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Abstract. In this paper we introduce new primitives to authenticate
computation on data expressed as elements in (cryptographic) groups.
As for the case of homomorphic authenticators, our primitives allow to
verify the correctness of the computation without having to know of the
original data set. More precisely, our contributions are two-fold.

First, we introduce the notion of linearly homomorphic authenticated
encryption with public verifiability and show how to instantiate this prim-
itive (in the random oracle model) to support Paillier’s ciphertexts. This
immediately yields a very simple and efficient (publicly) verifiable com-
putation mechanism for encrypted (outsourced) data based on Paillier’s
cryptosystem.

As a second result, we show how to construct linearly homomorphic
signature schemes to sign elements in bilinear groups (LHSG for short).
Such type of signatures are very similar to (linearly homomorphic) struc-
ture preserving ones, but they allow for more flexibility, as the signature
is explicitly allowed to contain components which are not group ele-
ments. In this sense our contributions are as follows. First we show a
very simple construction of LHSG that is secure against weak random
message attack (RMA). Next we give evidence that RMA secure LHSG
are interesting on their own right by showing applications in the con-
text of on-line/off-line homomorphic and network coding signatures. This
notably provides what seems to be the first instantiations of homomor-
phic signatures achieving on-line/off-line efficiency trade-offs. Finally, we
present a generic transform that converts RMA-secure LHSG into ones
that achieve full security guarantees.

1 Introduction

Homomorphic signatures allow to validate computation over authenticated data.
More precisely, a signer holding a dataset {mi}i=1,...,t can produce corresponding
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signatures σi = Sign(sk,mi) and store the signed dataset on a remote server.
Later the server can (publicly) compute m = f(m1, . . . ,mt) together with a
(succinct) valid signature σ on it. A keynote feature of homomorphic signature
is that the validity of σ can be verified without needing to know the original
messages m1, . . . ,mt. Because of this flexibility homomorphic signatures have
been investigated in several settings and flavors. Examples include homomorphic
signatures for linear and polynomial functions [9,8], redactable signatures [26],
transitive signatures and more [32,36]. In spite of this popularity, very few real-
izations of the primitive encompass the very natural case where the computation
one wants to authenticate involves elements belonging to typical cryptographic
groups (such as, for instance, groups of points over certain classes of elliptic
curves, or groups of residues modulo a composite integer).

Our Contribution. In this paper we put forward new tools that allow to au-
thenticate computation on elements in (cryptographic) groups. In this sense our
contributions are two-fold. First, we define a new primitive that we call Linearly
Homomorphic Authenticated Encryption with Public Verifiability (LAEPuV for
short). Informally, this primitive allows to authenticate computation on (out-
sourced) encrypted data, with the additional benefit that the correctness of the
computation can be publicly verified. The natural application of this primitive is
the increasingly relevant scenario where a user wants to store (encrypted) data
on the cloud in a way such that she can later delegate the cloud to perform com-
putation on this data. As a motivating example, imagine that a teacher wants
to use the cloud to store the grades of the homeworks of her students. To do
so she can create a file identifier fid for each class (e.g. Cryptography - Spring
2014), sign each record tied with the corresponding fid and store everything of-
fline. There are two problems with this solution. First, if the teacher wants to
compute statistics (e.g. average grades) on these records she has to download
all the data locally. Second, since data is stored in clear, outsourcing it offline
might violate the privacy of students. LAEPuV solves both these issues, as it
allows to delegate (basic) computations (i.e. linear functions) on encrypted data
in a reliable and efficient way. In particular, it allows to verify the correctness
of the computation without needing to download the original ciphertexts locally.
Moreover, as for the case of homomorphic signatures, correctness of the compu-
tation can be publicly verified via a succinct tag whose size is independent of the
size of the outsourced dataset.

We show an (efficient) realization of the primitive (in the random oracle
model) supporting Paillier’s ciphertexts. At an intuitive level our construction
works by combining Paillier’s encryption scheme with some appropriate addi-
tively homomorphic signature scheme. Slightly more in detail, the idea is as
follows. One first decrypts a “masking” of the ciphertext C and then signs the
masked plaintext using the linearly homomorphic signature. Thus we use the ho-
momorphic signature to authenticate computations on ciphertexts by basically
authenticating (similar) computations on the masked plaintexts. The additional
advantage of this approach is that it allows to authenticate computation on Pail-
lier’s ciphertexts while preserving the possibility to re-randomize the ciphertexts.
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This means, in particular, that our scheme allows to authenticate computation
also on randomized versions of the original ciphertexts1.

This result allows to implement a very simple and efficient (publicly) verifi-
able computation mechanism for encrypted (outsourced) data based on Paillier’s
cryptosystem [34]. Previous (efficient) solutions for this problem rely on linearly
homomorphic structure preserving signatures (LHSPS, for short) [30] and, as
such, only supported cryptosystems defined over pairing-friendly groups. Since,
no (linearly homomorphic) encryption scheme supporting exponentially large
message spaces is known to exist in such groups, our construction appears to be
the first one achieving this level of flexibility.

Beyond this efficiency gain, we stress that our approach departs from the
LHSPS-based one also from a methodological point of view. Indeed, the latter
authenticates computation by signing outsourced ciphertexts, whereas we sign
(masked versions of) the corresponding plaintexts. This is essentially what buy
us the possibility of relying on basic linearly homomorphic signatures, rather
than on, seemingly more complicate, structure preserving ones. On the negative
side, our solutions require the random oracle, whereas the only known LHSPS-
based construction works in the standard model.

