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Abstract. In this article, we propose a new comparison metric, the fig-
ure of adversarial merit (FOAM), which combines the inherent security
provided by cryptographic structures and components with their im-
plementation properties. To the best of our knowledge, this is the first
such metric proposed to ensure a fairer comparison of cryptographic de-
signs. We then apply this new metric to meaningful use cases by study-
ing Substitution-Permutation Network permutations that are suited for
hardware implementations, and we provide new results on hardware-
friendly cryptographic building blocks. For practical reasons, we consid-
ered linear and differential attacks and we restricted ourselves to fully
serial and round-based implementations. We explore several design strate-
gies, from the geometry of the internal state to the size of the S-box,
the field size of the diffusion layer or even the irreducible polynomial
defining the finite field. We finally test all possible strategies to provide
designers an exhaustive approach in building hardware-friendly crypto-
graphic primitives (according to area or FOAM metrics), also introduc-
ing a model for predicting the hardware performance of round-based or
serial-based implementations. In particular, we exhibit new diffusion ma-
trices (circulant or serial) that are surprisingly more efficient than the
current best known, such as the ones used in AES, LED and PHOTON.

Keywords: SPN, lightweight cryptography, figure of adversarial merit,
diffusion matrices.

1 Introduction

RFID is a rising technology that is likely to be widely deployed in everyday life,
leading to new security challenges. Significant advances in this area have already
been obtained. In particular, many lightweight block ciphers [8,10,15,19] have re-
cently been proposed, and designing such ciphers is not an easy task as showed
by the numerous candidates that eventually got broken. Moreover, it is interest-
ing to note that in most privacy-preserving RFID protocols proposed [1,16,17]
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a hash function is required, and since a hash function can be easily built from
a block cipher (for example with the Davies-Meyer mode) or a permutation (for
example with the sponge construction [7]), a crucial question for the researchers
is how to design a hardware efficient permutation.

Hardware efficiency can have very different meanings depending on the uti-
lization scenario targeted by the designer. For example, a classical metric is to
estimate the minimum silicon area required by the primitive to perform the
cryptographic operations. This, of course, depends on the parameters of the
function itself (the area is highly dependent on the amount of memory required)
and most lightweight block ciphers have a rather small block size of 64 bits. It
is to be noted that the area is usually not directly linked to the security of a
primitive, as adding extra rounds will have an impact on the throughput of the
implementation, but only a very limited one concerning the area (we assumed
that the function has no weakness that is independent of the number of rounds).
Area and other metrics such as throughput, latency or power dissipation can be
traded-off for one another, making the comparison between different primitives
difficult. In the direction of fairer comparisons of hardware implementations of
cryptographic primitives, Bogdanov et al. [9] introduced the efficiency metric
throughput/area in order to take in account these tradeoffs. However, the possi-
bility of trading off throughput for power was not taken in account and Badel et
al. [2] proposed instead a figure of merit, defined as FOM = throughput/area2.
However, as of today, no metric takes in account the inherent security of a build-
ing block, therefore making it hard to compare for example two diffusion matrices
that have different area footprint and different branch number.

The construction of good diffusion matrices has always been an important re-
search topic in cryptography, equally important as the search for good confusion
functions. The AES [13] for example uses a 4×4 matrix with elements in GF (28).
This matrix is Maximum Distance Separable (MDS), which means that it has
a branch number of 5, optimal for a 4 × 4 matrix. However, this security fea-
ture comes at a cost that computations in GF (28) might not be the best choice
for some hardware purposes, even though special care has been taken by the
designers to choose a circulant matrix instantiated with lightweight coefficients
of low Hamming weight. Recently, Guo et al. [14,15] described a new type of
diffusion matrix, so-called serial, that trades more clock cycles in the execution
for a smaller area. This idea was later extended to the use of linear Feistel-like
structures or Linear Feedback Shift Registers (LFSR) to build the diffusion ma-
trix [18,20]. On the opposite side, PRESENT [8] uses a simple bit permutation
layer, the real diffusion coming in fact directly from the S-box application. The
advantage being that a bit permutation layer is basically free in a hardware im-
plementation. Now, one may ask the following question: what is better when the
goal is to maximize some hardware metric, a very weak diffusion matrix with a
low area footprint, or a strong diffusion matrix but requiring more silicon?

More generally, many different trade-offs exist when building an AES-like
Substitution-Permutation Network (SPN) primitive, such as the general geom-
etry (number of lines and columns), what size of S-box, what type of matrix,
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with what branch number, in what finite field, with which irreducible polyno-
mial, etc. When a cryptographer would like to design a permutation with a
specific hardware efficiency metric in mind, it is not trivial for him to make the
best construction choices directly. Since implementing many different trade-offs
is very time consuming, he will have to rely on his own intuition when picking
the basic building blocks and choosing the general structure of the primitive,
therefore accepting that his final design might not be optimal.

