLATE with an additional rule that
allows pre-types, rather than just universally quantified types, to be instantiated with
type arguments. As we will discuss, this rule offers a version of the FSUBREC rule
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42 val wrapTick :: all B,C,C’. (C -> C’) ->

43 ((A:Tick(A)) => B -> C) -> ((A:Tick(A)) => B -> C’)

44 val wrapTock :: all B,C,C’. (C -> C’) ->

45 ((A:Tock(A)) => B -> C) -> ((A:Tock(A)) => B -> C’)

46

47 let wrapTick B C C’ g f this x = g (f[A] this x)

48 let wrapTock B C C’ g f this x = g (f[A] this x)

49

50 val louder :: OpenTickerVol -> OpenTickerVol

51 let louder ticker =

52 let exclaim s = "! " ++ s in

53 { tick = wrapTock _ _ _ exclaim (ticker.tick)

54 ; tock = wrapTick _ _ _ exclaim (ticker.tock)

55 ; loud = true_ }

56

57 let (t1, t2, t3) = (louder quietTicker, louder normalTicker, louder t2)

58

59 t1 # tick(2) -- "! tick ! ! tick ! ! "

60 t2 # tick(2) -- "! tick ! tock ! tick ! tock ! "

61 t3 # tick(2) -- "! ! tick ! ! tock ! ! tick ! ! tock ! ! "

Fig. 4. ISOLATE Example (Part 3)

for type instantiations that is limited to type variables and, hence, does not require a
separate subtyping relation and equirecursive treatment types in order to reason about.

The extended system allows abstracting over premethods but requires code duplica-
tion, as in FSUBREC, for different pre-types. Notice that in the definitions of wrapTick
and wrapTock (lines 42 through 48 of Figure 4), the extended system allows the
premethod arguments f to be instantiated with the type arguments A. Making use of
these wrapper functions allows us to define a louder function (lines 50 through 55)
that, unlike louderClose, returns open objects. As a result, the expressions on lines
59 through 61 use the late typing form of method invocation.

Remarks. It is worth noting that the two extensions discussed, beyond the close ex-
pression, enable open object update in ISOLATE. Recall that closed objects correspond
to ordinary mu-types, so traditional examples of closed object update work in ISOLATE

as they do in LANGMU and the limited fragment of FSUBREC that ISOLATE supports.
Open objects are not a substitute for closed objects, rather, they provide support for
patterns of programming with mutually recursive sets of premethods.

As we will see next, our formulation of ISOLATE is designed to support the FSUBREC

examples from §2.3 without offering all the power of the full system. Therefore, the third
row of the table in Figure 1 summarizes that ISOLATE fares as well as FSUBREC with
respect to the four properties of our running examples. A prototype implementation of
ISOLATE that typechecks the running example is available on the Web.2

2 https://github.com/ravichugh/late-types

https://github.com/ravichugh/late-types
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Expressions e ::= unit | x | λx :T .e | e1 e2 | ΛA.e | e[T]

| { f = e } | e.f | unfold e | fold T e

premethod and close | ςx :A<: T .e | close e

Types R,S,T ::= unit | { f:T } | S → T | A | μA.T | ∀A. T

pre-type | (A :S) ⇒ T

Type Environments Γ ::= − | Γ , x :T | Γ , A | Γ , A<: T

Fig. 5. ISOLATE Syntax

3.2 Syntax and Typechecking

We now present the formal definition of ISOLATE. Figure 5 defines the syntax of ex-
pressions and types, and Figure 6 defines selected typing rules; [10] provides addi-
tional definitions. We often write overbars (such as f :T ) to denote sequences (such as
{ f1:T1; . . . ; fn:Tn }).

Expressions. Expressions include the unit value, variables, lambdas, function applica-
tion, type abstractions, type application, record literals, and record projection. The type
abstraction and application forms are typical for a polymorphic lambda-calculus, where
type arguments have no computational significance. Expressions also include isorecur-
sive fold and unfold expressions that are semantically irrelevant, as usual. Unique
to ISOLATE are the premethod expression ςx :A<: T .e and the close e expression,
which triggers consistency checking in the type system but serves no computational
purpose. If we consider premethods to be another form of abstraction and close as a
more general form of fold, then, in the notation from earlier sections, the syntax of
ISOLATE programs can be regarded as a subset of L{},iso,Λ , the expression language
of LANGMU. The intended meaning of each expression form is standard. Instead of an
operational semantics, we will define an elaboration semantics for ISOLATE in §4.