As additional byproduct of this gained flexibility, we show how to generalize
our results to encompass larger classes of encryption primitives. In particular, we
show that our techniques can be adapted to work using any encryption scheme,
with some well defined homomorphic properties, as underlying encryption prim-
itive. Interestingly, this includes many well known linearly homomorphic encryp-
tion schemes such as [25,33,29].

Signing Elements in Bilinear Groups. As a second main contribution of
this paper, we show how to construct a very simple linearly homomorphic sig-
nature scheme to sign elements in bilinear groups (LHSG for short). Such type
of signatures are very similar to (linearly homomorphic) structure preserving
ones, but they allow for more flexibility, as the signature is explicitly allowed to
contain components which are not group elements (and thus signatures are not
necessarily required to comply with the Groth-Sahai famework). More in detail,
our scheme is proven secure against random message attack (RMA)2 under a
variant of the Computational Diffie-Hellman assumption introduced by Kunz-
Jacques and Pointcheval in [28]. In this sense, our construction is less general
(but also conceptually simpler) than the linearly homomorphic structure pre-
serving signature recently given in [30]. Also, the scheme from [30] allows to sign
vectors of arbitrary dimension, while ours supports vectors composed by one
single component only.

1 We stress however that this does not buy us privacy with respect to the functionality,
i.e. the derived (authenticated) ciphertexts are not necessarily indistinguishable from
freshly generated (authenticated) ones.

2 Specifically, by random message security here we mean that the unforgeability guar-
antee holds only with respect to adversaries that are allowed to see signatures cor-
responding to messages randomly chosen by the signer.
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Interestingly, we show that this simple tool has useful applications in the con-
text of on-line/off-line (homomorphic) signatures. Very informally, on-line/off-
line signatures allow to split the cost of signing in two phases. An (expensive)
offline phase that can be carried out without needing to know the message m
to be signed and a much more efficient on-line phase that is done once m be-
comes available. In this sense, on-line/off-line homomorphic signature could bring
similar efficiency benefits to protocols relying on homomorphic signatures. For
instance, they could be used to improve the overall efficiency of linear network
coding routing mechanisms employing homomorphic signatures to fight pollution
attacks3.

We show that RMA-secure LHSG naturally fit this more demanding on-
line/off-line scenario. Specifically, we prove that if one combines a RMA-secure
LHSG with (vector)Σ protocols with some specific homomorphic properties, one
gets a fully fledged linearly homomorphic signature achieving a very efficient on-
line phase. Moreover, since the resulting signature scheme supports vectors of
arbitrary dimensions as underlying message space, our results readily generalize
to the case of network coding signatures [7]. More concretely, by combining our
RMA-secure scheme together with (a variant of) Schnorr’s identification proto-
col we get what seem to be the first constructions of secure homomorphic and
network coding signatures offering online/offline efficiency tradeoffs both for the
message and the file identifier.

To complete the picture, we provide an efficient and generic methodology to
convert RMA-secure LHSG into ones that achieve full security We stress that
while similar transforms were known for structure preserving signatures (e.g.
[17]), to our knowledge this is the first such transform for the case of linearly
homomorphic signatures in general.

Other Related Work. Authenticated Encryption (AE) allows to simultane-
ously achieve privacy and authentication. In fact AE is considered to be the
standard for symmetric encryption, and many useful applications are based on
this primitive. Formal definitions for (basic) AE where provided by Bellare and
Namprempre in [6]. More closely related to our setting is the notion of homomor-
phic authenticated encryption recently proposed by Joo and Yun in [27]. With
respect to ours, their definitions encompass a wider class of functionalities, but
do not consider public verifiability.

Computationally Sound proofs. In the random oracle model, the problem
of computing reliably on (outsourced) encrypted data can be solved in principle
using Computationally Sound (CS) proofs [31]. The advantage of this solution,
with respect to ours, is that it supports arbitrary functionalities. On the other
hand, it is much less efficient as it requires the full machinery of the PCP theo-
rem. Moreover, composition in CS proofs is quite complicate to achieve, whereas

3 This is because the sender could preprocess many off-line computations at night or
when the network traffic is low and then use the efficient online signing procedure
to perform better when the traffic is high.
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it comes for free in our solution, as the outputs of previous computations can
always be used as inputs for new ones.

Linearly homomorphic signatures. The concept of homomorphic signature
scheme was originally introduced in 1992 by Desmedt [18], and then refined by
Johnson, Molnar, Song, Wagner in 2002 [26]. Linearly homomorphic signatures
were introduced in 2009 by Boneh et al. [7] as a way to prevent pollution at-
tacks in network coding. Following [7] many other works further explored the
notion of homomorphic signatures by proposing new frameworks and realizations
[23,3,9,8,14,4,15,21,5,13,16]. In the symmetric setting constructions of homomor-
phic message authentication codes have been proposed by [7,24,11,12].

Recently Libert et al. [30] introduced and realized the notion of Linearly Ho-
momorphic Structure Preserving signatures (LHSPS for short). Informally LH-
SPS are like ordinary SPS but they come equipped with a linearly homomorphic
property that makes them interesting even beyond their usage within the Groth
Sahai framework. In particular Libert et al. showed that LHSPS can be used
to enable simple verifiable computation mechanisms on encrypted data. More
surprisingly, they observed that linearly homomorphic SPS (generically) yield
efficient simulation sound trapdoor commitment schemes [22], which in turn
imply non malleable trapdoor commitments [19] to group elements.

On-Line/Off-Line Signatures. On-Line/Off-Line digital signature were in-
troduced by Even, Goldreich and Micali in [20]. In such schemes the signature
process consists of two parts: a computationally intensive one that can be done
Off-Line (i.e. when the message to be signed is not known) and a much more
efficient online phase that is done once the message becomes available. There
are two general ways to construct on-line/off-line signatures: using one time
signatures [20] or using chameleon hash [35].