Our Contributions. In this article, we study the problem of designing hard-
ware efficient permutations for lightweight symmetric key cryptography pur-
poses, and we propose new promising diffusion matrices as building blocks. We
first explain in Section 2 the family of functions that we will study, namely AES-
like SPN permutations, and we describe a new generalized diffusion layer (i.e.
the ShiftRows function in AES), that allows a provable optimal diffusion even
for non-square internal state matrices. Then, we introduce in Section 3 a new
metric, the figure of adversarial merit (FOAM), that for the first time takes into
account the inherent security provided by the primitive. We then explain in Sec-
tion 4 the various SPN design tradeoffs that we will consider for our comparisons,
such as the geometry of the SPN, the S-box size, the type of matrix (circulant
or serial), the field size for the diffusion or even the irreducible polynomial. The
goal being that the designer only has to input the type of implementation (round
and/or serial) and the size of the permutation he would like to build, and he
can directly get the SPN structure and its internal components that are the best
suited for him. We study in Section 5 the security of the AES-like SPN permuta-
tions by only taking in account simple linear/differential attacks. In Section 6,
we present formulas for estimating various parts of the ASIC implementations.
We chose to focus our work on designing permutations only since many cryp-
tographic primitives can be built from them. Therefore, we will not cover other
components such as key schedule for a block cipher, or message expansion for
a hash function. Moreover, due to the obviously vast amount of implementa-
tion trade-offs, we restricted ourselves to the two most important cases: fully
serialized and round-based.

Finally, the results obtained by our analysis are given in Section 7, with the
best diffusion matrices and SPN parameters we could find for many different
scenarios. Notably, we show that the diffusion matrices of ciphers such as AES,
LED or PHOTON are not the best possible choices. For example, in the case of
AES encryption, a circulant matrix with coefficients (0x01,0x01,0x04,0x8d) would
have been, surprisingly, a better choice in terms of implementation while keeping
the same MDS security.

2 Generic SPN with Generalized Optimal Diffusion

In this section, we describe the family of AES-like SPN functions. Our scope is
classical, but we propose a new generalized diffusion layer that allows an optimal
diffusion even for non-square internal state matrices.
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2.1 Extended AES-like Permutations

An n-bit AES-like SPN permutation transforms an r × c array of s-bit cells
(n = r×c×s). During one round, each cell is first transformed by an s-bit S-box
(similar to the AES SubBytes operation). Then each r-cell column is transformed
by an r× r diffusion matrix (similar to the AES MixColumns operation), followed
by an optimal diffusion1 which permutes the c cells of each row to provide further
mixing (similar to the AES ShiftRows operation). Finally, an (r×c)-cell constant
is xored to complete a round transformation (in block-cipher design, this phase is
a subkey addition, but we will not consider key-schedules here). In AES, we have
a square array r = c = 4 and cell size s = 8-bit. The diffusion matrix is usually
defined over the finite field GF (2s) because of the s-bit cell size. Sometimes,
we might actually use a smaller subfield of size GF (2i), i divides s, in order to
define the diffusion matrix. This framework captures many known ciphers such
as AES, PRESENT, LED, etc.

A cell is called differentially (resp. linearly) active if its value (resp. mask
value) is non-zero in a differential (resp. linear) attack. The differential branch
number of a diffusion matrix is the minimum number of differentially active
input and output cells (among all non-zero inputs). The notion of linear branch
number is similar, except that we consider the transpose of the diffusion matrix
instead. From this point onwards, we will not distinguish between differential
and linear branch number unless necessary. That is, when we say a matrix has
branch number B, both its differential and linear branch numbers are equal to
B. The maximum branch number for an r by r diffusion matrix is r + 1, and a
matrix which achieves this optimal branch number is called MDS. If the diffusion
matrix has branch number r, then it is called almost-MDS.

2.2 The Generalized Optimal Diffusion

In this section, we generalize the concept of optimal diffusion [13] for non-square
state array. This has been done already when r < c with a security bound
equivalent to the case where r = c (square array) [13]. When r > c and c divides
r, a simple generalization has been proposed in [11] where a 4-round security
bound is proven when the diffusion matrix is MDS. In this section, we propose
a generalized optimal diffusion for the case r > c where c may not divide r and
the diffusion matrix may not be MDS, i.e. for all branch number B ≤ r + 1.

An example of optimal diffusion is the ShiftRows operation of AES which helps
to diffuse the effect of the AES SubBytes and MixColumns operation over 32-bit
to the whole 128-bit block. The AES ShiftRows transforms a 4 × 4 byte-array
by rotating row r to the left by r bytes, for r = 0, 1, 2, 3. Due to ShiftRows,
each byte of an input column is mapped to a different output column. This
is captured by the concept of optimal diffusion (another example is SQUARE

cipher [12]’s ArrayTranspose map).

1 Note that here, without loss of generality, we apply the permutation operations from
right-to-left, i.e. SC (SubCells) is first applied, followed by MC (MixColumn) and then
the optimal diffusion.
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Definition 1. For an r-by-r cell-array, the optimal diffusion map is a cell-
permutation that maps each cell of an input column to a different output column.