Types. Types include the unit type, record types, function types, mu-types, univer-
sally quantified types, and type variables A, B, etc. Custom to ISOLATE is the pre-type
(A :S) ⇒ T used to describe premethods, where the type A of the self parameter is
bound in S (as defined by the type well-formedness rules in [10]). Type environments
including bounds A<: S for type variables that correspond to premethods and their pre-
types. By convention, we use the metavariable R to describe record types.

The typechecking judgment Γ � e : T concludes that expression e has type T in an
environment Γ where variables x1, . . . ,xn have types T1, . . . ,Tn, respectively. In addition
to standard typechecking rules defined in [10], Figure 6 defines four custom ISOLATE

rules that encode a restricted form of F-bounded polymorphism.
The T-PREMETHOD rule derives the pre-type (A :S) ⇒ T for ςx :A<: S.e by com-

bining the reasoning for type and value abstractions. The T-UNFOLDSELF rules allows
a self parameter, which is described by bounded type variables A, to be used at its upper
bound T . This allows premethod self parameters to be unfolded as if they were de-
scribed by mu-types (cf. lines 6, 7, and 8 of Figure 2). In order to facilitate abstracting
over premethods, the T-PREAPP rule allows a premethod to be instantiated with type
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Type Checking (custom rules) Γ � e : T

Γ , A<: S, x :A � e : T

Γ � ςx :A<: S.e : (A :S) ⇒ T
[T-PREMETHOD]

A<: T ∈ Γ Γ � e : A

Γ � unfold e : T
[T-UNFOLDSELF]

Γ � e : (A :S) ⇒ T B<: S[B/A] ∈ Γ
Γ � e[B] : B → T [B/A]

[T-PREAPP]

Γ � e : R GuarA(R)⊇ RelyA(R)

Γ � close e : μA.Coerce(GuarA(R))
[T-CLOSE]

GuarA({ f : (A :R) ⇒ S → T }) = ∪i {( fi, A → Si → Ti)}
RelyA({ f : (A :R) ⇒ S → T }) = ∪i RelyThisA(Ri)

RelyThisA({ f : A → S → T }) = ∪i {( fi, A → Si → Ti)}

Fig. 6. ISOLATE Typing

variable argument B if it has the same bound S (after substitution) as the type variable
A of the premethod. The effect of these two rules is to provide some of the subtypings
derived by the full subtyping relation of FSUBREC.

The premises of T-CLOSE require that (1) the types of all fields fi bound in R have
the form (A :Ri) ⇒ Si → Ti and (2) the set GuarA(R) contains all of the field-type pairs
in RelyA(R). The guarantee-set contains pairs of the form {( fi, A → Si → Ti)}, which
describes the type of the record assuming that all of the mutual constraints on self
are satisfied. The rely-set collects all of these mutual constraints by using the helper
procedure RelyThis to compute the constraints from each particular self type Ri.

To understand the mechanics of this procedure, let us consider a few examples. We
define three self types

S0 � { } S1(A) � { f:A → unit→ int } S2(A) � { f:A → unit→ bool }

that impose zero or one constraints on the receiver and three types that refer to them:

Rf � { f:(A :S1(A)) ⇒ unit→ int }

Rfg � { f:(A :S1(A)) ⇒ unit→ int; g:(A :S2(A)) ⇒ unit→ bool }

Rfh � { f:(A :S1(A)) ⇒ unit→ int; h:(A :S0) ⇒ unit→ str }

The first record, Rf, is consistent because its guarantee-set matches its rely-set exactly:

GuarA(Rf) = RelyA(Rf) = {(f,A → unit→ int)}

The second, Rfg, is inconsistent because the guarantee-set does not contain the rely-set:

GuarA(Rfg) = {(f,A → unit→ int),(g,A → unit→ bool)}
�⊇ RelyA(Rfg) = {(f,A → unit→ int),(f,A → unit→ bool)}
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In particular, the second constraint in the rely-set is missing from the guarantee-set.
In fact, the self types S1 and S2 can never be mutually satisfied, because they require
different return types for the same field. The last record, Rfh, is consistent because the
guarantee-set is allowed to contain fields beyond those required:

GuarA(Rfh) = {(f,A → unit→ int),(h,A → unit→ str)}
⊇ RelyA(Rfh) = {(f,A → unit→ int)}

As noted earlier, the consistency computation resembles a form of record width and
permutation subtyping implemented as set containment. In §4, we will make the con-
nection between this approach and proper subtyping in FSUBREC.