In [10] Catalano et al., unified the two approaches by showing that they can
be seen as different instantiations of the same paradigm.

2 Preliminaries and Notation

We denote with Z the set of integers, with Zp the set of integers modulo p. An
algorithm A is said to be PPT if it’s modelled as a probabilistic Turing machine

that runs in polynomial time in its inputs. If S is a set, then x
$← S denotes the

process of selecting one element x from S uniformly at random. A function f
is said to be negligible if for all polynomial p there exists n0 ∈ N such that for
each n > n0, |f(n)| < 1

p(n) .

Computational Assumptions. We start by recalling a couple of relevant com-
putational assumptions. Let G be a finite (multiplicative) group of prime order
p. The 2-out-of-3 Computational Diffie-Hellman assumption was introduced by
Kunz-Jacques and Pointcheval in [28] as a relaxation of the standard CDH as-
sumption. It is defined as follows.
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Definition 1 (2-3CDH). We say that the 2-out-of-3 Computational Diffie-
Hellmann assumption holds in G if, given a random generator g ∈ G, there exists

no PPT A that on input (g, ga, gb) (for random a, b
$← Zp) outputs h, h

ab (h �= 1)
with more than negligible probability.

Also, we recall the Decisional Composite Residuosity Assumption, introduced
by Paillier in [34].

Definition 2 (DCRA). We say that the Decisional composite residuosity as-
sumption (DCRA) holds if there exists no PPT A that can distinguish between
a random element from Z

∗
N2 and one from the set {zN |z ∈ Z

∗
N2} (i.e. the set of

the N -th residues modulo N2), when N is the product of two random primes of
proper size.

3 (Publicly) Verifiable Delegation of Computation on
Outsourced Ciphertext

In this section, we introduce a new primitive that we call Linearly Homomorphic
Authenticated Encryption with Public Verifiability (LAEPuV). Informally, this
notion is inspired by the concept of homomorphic authenticated encryption,
introduced by Joo and Yun [27]. Important differences are that our definition4

focuses on linear functions and explicitly requires public verifiability.
Next, we provide an instantiation of this primitive supporting Paillier’s scheme

as the underlying encryption mechanism.
Additionally, in this and the following sections, we adopt the following con-

ventions

– The set F of supported functionalities, is the set of linear combinations of
elements of the group. Thus each function f ∈ F can be uniquely expressed
as f(m1, . . . ,mk) =

∏k
i=1 m

αi

i , and therefore can be identified by a proper
vector (α1, . . . , αk) ∈ Z

k.
– We identify each dataset by a string fid ∈ {0, 1}∗, and use an additional

argument i ∈ {1, . . . , n} for the signing/encryption algorithm to specify that
the signed/encrypted message can be used only as the i-th argument for each
function f ∈ F .

Definition 3 (LAEPuV). A LAEPuV scheme is a tuple of 5 PPT algorithms
(AKeyGen, AEncrypt, ADecrypt, AVerify, AEval) such that:

– AKeyGen(1λ, k) takes as input the security parameter λ, and an upper
bound k for the number of messages encrypted in each dataset. It outputs a
secret key sk and a public key vk (used for function evaluation and verifica-
tion); the public key implicitly defines a message space M which is also a
group, a file identifier space D and a ciphertext space C.

4 For lack of space the formal definition is provided in the full version of this paper.
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– AEncrypt(sk, fid, i,m) is a probabilistic algorithm which takes as input the
secret key, an element m ∈ M, a dataset identifier fid, an index i ∈ {1, . . . , k}
and outputs a ciphertext c.

– AVerify(vk, fid, c, f) takes as input the public key vk, a ciphertext c ∈ C, an
identifier fid ∈ D and f ∈ F . It return 1 (accepts) or 0 (rejects).

– ADecrypt(sk, fid, c, f) takes as input the secret key sk, a ciphertext c ∈ C,
an identifier fid ∈ D and f ∈ F and outputs m ∈ M or ⊥ (if c is not
considered valid).

– AEval(vk, f, fid, {ci}i=1...k) takes as input the public key vk, an admissible
function f in its vector form (α1, . . . , αk), an identifier fid, a set of k ci-
phertexts {ci}i=1...k and outputs a ciphertext c ∈ C. Note that this algorithm
should also work if less than k ciphertexts are provided, as long as their re-
spective coefficients in the function f are 0, but we don’t explicitly account
this to avoid heavy notation.

The correctness conditions are the following:

– For any (sk, vk) ← AKeyGen(1λ, k) honestly generated keypair, any m ∈
M, any dataset identifier fid and any i ∈ {1, . . . , k}, with overwhelming
probability

ADecrypt(sk, fid,AEncrypt(sk, fid, i,m), ei) = m

where ei is the i-th vector of the standard basis of Zk.
– For any (sk, vk) ← AKeyGen(1λ, k) honestly generated keypair, any c ∈ C

AVerify(vk, fid, c, f) = 1 ⇐⇒ ∃m ∈ M : ADecrypt(sk, fid, c, f) = m

– Let (sk, vk) ← AKeyGen(1λ, k) be an honestly generated keypair, fid any
dataset identifier, c1, . . . , ck ∈ C any tuple of ciphertexts such that mi =
ADecrypt(sk, fid, ci, fi). Then, for any admissible function f = (α1, . . . , αk)
∈ Z

k, with overwhelming probability

ADecrypt(sk, fid,AEval(vk, f, fid, {ci}i=1...k),

k∑

i=0

αifi) = f(m1, . . . ,mk)

Security definitions for LAEPuV are easy to derive, so, for lack of space, are
omitted. We refer the reader to the full version of this paper.