However, the optimal diffusion only applies for r × c cell array where r ≤ c.
When r > c, there are not enough output columns c to map each of the r cells
of an input column. Thus, we extend a new concept from [11] called Generalized
Optimal Diffusion (GOD) for r × c cell-array when r > c, which we describe
below2. Our strategy is to distribute the cells of an input column as uniformly
as possible to each output column.

Definition 2. For an r × c cell-array, a generalized optimal diffusion is a cell-
permutation such that looking at any r-cell column:

1. �r/c� input cells are mapped to each of (r mod c) output columns.
2. �r/c� input cells are mapped to each of c− (r mod c) output columns.

Example 1. Consider r = 5, c = 3. For each input column of 5 cells, �5/3� = 2
input cells are mapped to each of (5 mod 3) = 2 columns. �5/3� = 1 input cell
is mapped to 3− (5 mod 3) = 1 column. One example is given by the transform
of the following arrays:

⎛
⎜⎜⎜⎜⎝

a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4
a5 b5 c5

⎞
⎟⎟⎟⎟⎠

maps to

⎛
⎜⎜⎜⎜⎝

a1 b1 c1
a2 b2 c2
c3 a3 b3
c4 a4 b4
b5 c5 a5

⎞
⎟⎟⎟⎟⎠

Theorem 1. Consider a 4-round AES-like SPN as follows (omitting the constant
addition since it has no effect on our reasoning):

GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC,
where

1. SubCells is a nonlinear substitution layer with r × c s-bit S-boxes acting in
parallel.

2. MixColumns is a layer of c parallel MixColumn transforms each mapping r
cells to r cells with branch number B, i.e. MixColumns(x1, . . . , xc) =
(MixColumn(x1), . . . , MixColumn(xc)), each xi corresponding to a column of
r cells.

3. GOD (generalized optimal diffusion) is as defined above which distributes the
r cells of an input column almost uniformly to c output columns.

Then the number of active S-boxes over 1 and 2 rounds are at least 1 and B
respectively. For 4 rounds it is at least B ×B′ where B′ = max{2;x+ y} and:

{
y = min{2× (r mod c)); �B/�r/c��}
x = �(B − �r/c� × y)/�r/c��

2 The Generalized Optimal Diffusion (GOD) defined in [11] applies only when r is a
multiple c. Here, we define GOD for any r > c.
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We provide the proof of this theorem in the full version of this paper. We
note that it is tight in the sense that it naturally provides a 4 round path
that corresponds to a “luckiest” scenario for the attacker, which involves the
minimum number of active Super-Sboxes (the (c × s)-bit S-boxes composed of
two SubCells layers surrounding one MixColumns).

Let us look at an application example of Theorem 1 to derive the number
of active S-boxes of an AES-like SPN structure, which cannot be deduced by
the known results of [11,13]. Consider an SPN structure with state size 24-
cell, the diffusion matrices being an 8 × 8 matrix with branch number 7, i.e.
r = 8, c = 3 and B = 7. By Theorem 1, we have y = 2 and x = 1, therefore
B′ = max{2;x + y} = 3 and there are B × B′ = 7 × 3 = 21 active S-boxes
guaranteed over 4 rounds of this 24-cell SPN structure.

3 FOAM: Figure of Adversarial Merit

As explained in the introduction, the various trade-offs inherent in any design of
a cryptographic primitive make a fair and consistent comparison of software and
hardware implementations thereof a challenging task. For hardware implemen-
tations exist a few metrics, like the Area-Time (AT) product, which multiplies
the area in Gate Equivalents (GE) occupied by the design with the number of
clock cycles required (the smaller the number, the more efficient is the design).
Closely related is the hardware efficiency [9], which divides the throughput at
a given frequency by the area (hence the greater the number, the better the
design). In order to also address the area-power trade-off, [2] proposed a new
Figure of Merit (FOM): throughput divided by the area squared. The latter two
metrics are frequency dependent, which can complicate comparisons.

We propose a new metric called Figure of Adversarial Merit (FOAM) in order
to resolve the aforementioned shortcomings. It is defined as

FOAM(x) =
1

S(x)× A2

where S(x) and A are basically equivalent to special definitions of speed and area,
respectively. More precisely, S(x) denotes the speed of the cipher based on the number
of rounds required to achieve a certain security x against some set of attacks (in this
article, we will later restrict ourselves to simple differential/linear attacks). For a round-
based permutation, it is defined as S(x) = p(x)×t where p(x) represents the number of
rounds required to achieve security x, and t the number of clock cycles to perform one
round. Moreover, for SPN-based primitives, we decompose the area requirements A
into six parts: the intermediate state memory cost Cmem, the S-boxes implementation
cost Csbox, the diffusion matrix implementation cost Cdiff , the constant addition Ccst,
the control logic cost Clog, and the IO logic cost Cio:

FOAM(x) =
1

S(x)× A2
=

1

p(x)× t× (Cmem + Csbox + Cdiff + Ccst + Clog + Cio)2

This FOAM metric will be useful to compare different design strategies, differ-
ent building blocks (such as diffusion matrices) with a simple value computation.
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Even better, we would like to roughly compare all these possible design trade-
offs without having the hassle to implement all of them: in Section 6 we present
formulas to estimate these six subparts of the area cost and the number t of
clock cycles required to perform one round. The value p(x) can be deduced by
the number of active S-boxes proven in Theorem 1 and the S-box cryptographic
properties (see Section 5). Note that in the rest of the paper, we consider that
the security aimed by the designer is equal to the permutation size, i.e. we are
aiming at a security of 2n computations (thus p(x) = p(2n)).