Object Update. ISOLATE can derive, for any record type R, the judgment

(ςthis :Self<: R.let y= e in this) :: (Self :R) ⇒ Self

for a premethod that, after some well-typed expression e, returns the original self param-
eter. Because ISOLATE provides no analog to T-UNFOLDSELF for folding and because
ISOLATE uses an isorecursive treatment of mu-types, the this variable is, in fact, the
only expression that can be assigned the type Self. As a result, traditional (closed)
object update examples require the use of mu-types, rather than pre-types, in ISOLATE.

4 Metatheory

We now show how to translate, or elaborate, ISOLATE source programs into the more
expressive target language FSUBREC. Our soundness theorem establishes that well-
typed programs in the source language translate to well-typed programs in the tar-
get language. The decidability of ISOLATE is evident; the primary difference beyond
LANGMU is the T-CLOSE rule, which performs a straightforward computation.

4.1 The FSUBREC Calculus

We saw several examples of programming in FSUBREC in §2.3. In [10], we formally
define the language and its typechecking rules. Our formulation closely follows stan-
dard presentations of equirecursive types [29] and F-bounded polymorphism [2], so we
keep the discussion here brief. The language of FSUBREC expressions is standard. No-
tice that there are no expressions for folding and unfolding recursive types, and there is
no close expression. The operational semantics can be found in the aforementioned
references. The language of FSUBREC types replaces the isorecursive mu-types of
ISOLATE with equirecursive mu-types, and adds bounded universal types ∀A<:S. T ,
where A is bound in S (in addition to T ). To reason about bounded type variables, type
environments Γ record assumptions A<: S. These assumptions are used by the subtyp-
ing rule S-TVAR that relates a type variable to its bound. The definitional equality of
recursive types and their unfoldings is crucial for discharging the subtyping obligation
in the second premise of the T-TAPP rule. As the soundness proof for the translation
makes clear, the ISOLATE rules T-UNFOLDSELF and T-TAPP are restricted versions



ISOLATE: A Type System for Self-recursion 277

Elaboration of Types �Γ � � T �

�− � = − (1)

�Γ , x :T � = �Γ �, x :� T � (2)

�Γ , A � = �Γ �, A<:top (3)

�Γ , A<: T � = �Γ �, A<: � T � (4)

� unit � = unit (5)

� { . . . ; fi:Ti; . . . } � = { . . . ; fi:� Ti �; . . . } (6)

� (A :S) ⇒ T � = ∀A<:� S �. A → � T � (7)

� S → T � = � S � → � T � (8)

� μA.T � = μA.� T � (9)

�∀A. T � = ∀A<:top. � T � (10)

� A � = A (11)

Fig. 7. Translation of Environments and Types

of these two FSUBREC rules. Our soundness proof does not appeal to subtyping for
function, recursive, or universal types. We include the rules S-ARROW, S-AMBER, and
S-KERNEL-ALL for handling these constructs anyway, however, for reference. Part of
the appeal of ISOLATE is that this extra machinery need not be implemented.

4.2 Elaboration from ISOLATE to FSUBREC

The translation from ISOLATE expressions and typing derivations to FSUBREC pro-
grams is mostly straightforward. Figure 7 defines the translation of ISOLATE types and
type environments recursively, where ISOLATE pre-types are translated to FSUBREC

bounded universals.
We write D :: Γ � e : T to give the name D to an ISOLATE derivation of the given

judgment. In Figure 8, we define a function �D � that produces an expression e′ in
the target language, FSUBREC. We use this translation to define the semantics for the
source language, rather than specifying an operational semantics directly. Most of the
translation rules are straightforward, recursively invoking translation on subderivations.
Because the expression unfold e (respectively, fold T e) is intended to reduce directly
to e, as usual, a derivation by the T-UNFOLD (respectively, T-FOLD) rule is translated
to �D1 �, the translation of the derivation of e.