3.1 An Instantiation Supporting Paillier’s Encryption

Let (HKeyGen,HSign,HVerify,HEval) be a secure5 linearly homomorphic
signature scheme whose message space is ZN (where N is the product of two
distinct (safe) primes). Moreover, let H be a family of collision resistant hash
functions (whose images can be interpreted as elements of Z∗

N2). Then we can
construct a LAEPuV scheme as follows.
5 Again, for lack of space, security definition for linearly homomorphic signatures is
provided in the full version of the paper.
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AKeyGen(1λ, k): Choose two primes p, q of size λ/2, set N ← pq and choose
a random element g ∈ Z

∗
N2 of order N . Run6 HKeyGen(1λ, k,N) to obtain

a signing key sk′ and a verification key vk′. Pick a hash function H ← H.
Return vk ← (vk′, g,N,H) as the public verification key and sk = (sk′, p, q)
as the secret signing key.

AEncrypt(sk,m, fid, i): Choose random β ← Z
∗
N2 , compute C ← gmβN

mod N2. Set R ← H(fid||i), and use the factorization of N to com-
pute (a, b) ∈ ZN × Z

∗
N such that gabN = RC mod N2. Compute σ ←

HSign(sk′, fid, i, a) and return c = (C, a, b, σ).
AVerify(vk, fid, c, f): Parse c = (C, a, b, σ) and vk ← (vk′, g,N,H), then check

that:

HVerify(vk′, fid, a, f, σ) = 1

gabN = C

k∏

i=1

H(fid||i)fi mod N2

If both the above equations hold output 1, else output 0.
ADecrypt(sk, fid, c, f): If AVerify(vk, fid, c, f) = 0, return ⊥. Otherwise, use

the factorization of N to compute (m,β) such that gmβN = C mod N2 and
return m.

AEval(vk, α, fid, c1, . . . , ck): Parse α = (α1, . . . , αk) and ci = (Ci, ai, bi, σi), set

C ←
k∏

i=i

Cαi

i mod N2, a ←
k∑

i=i

aiαi mod N,

b ←
k∏

i=i

bαi

i mod N2, σ ← HEval(vk′, fid, f, {σi}i=1,...,k)

and return c = (C, a, b, σ).

Remark 1. (Supporting Datasets of Arbitrary Size). In the construction
above the number k of ciphertexts supported by each dataset needs to be fixed
once and for all at setup time. This might be annoying in practical scenar-
ios where more flexibility is preferable. We remark, that in the random oracle
model, the scheme can be straightforwardly modified in order to remove this
limitation. The idea would be to use the random oracle also in the underlying
(homomorphic) signature scheme (see the full version of this paper for details)
More precisely, rather than publishing the hi as part of the public key, one com-
putes different hi’s on the fly for each dataset by setting hi = H ′(fid, i)(where
H ′ is some appropriate random oracle). Slightly more in detail, the elements from
dataset fid are then authenticated by replacing the hi with hfid,i = H ′(fid, i).

6 Notice that the signature scheme must support ZN as underlying message space. This
is why we give N to the HKeyGen algorithm as additional parameter. Note that,
this means that, in general, the signature algorithm cannot not use the factorization
of N as part of its private key.
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Using this simple trick brings the additional benefit that the public key can be
reduced to constant size.

The security of the scheme is provided by the following theorems (whose proofs
appear in the full version).

Theorem 1. Assuming that the DCRA holds, if (HKeyGen,HSign,HVerify,
HEval) is a secure linearly homomorphic signature scheme for messages in ZN

and H is a random oracle, the scheme described above is LH-IND-CCA secure.

Theorem 2. If Σ = (HKeyGen,HSign,HVerify,HEval) is a secure lin-
early homomorphic signature scheme for messages in ZN then the scheme de-
scribed above is LH-Uf-CCA secure.

Remark 2. (Instantiating the underlying signature scheme). As a con-
crete instantiation of the linearly homomorphic signature scheme (HKeyGen,
HSign,HVerify, HEval),one can use use a simple variant of the (Strong) RSA
based scheme from [15] adapted to use ZN as underlying message space, see the
full version for details.

3.2 A General Result

In this section we show how to generalize our results to support arbitrary en-
cryption schemes satisfying some well defined homomorphic properties.

In such schemes, the message, randomness and ciphertext spaces are assumed
to be finite groups, respectively denoted with M,R, C (the key spaces are treated
implicitly). To adhere with the notation used in the previous section, we will de-
note the operation overM additively and the ones overR and C multiplicatively.
We assume T to be an IND-CPA secure public key encryption scheme satisfying
the following additional properties:

– We require the group operation and the inverse of an element to be efficiently
computable over all groups, as well as efficient sampling of random elements.
The integer linear combinations are thus defined and computed by repeatedly
applying these operations.

– For any m1,m2 ∈ M, r1, r2 ∈ R, any valid public key pk it holds

Encpk(m1, r1) · Encpk(m2, r2) = Encpk(m1 +m2, r1 · r2)

– For any honest key pair (pk, sk) and any c ∈ C there exists m ∈ M and
r ∈ R such that Encpk(m, r) = c (i.e. the encryption function is surjective
over the group C). Moreover, we assume that such m and r are efficiently
computable given the secret key.

Now, let (HKeyGen,HSign,HVerify,HEval) be a secure linearly homo-
morphic signature scheme for elements in M, let H be a family of collision
resistant hash functions HK : {0, 1}∗ → C and let T = {Gen,Enc,Dec} be an
encryption scheme as above.