4 Trade-Offs Considered

We explain all the various trade-offs we consider when building an AES-like SPN
permutation. The goal being that a designer specifies a permutation bitsize n,
the metric he would like to maximize (area, FOAM), the degree up to which
serial or round-based implementations are important, and he directly obtains
the best parameters to build his permutation.

The S-box. One of the first choice of the designer is the size of the S-box,
and we will consider two possible trade-offs: s = 4 and s = 8. Note that, for
simplicity, we will consider that the S-box chosen has perfect differential and
linear properties relative to its size (one could further extend the trade-offs to
non-optimal but smaller S-boxes, but the search space being very broad we leave
this as an open problem).

The Geometry of the Internal State. When building an AES-like SPN
permutation, one can consider several internal state geometries (the values r
and c). The classical case is a square state, like for AES. However, depending on
the diffusion matrices available, it might be worth considering more line-shaped
or column-shaped designs.

Diffusion Matrix Field Size. The designer can choose the field size 2i in
which the matrix computations will take place. The classical case, like in AES,
being that the field size for the diffusion matrix is the same as the S-box. How-
ever, depending on the diffusion matrices available, it might be worth considering
designs with thinner diffusion layers but repeated several times. For example, in
the case of AES, instead of the MixColumnsmatrix one could use a 4×4 diffusion
matrix on GF (24) applied two times (one time on the 4 MSB and one time on
the 4 LSB of the 8-bit cells in the AES column). Overall, we will cover a scope
from binary matrices (in GF(2)) up to matrices on the same field size as the
S-box (in GF (2s)).

Irreducible Polynomial for the Diffusion Matrix Field. Once the field
size 2i is fixed, the designer can choose the irreducible polynomial defining the
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field. For i = 1 and i = 2 only a single polynomial exists, while for i = 4 at most
3 choices are possible (α4 +α+1, α4+α3+1 and α4+α3+α2+α+1). For the
i = 8 case, many polynomials are possible (this was already observed by [3]),
thus in order to focus the search space we will only consider the irreducible
polynomial used in AES (α8+α4+α3+α+1) and in WHIRLPOOL hash function [5]
(α8 + α4 + α3 + α2 + 1).

Type of Diffusion Matrix. The designer can choose what type of matrix he
will implement, the two main hardware-friendly types being circulant or serial.
In the circulant case, the designer picks r coefficients Z = (Z0, . . . , Zr−1) and
the matrix Z is defined as

⎛
⎜⎜⎜⎜⎜⎜⎝

Z0 Z1 Z2 . . . Zr−2 Zr−1

Zr−1 Z0 Z1 . . . Zr−3 Zr−2

Zr−2 Zr−1 Z0 . . . Zr−4 Zr−3

. . . . . . . .

. . . . . . . .
Z1 Z2 Z3 . . . Zr−1 Z0

⎞
⎟⎟⎟⎟⎟⎟⎠

In the serial case, the designer picks r coefficients Z = (Z0, . . . , Zr−1) and the
matrix Z is defined as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . 0 0
0 0 1 0 . . 0 0
0 0 0 1 . . 0 0
. . . . . . . .
. . . . . . . .
0 0 0 0 . . 0 1
Z0 Z1 Z2 . . . Zr−2 Zr−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

r

The matrix therefore takes r operations to be computed.

Branch Number of the Diffusion Matrix. In general, implementing a
matrix with very good diffusion property will cost more area and/or cycles than
a weak one. For example, the AES matrix has ideal MDS diffusion property,
but certainly requires more area to implement than a simple binary matrix
with weaker properties. Since the former is bigger but stronger and the latter
is smaller and weaker, it is not clear which alternative will lead to the best
FOAM. Therefore, the designer can choose between a wide range of possibilities
concerning the branch number B of the diffusion matrix, fromB = 3 to B = r+1
(MDS).

5 Security Assessment of AES-like Primitives

The FOAM metric takes into account the security of the permutation with re-
gards to simple differential/linear attacks. We would like to evaluate this security
for the AES-like SPN permutations we are considering. Theorem 1 gives us the
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minimal number of active S-boxes for a given number of rounds3, and knowing
the S-box cryptographic properties we can compute the maximum differential
and linear characteristic probabilities of our generic SPN ciphers easily. In other
words, we can easily compute the number of rounds p(x) = p(2n) required to
achieve the aimed security 2n.