The key aspects of the translation relate to the custom ISOLATE rules. Premethods
correspond to polymorphic functions in the target calculus (T-PREMETHOD), so ap-
plying them to type variable arguments corresponds to type instantiation (T-PREAPP).
Self parameters are described by bounded type variables in the target, so unfolding them
has no computational purpose (T-UNFOLDSELF). The last noteworthy aspect is how to
translate T-CLOSE derivations of expressions close e. Motivated by the FSUBREC en-
codings from §2, the idea is to create a closed record of methods by instantiating all of
the (universally quantified) functions in the (translated) record with the type parameter
μA.Coerce(GuarA(�R �)), a mu-type that corresponds to the (converted and translated)
guarantee-set of the record. Notice that every time an open record is used in a method
invocation expression e# f(e′), a new closed record is created in the target program.
This captures the essence of late typing in ISOLATE.
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Elaboration from ISOLATE to FSUBREC � D :: Γ � e : T � = e′

[T-UNIT]
� D :: Γ � unit : unit � = unit

[T-VAR]
x :T ∈ Γ

� D :: Γ � x : T � = x

[T-RECD]
for 1 ≤ i ≤ n, Di :: Γ � ei : Ti

� D :: Γ � { f = e } : { f:T } � = { f1 = � D1 �; · · · ; fn = � Dn � }

[T-PROJ]
D1 :: Γ � e : { . . . ; f:T ; . . . }

� D :: Γ � e.f : T � = � D1 �.f

[T-FUN]
D1 :: Γ , x :S � e : T

� D :: Γ � λx :S.e : S → T � = λx :S.� D1 �

[T-APP]
D1 :: Γ � e1 : S → T D2 :: Γ � e2 : S

� D :: Γ � e1 e2 : T � = � D1 � � D2 �

[T-TFUN]
D1 :: Γ , A � e : T

� D :: Γ � ΛA.e : ∀A. T � = ΛA.� D1 �

[T-TAPP]
D1 :: Γ � e : ∀A. T

� D :: Γ � e[S] : T [S/A] � = � D1 �[� S �]

[T-FOLD]
T = μA.S D1 :: Γ � e : S[T/A]

� D :: Γ � fold T e : T � = � D1 �

[T-UNFOLD]
T = μA.S D1 :: Γ � e : T

� D :: Γ � unfold e : S[T/A] � = � D1 �

[T-UNFOLDSELF]
A<: T ∈ Γ D1 :: Γ � e : A

� D :: Γ � unfold e : T � = � D1 �

[T-PREMETHOD]
D1 :: Γ , A<: S, x :A � e : T

� D :: Γ � ςx :A<: S.e : (A :S) ⇒ T � = ΛA.λx :A.� D1 �

[T-PREAPP]
D1 :: Γ � e : (A :S) ⇒ T B<: S[B/A] ∈ Γ

� D :: Γ � e[B] : B → T [B/A] � = � D1 �[B]

[T-CLOSE]

D1 :: Γ � e : R GuarA(R)⊇ RelyA(R)
T = μA.Coerce(GuarA(R))

� D :: Γ � close e : T � = { f1 = (� D1 �.f1)[� T �]; . . . }

Fig. 8. Elaboration Semantics for ISOLATE
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4.3 Soundness

We now justify the correctness of our translation. Notice that because the syntactic
forms of ISOLATE are so similar to those in FSUBREC, there is little value in defining
an operational semantics for ISOLATE directly and then “connecting” it to FSUBREC.
Instead, we use the translation to define the semantics for ISOLATE. As a result, the
correctness theorem we prove needs only to state that the result of translating valid
ISOLATE derivations are well-typed FSUBREC programs.

Theorem 1 (Type Soundness). If D :: Γ � e : T , then �Γ � � �D � : �T �.

Proof. We provide the full details of the proof in [10]. Many of the cases proceed by
straightforward induction. The case for T-CLOSE, which converts open records into
closed records described by ordinary mu-types, is the most interesting. As discussed
in §3, the key observation is that rely- and guarantee-sets can be interpreted as record
types. The fact that the guarantee-set contains the rely-set can be used to argue how, with
the help of definitional equality of equirecursive types, the necessary record subtypings
hold via the record subtyping rule, S-RECD. As mentioned earlier, the reasoning for
rules T-UNFOLDSELF and T-PREAPP appeal to T-SVAR and T-TAPP, respectively, in
FSUBREC, providing a limited form of F-bounded polymorphism in ISOLATE.

5 Discussion

Our formulation of ISOLATE is a restricted version of FSUBREC that enables simple
typechecking for loosely coupled premethods in a setting without explicit recursion. To
conclude, we first discuss some related work that has not already been mentioned, and
then we describe several ways in which future work might help to further extend the
expressiveness of our system.

5.1 Related Work

Mixin and Recursive Modules. F-bounded polymorphism employs several traditional
type theoretic constructs and is widely used to encode object-oriented programming
patterns. Somewhat different mechanisms for combining and reusing implementations
include traits, mixins, and mixin modules, which have been studied in both untyped
(e.g. [4]) and typed (e.g. [14,1,19,15]) settings. Generally, these approaches distinguish
expressions either as components that may get mixed in to other objects and objects
which are constructed as the result of such operations. Various approaches are then used
to control when it is safe to combine functionality with combinators such as sum, delete,
rename, and override. Yet more expressive systems combine these approaches with full-
fledged module systems and explicit recursion as found in ML (e.g. [33,13,32,21]).