We construct a LAEPuV scheme as follows:
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AKeyGen(1λ, k): Run HKeyGen(1λ, k) to obtain a signing key sk′ and a
verification key vk′ and Gen(1λ) to obtain a public key pk and a secret key
sk. Pick a hash function H ← H. Return vk ← (vk′, pk, H) as the public
verification key and sk = (sk′, sk) as the secret key.

AEncrypt(sk,m, fid, i): Choose random r ← R, compute C ← Encpk(m, r)
and compute, using the secret key sk, m and r such that Encpk(m, r) =
H(fid||i). Compute σ ← HSign(sk′, fid, i,m + m) and return c = (C,m +
m, r · r, σ).

AVerify(vk, fid, c, f): Parse c = (C, a, b, σ) and vk ← (vk′, pk), then check that:

HVerify(vk′, fid, a, f, σ) = 1

Encpk(a, b) = C

k∏

i=1

H(fid||i)fi

If both the above equations hold output 1, else output 0.
ADecrypt(sk, fid, c, f): Parse c = (C, a, b, σ). If AVerify(vk, fid, c, f) = 0,

return ⊥. Otherwise, use the secret key sk to compute m ← Decsk(C)
AEval(vk, α, fid, c1, . . . , ck): Parse α = (α1, . . . , αk) and ci = (Ci, ai, bi, σi), set

C ←
k∏

i=i

Cαi

i , a ←
k∑

i=i

aiαi,

b ←
k∏

i=i

bαi

i , σ ← HEval(vk′, fid, f, {σi}i=1,...,k)

and return c = (C, a, b, σ).

Theorem 3. Assuming T is an is IND-CPA secure public key encryption
scheme satisfying the conditions detailed above, (HKeyGen, HSign, HVerify,
HEval) is a secure linearly homomorphic signature scheme supporting M as
underlying message space and H is a random oracle, then the scheme described
above has indistinguishable encryptions.

Theorem 4. If Σ = (HKeyGen,HSign,HVerify,HEval) is a secure lin-
early homomorphic signature scheme for messages in M then the scheme de-
scribed above is unforgeable.

Proofs of theorems 3 and 4 are almost identical to the (corresponding) proofs of
theorems 1 and 2 and are thus omitted.

4 Linearly Homomorphic Signature Scheme to Sign
Elements in Bilinear Groups

Here we introduce the notion of linearly homomorphic signature scheme to sign
elements in bilinear groups. This essentially adapts the definition from [21] to
support a bilinear group as underlying message space. The formal definition is
given in the full version of the paper.
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4.1 A Random Message Secure Construction

Let G, GT be groups of prime order p such that e : G×G→ GT is a bilinear map
and S = (KeyGen,Sign,Verify) a standard signature with message space M.
The scheme works as follows:

HKeyGen(1λ, 1, k): Choose a random generator g ∈ G and run KeyGen(1λ)

to obtain a signing key sk1 and a verification key vk1. Pick random w
$← Zp

and set W ← gw. Select random group elements h1, . . . , hk,
$← G.

Set vk ← (vk1, g,W, h1, . . . , hk) as the public verification key and sk =
(sk1, w) as the secret signing key.

HSign(sk,m, fid, i): This algorithm stores a list L of all previously returned
dataset identifiers fid (together with the related secret information r and
public information σ, τ defined below) and works as follows

If fid �∈ L, then choose r
$← Zp, set σ ← gr , τ ← Sign(sk, fid, σ)

else if fid ∈ L, then retrieve the associated r, σ, τ from memory.
Then set M ← mw, V ← (hiM)r (if a signature for the same fid and the
same index i was already issued, then abort). Finally output π ← (σ, τ, V,M)
as a signature for m w.r.t. the function ei (where ei is the i-th vector of the
canonical basis of Zn).

HVerify(vk, π,m, fid, f): Parse the signature π as (σ, τ, V,M) and f as
(f1, . . . , fk). Then check that:

Verify(vk, τ, (fid, σ)) = 1 e(M,g) = e(m,W ) e(V, g) = e(
k∏

i=1

hfi
i M,σ)

If all the above equations hold output 1, else output 0.
HEval (vk, α, π1, . . . , πk): Parse α as (α1, . . . , αk) and πi as (σi, τi, Vi,Mi),

∀i = 1, . . . , k. Then, compute V ←
∏k

i=1 V
αi

i , M ←
∏k

i=1 M
αi

i and output
π = (σ1, τ1, V,M) (or ⊥ if the σi are not all equal).

The security of the scheme follows from the following theorem (whose proof
is deferred to the full version of this paper).

Theorem 5. If the 2-3CDH assumption holds and S is a signature scheme un-
forgeable under adaptive chosen message attack then the scheme described above
is a LHSG scheme secure against a random message attack .

Remark 3. If the application considered allows the fid to be a group element and
not simply a string, we can replace the signature S with a Structure preserving
Signature satisfying the same hypothesis of theorem 5. This allows to obtain the
first example of a linearly homomorphic structure preserving signature scheme
(LHSPS) where all parts of the signature are actually elements of the group.
This is in contrast with the construction from [30], where the fid is inherently
used as a bit string. In addition, if the identifier can be chosen at random by the
signer and not by the adversary, we can even define σ to be the identifier itself
and thus further improve efficiency. In practical instantiation it’s possible to use
the SPS of [1].
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5 Applications to On-Line/Off-Line Homomorphic
Signatures

In this section, we show a general construction to build (efficient) on-line/off-line
homomorphic (and network coding) signature schemes by combining a LHSG
unforgeable against a random message attack (like the one described in section
4.1) with a certain class of sigma protocols. The intuitive idea is that in order
to sign a certain message m, one can choose a Σ-Protocol whose challenge space
contains m, then sign the first message of the Σ-Protocol with a standard signa-
ture (this can be done off-line) and use knowledge of the witness of the protocol
to later compute the response (third message) of the protocol associated to the
challenge m. This is secure because, if an adversary could produce a second sig-
nature with respect to the same first message, by the special soundness of the
Σ-Protocol, he would be able to recover the witness itself. We show how, if both
the signature scheme and the Σ-Protocol have specific homomorphic properties,
this construction can be extended to build (linearly) homomorphic signatures as
well.