As stated before, for simplicity, in the rest of this article we will consider
that the S-boxes have perfect differential and linear properties: for a 4-bit S-box
the maximum differential and linear characteristic probabilities are 2−2 (e.g.
PRESENT S-box), while for a 8-bit S-box the maximum differential and linear
characteristic probabilities are 2−6 (e.g. AES S-box). One can extend the trade-
off by considering other S-boxes, that might require a smaller area, but will have
worse security properties.

Reusing the example from Section 2.2, from Theorem 1, there are at least 21
active S-boxes over 4 rounds of this SPN permutation. Suppose that 8-bit S-boxes
are of maximum differential and linear probabilities 2−6. Then the maximum
differential and linear characteristic probabilities over four rounds are upper-
bounded by (2−6)21 = 2−126.

We are aware that other attacks rather than simple differential/linear might
exist. However, our goal here is not to fully specify a permutation, but to com-
pare many trade-offs and design strategies that will lead to good hardware per-
formances. Therefore, we emphasize that the number of rounds p(x) is not the
number of rounds that should be chosen by a designer. This number should be
carefully chosen after thorough cryptanalysis work on the entire primitive. Yet,
we believe that this simple differential/linear criterion is a quite accurate way
to compare the security of AES-like SPN permutations.

6 Implementations in ASIC

In this section, we introduce some notation before we present formulas to es-
timate serialized and round-based implementations (we restricted ourselves to
these two important practical cases due to the obviously vast amount of imple-
mentation trade-offs). Please note that all estimates have to be seen as lower
bounds, as we use scan flip-flops, and consider neither reset nor I/O require-
ments, which can significantly impact the area count in practice. We argue that
those requirements –though very important in practice– are highly application
specific, and will be the same for any permutation for a given target applica-
tion scenario. Thus for a fair comparison of permutation constructions we will
not consider them. In practice, a higher throughout can be achieved by using
pipelining techniques to reduce the critical path at the cost of additional area.

3 We note that the number of active S-boxes given by Theorem 1 is tight if the number
of rounds is not equal to 3 modulo 4 (even in that case the theorem gives a very
close estimation). This does not mean that the maximum differential and linear
characteristic probabilities computed are tight, since it is unknown how many active
S-boxes can use the maximum differential and linear characteristic probabilities at
the same time (this remains an open problem).
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As this design goal is, again, highly application specific and FOAM is designed
to be frequency independent, we have not considered it in our analysis.

We have estimated all serial architectures with the single optimization goal
of minimal area in mind. In practice, some design decisions will most likely use
another trade-off point more in favor of smaller time and larger area. To reflect
this, we have estimated all round-based architectures optimized for maximum
FOAM.

The table below provides an overview over the hardware building blocks we
used, their notation and typical area requirements for a UMC 180 nm technology.
4

Notation Description GE

DFF 1-input flip-flop 4.67

SFF 2-input flip-flop 6

MUX 2-input multiplexer 2.33

Notation Description GE

XOR 2-input exclusive Or 2.67

SB4 4 x 4 S-box (PRESENT) 22

SB8 8 x 8 S-box (AES) 233

We give in Table 1 the estimates for the various parts of the ASIC implemen-
tations. The details on how these formulas were obtained will be provided in the
full version of this paper.

Table 1. Estimates for various parts of the ASIC implementations. ( i denotes the
exponent for the field GF (2i); ar, ac and ap denote the counters for rows, columns
and rounds respectively; cg and oc denote clock gating and other combinational logic
respectively; b denotes the area requirement for the finite state machine.)

Serial architectures Round-based architectures

Cmem
s · (r − � i

s
�) · SFF + � i

s
�s ·DFF , c = 1

2 · s · r · SFF + s · r · (c− 2) ·DFF , c ≥ 2
s · r · c · SFF

Csbox
SB4 , s = 4
SB8 , s = 8

r · c · SB4 , s = 4
r · c · SB8 , s = 8

Cdiff
A ·XOR , for serial mat.

A ·XOR + (s · r − i) ·DFF + i ·MUX , for circulant mat.
A · r · c · s

i
·XOR

Ccst s ·XOR s · r · c ·XOR

Clog
ar + ap + SFF · 2 + oc , c = 1

ar + ac + ap + b+ cg + oc , c ≥ 2
ap + b

Cio s ·MUX 0

t

r · c+ (c− 1) + ( s
i
· r + 1− � i

s
�) · c , c ≥ 2 serial mat.

r · c+ (c− 1) + (2 · s
i
· r) · c , c ≥ 2 circulant mat.

r · c+ s
i
· r , c = 1 serial mat.

r · c+ (2 · s
i
· r − 1) , c = 1 circulant mat.

1

4 This is just one example for a technology and the area of the building blocks can be
easily adapted for other technologies.
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7 Results and New Diffusion Matrices

In this section we provide the results of our framework, as well as new diffusion
matrices that are very interesting for hardware implementations. As explained in
Section 4, the designer’s input is the permutation bitsize n, the metric he would
like to maximize (area or FOAM), and the degree up to which serial or round-
based implementations are important. To illustrate our method, we focused on
the case where the designer would like to build a 64-bit permutation (which
is a typical state size for a lightweight block cipher). For the implementation
types, we focused on three scenarios: only serial implementation is important,
only round-based implementation is important, serial and round-based imple-
mentations are equally important for the designer. Further, we only considered
encryption.