Although all of the above approaches are more expressive than ISOLATE (which
supports only sum), they rely on semantic features beyond those found in a strict lambda-
calculus with records. For example, the CMS calculus [1] relies on call-by-name se-
mantics to avoid ill-founded recursive definitions. The mixin operators of CMS can
be brought to a call-by-value setting, but this requires tracking additional information
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(in the form of dependency graphs) in mixin signatures [19]. In contrast, ill-founded
recursion is not a concern for (call-by-value) ISOLATE; because late typing is restricted
to premethods in records, the function types of these fields establish that they bind
syntactic values (namely, functions). Furthermore, the target of the translation in [19]
(Boudol’s recursive records [3]) explicitly includes letrec and uses non-standard se-
mantics for records. In contrast, the (standard) semantics of FSUBREC does not include
recursive definitions. Instead, our translation relies on F-bounded quantification to tie
the knot. As a result, our formulation of mixin composition can be applied to languages
without explicit recursion (such as JavaScript, Python, and Ruby). In the future, we plan
to investigate whether additional mixin operators can be supported for such languages.

Row Polymorphism. Row polymorphism [35,18,31] is an alternative to record sub-
typing where explicit type variables bind extra fields that are not explicitly named. By
ensuring disjointness between named fields in a record and those described by a type
variable, row polymorphism allows functions to be mixed in to different records using
record concatenation operators. It is not clear how row polymorphism on its own would
help, however, in a language without fix. We might start by writing

tick :: ∀ρ1.μA.{tock:A → int→ str; ρ1 }→ int→ str

(and similarly for other premethods), but ρ1 cannot be instantiated with a type that
mentions A, as required for mutual recursion, because it is not in scope. The fact that
row polymorphism is often used as an alternative to subtyping notwithstanding, simply
adding F-bounded polymorphism to this example does not seem to help matters either.

Coeffects. Our special treatment of premethods can be viewed as function types that
impose constraints on the context (in our case, self parameters) using a specification
language besides that of the object type language. Several proof theories have been
proposed to explicitly constrain the behavior of a program with respect to its context,
for example, using modal logics [26] and coeffects [27]. These systems provide rather
general mechanisms for defining and describing the notions of context, and they have
been applied to dynamic binding structure, staged functional programming, liveness
tracking, resource usage, and tracking cache requirements for dataflow programs. It
would be interesting to see whether these approaches can be applied to our setting of
objects and mutually recursive definitions.

Closed Recursion. Whereas we have focused on patterns of recursion for a language
without fix, other researchers have studied systems with closed recursion. In particu-
lar, there have been several efforts to admit more well-behaved programs than allowed
by ML-style let-polymorphism [11]. The system of polymorphic recursion [25] allows
recursive calls to be instantiated nonuniformly, but the additional expressive power re-
sults in a system that is only semi-decidable. In between these two systems is Trevor
Jim’s proposal based on principal typings [22]. Because the notion of principal typings
views the typing environment as an output of derivations, rather than an input, one can
think of the environment as a set of constraints for the derived type of an expression. It
could be interesting to see whether this approach can be adapted to a lambda-calculus
extended with records.
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5.2 Future Work and Conclusion

Our formulation is meant to emphasize that a small, syntactic variation on isorecursive
mu-types can capture a set of desired usage patterns. In the future, we plan to study how
additional language features — beyond the core of lambdas and records in ISOLATE —
interact with late typing. Important features include reference types, existential types,
type operators for supporting user-defined types and interfaces [29], and record con-
catenation à la Wand, Remy, Mitchell, et al. [18].

Similar to how mutually recursive functions can be combined through self, recursive
functions can also be combined through the heap. This pattern, sometimes referred
to as “backpatching” or “Landin’s knot,” appears in imperative languages as well as
module systems for functional languages [12,13]. We are studying how to adapt the
idea of late typing to the setting of lambdas and references with the goal of, as in this
paper, typechecking limited patterns of mutual recursion with relatively lightweight
mechanisms. Overall, because languages support various kinds of (implicit) recursion
through the heap and through self parameters, we believe that late typing may be useful
for typechecking common programming patterns in a relatively lightweight way.
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