Informally the properties we require from the underlying sigma protocol are:
(1) it is linearly homomorphic, (2) its challenge space can be seen as a vector
space and (3) the third message of the protocol can be computed in a very
efficient way (as it is used in the online phase of the resulting scheme). In what
follows, we first adapt the definition of linearly homomorphic signature (LHSG)
to the On-line/Off-line case. Then, we formally define the properties required by
the sigma protocol, and we describe (and prove secure) our construction.

Linearly Homomorphic On-Line/Off-Line Signatures. First, we remark
that the only difference between a LHSG and a LHOOS is in the signing algo-
rithm. When signing m the latter can use some data prepared in advance (by
running a dedicated algorithm OffSign) to speed up the signature process. The
definitions of unforgeability are therefore analogous to the ones of traditional
LHSG schemes and are omitted to avoid repetition7.

Definition 4 (LHOOS). A Linearly Homomorphic On-line/Off-line signature
scheme is a tuple of PPT algorithms (KeyGen, OffSign, OnSign, Verify,
Eval) such that:

– KeyGen(1λ, n, k) takes as input the security parameter λ, an integer n de-
noting the length of vectors to be signed and an upper bound k for the number
of messages signed in each dataset. It outputs a secret signing key sk and a
public verification key vk; the public key implicitly defines a message space
that can be seen as a vector space of the form M = F

n (where F is a field),
a file identifier space D and a signature space Σ.

7 We stress, however, that those definitions are stronger than the ones traditionally
introduced for network coding (i.e. the adversary is more powerful and there are
more types of forgeries), and therefore our efficient instantiation perfectly integrates
in that framework.
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– OffSign(sk) takes as input the secret key and outputs some information I.
– OnSign(sk, fid, I,m, i) takes as input the secret key, an element m ∈ M,

an index i ∈ {1, . . . , k}, a dataset identifier fid and an instance of I output
by OffSign. This algorithm must ensure that all the signatures issued for
the same fid are computed using the same information I (i.e. by associating
each fid with one specific I and storing these couples on a table). It outputs
a signature σ.

– Verify (vk, σ,m, fid, f) takes as input the public key vk, a signature σ ∈ Σ,
a message m ∈ M, a dataset identifier fid ∈ D and a function f ∈ Z

k; it
outputs 1 (accept) or 0 (reject).

– Eval(vk, fid, f, {σi}i=1...k) takes as input the public key vk, a dataset iden-
tifier fid, an admissible function f in its vector form (α1, . . . , αk), a set of
k signatures {σi}i=1...k and outputs a signature σ ∈ Σ. Note that this al-
gorithm should also work if less than k signatures are provided, as long as
their respective coefficients in the function f are 0, but we don’t to explicitly
account this to avoid heavy notation.

The correctness conditions of our scheme are the following:

– Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair,m ∈ M,
fid any dataset identifier and i ∈ 1, . . . , k. If σ ← Sign(sk, fid,OffSign(sk),
m, i), then with overwhelming probability

Verify(vk, σ,m, fid, ei) = 1,

where ei is the ith vector of the standard basis of Zk.
– Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair,m1, . . . ,

mk ∈ M any tuple of messages signed (or derived from messages origi-
nally signed) w.r.t the same fid (and therefore using the same offline in-
formation I), and let σ1, . . . , σk ∈ Σ, f1, . . . , fk ∈ F such that for all
i ∈ {1, . . . , k}, Verify(vk, σi,mi, fid, fi) = 1. Then, for any admissible func-
tion f = (α1, . . . , αk) ∈ Z

k, with overwhelming probability

Verify(vk,Eval(vk, fid, f, {σi}i=1...k), f(m1, . . . ,mk), fid,

k∑

i=0

αifi) = 1

Vector and Homomorphic Σ-Protocols. Informally, a Σ-Protocol can be
described as a tuple of four algorithms (Σ-Setup,Σ-Com, Σ-Resp, Σ-Verify),
where the first one generates a statement/witness couple, Σ-Com and Σ-Resp
generate the first and third message of the protocol, and Σ-Verify is used by
the verifier to decide on the validity of the proof (a more formal and detailed
description is given in the full version of this paper). This notion can be extended
to the vector case8. For this purpose we adapt the notion of Homomorphic Iden-
tification Protocol originally introduced in [2] to the Sigma protocol framework.

8 The intuition is that it should be more efficient to run a vector Σ-Protocol once
than a standard Σ-Protocol multiple times in parallel).
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Given a language L and an integer n ∈ N, we can consider the language
Ln = {(x1, . . . , xn) | xi ∈ L ∀i = 1, . . . , n}. A natural witness for a tuple
(vector) in this language is the tuple of the witnesses of each of its components
for the language L. As before we can consider the relation Rn associated to
Ln, where (x,w) = (x1, . . . , xn, w1, . . . , wn) ∈ Rn if (x1, . . . , xn) is part of Ln

and wi is a witness for xi. A vector Σ-Protocol for Rn is a three round protocol
defined similarly as above with the relaxation that the special soundness property
is required to hold in a weaker form. Namely, we require the existence of an
efficient extractor algorithm Σn-Ext such that ∀x ∈ Ln, ∀ R, c, s, c′, s′ such
that (c, s) �= (c′, s′), Σn-Verify(x, R, c, s) = 1 and Σn-Verify(x, R, c′, s′) = 1,
outputs (x,w) ← Σn-Ext(x, R, c, s, c′, s′) where x is one of the components of
x and (x,w) ∈ R.