Before describing our results, we first explain how we found good diffusion
matrices (circulant and serial), which outperform known ones from the AES, LED
ciphers and the PHOTON hash function.

7.1 Lightweight Coefficients

Consider the AES matrix, a circulant matrix with coefficients (0x01, 0x01, 0x02,
0x03) over GF (28) defined by the irreducible polynomial α8 + α4 + α3 + α+ 1.
The matrix appears to be very lightweight due to the low Hamming weight of
its entries. But surprisingly, we found an even lighter circulant matrix over the
same field with coefficients5 (0x01,0x01,0x04,0x8d). We now explain why this is
so.

We first illustrate how to compute the number of XORs required to implement
a multiplication by a finite field element x, by using GF (28) defined by α8 +
α4 + α3 + α + 1 as an example. Let x = x7 · α7 + x6 · α6 + · · ·x1 · α + x0 =
(x7, x6, · · · , x1, x0). For ease of explanation, we employ hexadecimal encoding:
(x7, x6, x5, x4, x3, x2, x1, x0) can be encoded as a tuple of hexadecimal numbers
(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01). Then, the multiplication of
0x04 is represented as:

0x04 · x = (x5, x4, x3 + x7, x2 + x6 + x7, x1 + x6, x0 + x7, x6 + x7, x6)

= (0x20, 0x10, 0x88, 0xc4, 0x42, 0x81, 0xc0, 0x40).

We see that the number of XORs required for the multiplication of 0x04 by x is
6. Now we can compute

0x8d · x = (α
7
+ α

3
+ α

2
+ 1) · x

= (0xb1, 0x58, 0x2c, 0x96, 0xfa, 0x4c, 0xa6, 0x62) ⊕ (0x10, 0x88, 0xc4, 0x62, 0xa1, 0xc0, 0x60, 0x20)

⊕(0x20, 0x10, 0x88, 0xc4, 0x42, 0x81, 0xc0, 0x40) ⊕ (0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01)

= (0x01, 0x80, 0x40, 0x20, 0x11, 0x09, 0x04, 0x03)

= (x0, x7, x6, x5, x0 + x4, x0 + x3, x2, x0 + x1)

5 We use the binary representation to represent finite field elements. E.g., 0x8d is
10001101 in binary, which corresponds to the finite field element α7 + α3 + α2 + 1
in GF (28).
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Due to the ’cancellation of XORs ’, we see that multiplication of x by 0x8d
requires only 3 XORs. In a similar fashion, the multiplication of x by 0x02 and
0x03 requires 3 and 11 XORs respectively.

Hence we are able to come up with the XOR count table for any finite field.
Table 2 of Appendix A shows the XOR count for GF (24) defined by α4 +α+1.
The tables for GF (24) and GF (28) defined by different irreducible polynomials
are provided in the full version of this paper.

Now we explain how to use the tables to calculate A the number of XORs
required to implement a row of a matrix. Denote a given row of an r× r matrix
by (x1, x2, · · ·xr) over a finite field GF (2i). Let γj be the XOR count(e.g. Table 2
of Appendix A for i = 4) corresponding to the field element xj . Then A is equal
to (γ1 + · · ·+ γr) + (z − 1) · i, where z is the number of non-zero elements in the
row. We give some examples: row (0x1,0x1,0x4,0x9) uses (0+0+2+1)+3×4 =
15 XORs to implement over GF (24); the AES matrix uses (0+0+3+11)+3× 8
= 38 XORs to implement per row over GF (28). Similarly, the circulant matrix
with coefficients (0x01,0x01,0x04,0x8d) uses 33 XORs to implement per row over
GF (28), and is thus lighter than the AES matrix.

7.2 Subfield Construction

In this section, we describe the subfield construction6 which allows us to outper-
form the AES matrix even more than the optimal matrix found in Section 7.1. As
computed in the previous subsection, the MDS circulant matrix circ(0x1, 0x1,
0x4, 0x9) over GF (24) defined by α4 + α + 1 requires 15 XORs to implement
per row. Using the method of [11, Section 3.3], we can form a circulant MDS
matrix over GF (28) by using two parallel copies of Q = circ(0x1, 0x1, 0x4, 0x9)
over GF (24). The matrix is formed by writing each byte qj as a concatena-
tion of two nibbles qj = (qLj ||qRj ). Then the MDS multiplication is computed

on each half (uL
1 , u

L
2 , u

L
3 , u

L
4 ) = Q · (qL1 , qL2 , qL3 , qL4 ) and (uR

1 , u
R
2 , u

R
3 , u

R
4 ) = Q ·

(qR1 , q
R
2 , q

R
3 , q

R
4 ) over GF (24). The result is concatenated to form four output

bytes (u1, u2, u3, u4) where uj = (uL
j ||uR

j ). This matrix needs just 15 × 2 = 30
XORs to implement per row. In comparison, the lightest MDS circulant matrix
circ(0x01,0x01,0x04,0x8d) over GF (28) defined by α8 +α4+α3+α+1 requires
more XORs (33 XORs per row).

Further, we can serialize the above multiplication to do the left half followed
by the right half, in which case only 15 XORs are needed to implement one row
of the MDS matrix over GF (28). Another advantage of subfield construction is
exemplified by the SPN-Hash construction [11]. Instead of finding an 8× 8 serial
MDS matrix over GF (28) exhaustively, two parallel copies of the PHOTON 8 × 8
serial MDS matrix over GF (24) were concatenated to form the 8× 8 serial MDS
matrix over GF (28) for SPN-Hash.

6 This idea of subfield construction was used in the SHA3 submission ECHO [6] and later
in WHIRLWIND [4] and SPN-Hash [11].
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We can generalize this method to form a diffusion matrix with branch number
B over GF (2s) from s/i copies of a diffusion matrix of the same branch number
over a subfield GF (2i), where i divides s.

7.3 Good Matrices

We search for optimal low-weight r× r circulant and serial matrices of different
branch numbers (3 to r + 1) over the finite fields GF (2), GF (22), GF (24) and
GF (28), and list them in Table 3 of Appendix A. Using the construction of
Section 7.2, we can form diffusion matrices to transform nibbles and bytes from
these subfields.

The optimal matrices are found by exhaustively checking the branch number
of all matrices and choosing the one with the least number of XORs according
to the method explained in Section 7.1. To check the branch number of matrix
Q, we concatenate it with the identity matrix Ir to form (Ir |Q), the generating
matrix of the corresponding linear code, and use the MAGMA software to find
the distance7. For branch number B, we check that both Q and its transpose Qt

has branch number B.
The matrices are optimal in the sense that they need minimal number of XORs

to implement. In the events of a tie between two matrices, possibly over different
finite field representations, we just list one of them. For example, the circulant
matrices circ(0x01,0x01,0x04,0x8d) over GF (28) defined by α8+α4+α3+α+1
and circ(0x01,0x01,0x04,0x8e) over GF (28) defined by α8 + α4 + α3 + α2 + 1
both outperforms the AES matrix by using 33 XORs to implement one row, so
we just list the latter. We use “-” when no circulant matrix with branch number
B exists (verified by exhaustive search or coding theory bounds). For example, it
can be verified that 8 × 8 circulant MDS matrix does not exist in the finite field
GF (24). However, we could not find the optimal 8 × 8 circulant MDS matrix
over GF (28). Because the search space is too big to exhaust, we just list the
WHIRLPOOL matrix which is MDS and low weight.

We use “*” to denote that we have not found the serial matrix with branch
number B at this point of time due to the huge search space. For instance, as the
search space is too big to exhaust, we could not find a 8 × 8 serial MDS matrix
over GF (28). In this case, we can employ the method of subfield construction
(described in Section 7.2), i.e. use two parallel copies of the 8 × 8 MDS serial
matrix with last row (0x2,0xd,0x2,0x4,0x3,0xd,0x5,0x2) (refer to second row of
8×8 subtable of Table 3) over GF (24) to obtain the desired matrix over GF (28).

7.4 Application: FOAM Comparison for 64-bit SPN Structures

In this section, we compare the FOAM metric for 64-bit SPN Structures. Table 4
in Appendix A gives the results for a SPN structure based on 4-bit PRESENT S-
box with circulant matrices or serial matrices. Due to space constraints, we will

7 We are aware that better techniques than naive exhaustive search might be used
here. However, such improvements are not the goal of this article and we leave them
as potential future work.
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provide the results for a SPN structure based on 8-bit AES S-box with circulant
matrices or serial matrices in the full version of this paper. The diffusion matrices
are based on the optimal matrices found in Section 7.3. To compute p(264), the
number of rounds to achieve differential/linear probability ≤ 2−64, we use the
fact that the differential/linear probability of the PRESENT S-box is 2−2 and that
of the AES S-box is 2−6. Then we lower bound the number of active S-boxes
by concatenating 4-round bounds with B × B′ active S-boxes from Theorem 1,
2-round bounds with B active S-boxes and 1-round bound which involves only 1
active S-box. We also write down t, the time to compute one round for serialized
implementation (the time t for round based implementation is the constant 1,
so it is not presented).

We compute the FOAM for round-based and serialized implementation based
on the formula found in Section 6. We also present the FOAM for half-half imple-
mentation, where we take the average, i.e. equal weighting, of the round-based
and serialized FOAM. This corresponds to implementations which are good for
both scenarios. However, this represents just one example, as the weighting of
the scenarios is clearly a designer’s choice. The structure with the best area and
FOAMs are in bold.

We see that for designing 64-bit SPN:

1. For minimal area the geometry is the most important criterion, while the
choice of the field of the MDS matrix is of less importance. The geometry
should be chosen, such that c is maximized, and consequently, many internal
columns can be realized with 1-input flip-flops. A serial matrix is favorable
over a circulant matrix and in general smaller fields allow to save a few GE,
but come at a high timing overhead.