Another important requirement for our construction to work is the following
property.

Definition 5. A Σ-Protocol Σ = (Σ-Setup,Σ-Com,Σ-Resp,Σ-Verify) for
a relation R is called group homomorphic if

– The outputs of the Σ-Com algorithm and the challenge space of the protocol
can be seen as elements of two groups (G1,�) and (G2,⊗) respectively

– There exists a PPT algorithm Combine such that, for all (x,w) ∈ R and all
α ∈ Z

n, if transcripts {(Ri, ci, si)}i=1,...,n are such thatΣ-Verify(x,Ri, ci, si)
= 1 for all i, then

Σ-Verify

(

x,

n⊙

i=1

Rαi

i ,

n⊗

i=1

cαi

i ,Combine(x, α, {(Ri, ci, si)}i=1,...,n)

)

= 1

Although it is given for the standard case, this property can easily be extended
to vector Σ-Protocols: in particular, the group G2 can be seen as the group of
vectors of elements taken from another group G. To sum up, we define a class
of vector Σ-Protocols having all the properties required by our construction:

Definition 6 (1-n (vector) Σ-Protocol). Let (G1,�), (G2,⊗) be two com-
putational groups. A 1-n vector sigma protocol consists of four PPT algorithm
Σn = (Σn-Setup,Σn-Com,Σn-Resp, Σn-Verify) defined as follows:

Σn-Setup(1
λ, n,Rn) → (x,w) . It takes as input a security parameter λ, a vec-

tor size n and a relation Rn over a language Ln. It returns a vector of state-
ments and witnesses (x1, . . . , xn, w1, . . . , wn). The challenge space is required
to be ChSp⊆ G

n
2 .

Σn-Com(x) → (R, r) . It’s a PPT algorithm run by the prover to get the first
message R to send to the verifier and some private state to be stored. We
require that R ∈ G1.

Σn-Resp(x,w, r, c) → s . It’s a deterministic algorithm run by the prover to
compute the last message of the protocol. It takes as input the statements
and witnesses (x,w) the challenge string c ∈ChSp (sent as second message
of the protocol) and some state information r. It outputs the third message
of the protocol, s.
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Σn-Verify(x, R, c, s) → {0, 1} . It’s the verification algorithm that on input the
message R, the challenger c ∈ChSp and a response s, outputs 1 (accept) or
0 (reject).

We require this protocol to be group homomorphic and to satisfy the complete-
ness and special honest verifier zero knowledge properties. Moreover, the protocol
must guarantee either the vector special soundness outlined above or a stronger
soundness property that we define below.

Roughly speaking, this property requires that the extractor, upon receiving
the witnesses for all but one statements of the vector x, has to come up with a
witness for the remaining one.

Definition 7 (Strong (Vector) Special Soundness). Let Σ = (Σ-Setup,
Σ-Com,Σ-Resp,Σ-Verify) be a 1-n Σ-Protocol for a relation Rn. We say that
Σ has the Strong Special Soundness property if there exists an efficient extractor
algorithm Σn-Ext such that ∀x ∈ Ln, ∀j∗ ∈ {1, . . . , n}, ∀ R, c, s, c′, s′ such that
cj∗ �= c′j∗ , Σn-Verify(x, R, c, s) = 1 and Σn-Verify(x, R, c′, s′) = 1, outputs
wj∗ ← Σn-Ext(x, R, c, s, c′, s′, {wj}j �=j∗) such that (xj∗ , wj∗) ∈ R.

In the full version of this paper we show that a simple variant of the well
known identification protocol by Schnorr is a 1-n Σ-Protocol (with Strong Vector
Special Soundness).

5.1 A Linearly Homomorphic On-Line/Off-Line Signature

Suppose S = (KeyGen,Sign,Verify,Eval) is a randomly secure LHSG (even
one that only allows to sign scalars), Σn = (Σn-Setup ,Σn-Com ,Σn-Resp
,Σn-Verify ) is a 1-n Σ-Protocol and H = (CHGen,CHEval,CHFindColl)
defines a family of chameleon hash functions. Moreover, suppose that the LHSG’s
message space is the same as the group G1 of the outputs of Σn-Com. Our
generic construction uses the challenge space of the Σ-Protocol as a message
space and works as follows:

ON/OFFKeyGen (1λ, k, n): It runs (vk1, sk1) ← KeyGen(1λ, 1, k),
(x,w) ←Σn-Setup (1λ, n,Rn) and (hk, ck) ← CHGen(1λ). It outputs
vk ← (vk1,x, hk), sk ← (sk1,w, ck).

OFFSign (sk): This algorithm runs the Σn-Com algorithm k times to obtain
(Ri, ri) ←Σn-Com (x), chooses a random string fid′ from the dataset iden-
tifiers’ space and randomness ρ′ and sets fid ← CHEval(hk, fid′, ρ′). Then
it signs each Ri using the LHSG signing algorithm σi ← Sign(sk1, Ri, fid, i)
and outputs Ifid′ = {(i, ri, Ri, σi, fid

′, ρ′)}i=1,...,k.
ONSign (vk, sk,m, fid, Ifid′ , i): It parses Ifid′ as {(i, ri, Ri, σi, fid

′, ρ′)}i=1,...,k,
computes s ←Σn-Resp (x,w, ri,m), ρ ← CHFindColl(ck, fid′, ρ′, fid) and
outputs σ ← (Ri, σi, s, ρ). As explained in the definition, this algorithm
must ensure that all the messages signed with respect to the same fid are
computed from the same information Ifid′
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ON/OFFVerify (vk, σ,m, fid, f): It parses σ as (R, σ, s, ρ) and vk as
(vk1,x, hk). Then it checks that

Verify(vk1, σ, R,CHEval(fid, ρ), f) = 1 and Σn-Verify(x, R,m, s) = 1.

If both the above equations hold it returns 1, else it returns 0.
ON/OFFEval (vk, α, σ1, . . . , σk): it parses σi as (Ri, σi, si, ρ) for each i =

1, . . . , k and vk as (vk1,x). Then it computes:

R ← Rα1
1 � · · · �Rαk

k , σ ← Eval(vk1, α, σ1, . . . , σk),

s ← Combine (x, α, {(Ri, ci, si)}i=1,...,k) .

Finally it returns (R, σ, s, ρ) (as a signature for the messagemα1
1 ⊗· · ·⊗mαk

k ).

Remark 4. The construction presented above applies to any LHSG. However, if
the LHGS itself is obtained as described in section 4.1, the use of the chameleon
hash function could be avoided by substituting the signature scheme S used for
the fid with an on-line/off-line one. This improves efficiency.

Theorem 6. If S = (KeyGen,Sign,Verify,Eval) is a random message se-
cure LHSG, Σn = (Σn-Setup ,Σn-Com ,Σn-Resp ,Σn-Verify ) is a 1-n Σ-
Protocol for a non trivial relation Rn, and H implements a family of chameleon
hash functions then the LHOOS described above is secure against a chosen mes-
sage attack .

For lack of space, again, this proof is omitted. The security obtained by this
construction can be strengthened by assuming additional properties on the un-
derlying LHSG scheme: if S is strongly secure against a random message attack,
then we can prove that the resulting construction is strongly secure (against a
CMA) as well.

Theorem 7. If S = (KeyGen,Sign,Verify,Eval) is a LHSG scheme strongly
unforgeable against a random message attack and Σn = (Σn-Setup,Σn-Com,
Σn-Resp,Σn-Verify) is a 1-n Σ-Protocol for a non trivial relation Rn, then the
on-line/off-line scheme described above is strongly unforgeable against chosen
message attacks.

The proof is straightforward and similar to the previous one and is omitted.

6 From Random Message Security to Chosen Message
Security

In this section we present a general transform to construct an LHSG secure
against chosen message attack from one secure under random message attack.
Our transformation requires the RMA secure scheme to satisfy some additional,
but reasonable, requirements (a slightly more generic transformation is given in
the full version of this paper). In particular we require it to be almost determin-
istic. Informally, this means that given a file identifier fid ∈ D and a signature
on a message m with respect to fid, the signature of any other m′ ∈ M w.r.t. to
any admissible function f ∈ F and the same fid is uniquely determined.
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Remark 5. We stress that while we present our theorems in the context of lin-
early homomorphic signatures (LHSG), if they are applied to linearly homo-
morphic structure preserving signatures, the structure preserving property is
preserved.

Let S = (HKeyGen,HSign,HVerify,HEval) be a LHSG which is RMA-
secure and almost deterministic. The transformation below shows how to pro-
duce a new LHSG T = (TKeyGen,TSign,TVerify, TEval) which is secure
under CMA.

– TKeyGen(1λ, n, k) takes as input the security parameter λ, the vector
size n and an upper bound k for the number of messages signed in each
dataset. It runs two times the HKeyGen algorithm to obtain (sk1, vk1) ←
HKeyGen(1λ, n, k) and (sk2, vk2) ← HKeyGen(1λ, n, k).
It outputs sk = (sk1, sk2) as the secret signing key and vk = (vk1, vk2) as
the public verification key. The message space M is the same of S.

– TSign(sk,m, fid, i) It chooses random m1 = (m1,1, . . . ,m1,n)
$← M and

computes m2 ←
(

m1

m1,1
, . . . , mn

m1,n

)
(where m = (m1, . . . ,mn)).

Then it computes σ1 ← HSign(sk1,m1, i, fid), σ2 ← HSign(sk2,m2, i, fid)
and outputs σ = (fid,m1, σ1, σ2).

– TVerify(vk, σ,m, fid, f) parses σ as (fid,m1, σ1, σ2), computes

m2 ←
(

m1

m1,1
, . . . , mn

m1,n

)
and checks that the following equations hold:

HVerify(vki,mi, σi, fid, f) = 1 for i = 1, 2.

– Eval(vk, fid, f, {σ(i)}i=1...k) parses σ(i) as (fid(i),m
(i)
1 , σ

(i)
1 , σ

(i)
2 ) and f as

(α1, . . . , αk), then checks that fid = fid(i) for all i and, if not, aborts. Finally
it sets

σ1 ← HEval(vk1, fid, {σ(i)
1 }i=1...k, f),

σ2 ← HEval(vk2, fid, {σ(i)
2 }i=1...k, f),

m1 =

(
k∏

i=1

(m
(i)
1,1)

αi , . . . ,

k∏

i=1

(m
(i)
1,n)

αi

)

and returns

σ ← (fid,m1, σ1, σ2)

Theorem 8. Suppose S is a LHSG secure against a random message attack with
almost deterministic signatures. Moreover assume that the underlying message
space is a group where one can efficiently solve systems of group equations. Then
the scheme T described above is a LHSG secure against a chosen message attack.

Again, the proof of the above theorem is deferred to the full version of this paper.
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