2. PRESENT S-box

– When Circulant Matrices are used with PRESENT S-box in Table 4 from
Appendix A, the 4× 4 almost-MDS circulant matrix circ(0x1, 0x1, 0x1,
0x0) over GF (24) gives the best FOAM for round-based, serial and half-
half implementations.

– When Serial Matrices are used with PRESENT S-box in Table 4 from
Appendix A, the 4 × 4 almost-MDS serial matrix with last row (0x1,
0x0, 0x2, 0x1) over GF (24) defined by α4 + α+ 1 gives the best FOAM
for round-based, serial and half-half implementations.

3. AES S-box

– From our results for AES S-box (provided in the full version of the paper),
when Circulant Matrices are used with AES S-box, two parallel copies of
the 4 × 4 MDS matrix circ(0x1, 0x1, 0x4, 0x9) over GF (24) defined by
α4 + α + 1 gives the best FOAM for round-based implementation. The
4 × 4 MDS matrix circ(0x01, 0x01, 0x04, 0x8e) over GF (28) defined
by α8 + α4 + α3 + α2 + 1 gives the best FOAM for serial and half-half
implementations.

– When Serial Matrices are used with AES S-box, two parallel copies of
the 4 × 4 MDS serial matrix with last row (0x2, 0x1, 0x1, 0x4) over
GF (24) defined by α4 + α + 1 gives the best FOAM for round-based
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implementation. The 8× 8 serial matrix (having branch number 6) with
last row (0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x02, 0x00) over GF (28)
defined by α8+α4+α3+α+1 gives the best FOAM for serial and half-half
implementations and is also very competitive for round-based FOAMs.
It is thus a very interesting choice for many different applications.

4. Structures based on PRESENT S-box have higher FOAM for round-based and
half-half implementations than those based on AES S-box. On the other hand,
structures based on AES S-box have higher FOAM for serial implementation
than PRESENT S-box, because they need significantly less rounds.

5. For structures using both types of S-boxes, 4×4 matrices have higher FOAM
than 2× 2 and 8× 8 matrices.

6. Based on the above observations, we do not always go for the matrix with
the best branch number: for PRESENT S-box in Table 4 from Appendix A,
we use almost-MDS 4× 4 matrix which gives better trade-offs and a higher
FOAM than MDS matrix. Moreover, we found that when AES S-box is used
with 8× 8 matrices, we go for the one with branch number 6 instead of the
optimal 9.
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A Tables

Table 2. XORs required to implement a multiplication by x over GF (24)

x (hexadecimal representation) 0 1 2 3 4 5 6 7 8 9 a b c d e f

α4 + α + 1 0 0 1 5 2 6 5 9 3 1 8 6 5 3 8 6
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Table 3. Good Circulant Matrices of Size 2 × 2, 4 × 4 and 8 × 8 B denotes the branch
number; The “First Row” and the “Last Row” column (in hexadecimal) represents the
first row of the circulant matrix and the last row of the serial matrix (as described in
Section 4) respectively; A denotes the number of XOR gates needed to implement one
row of the circulant matrix and the last row of the serial matrix respectively.

2 × 2

Finite Field
Circulant matrices Serial matrices

B First Row A Last Row A

GF (28), α8 + α4 + α3 + α2 + 1 3 1,2 11 1,2 11

GF (24), α4 + α + 1 3 1,2 5 1,2 5

GF (22), α2 + α + 1 3 1,2 3 1,2 3

GF (2) 3 - - - -

4 × 4

Finite Field
Circulant matrices Serial matrices

B First Row A Last Row A

5 1,1,4,8e 33 1,2,1,4 33

GF (28), α8 + α4 + α3 + α2 + 1 4 1,1,1,0 16 1,0,2,1 19
3 1,0,0,2 11 1,0,0,1 8

5 1,1,4,9 15 2,1,1,4 15

GF (24), α4 + α + 1 4 1,1,1,0 8 1,0,2,1 9
3 1,0,0,2 5 1,0,0,1 4

5 - - - -

GF (22), α2 + α + 1 4 1,1,1,0 4 1,0,2,1 5
3 1,0,0,2 3 1,0,0,1 2

5 - - - -
GF (2) 4 1,1,1,0 2 - -

3 - - 1,0,0,1 1

8 × 8

Finite Field
Circulant matrices Serial matrices

B First Row A Last Row A

9 1,1,4,1,8,5,2,9 105 * *
8 1,0,1,1,2,2,1,8e 57 1,1,2,0,1,8d,2,1 57
7 1,0,0,1,1,1,2,8e 46 1,1,2,1,0,0,1,8d 46

GF (28), α8 + α4 + α3 + α2 + 1 6 1,0,0,0,1,1,1,2 35 1,1,0,0,1,1,2,0 35
5 1,0,0,0,0,1,1,2 27 1,0,0,1,1,1,0,0 24
4 1,0,0,0,0,0,1,1 16 1,0,0,0,0,1,1,0 16
3 1,0,0,0,0,0,0,2 11 1,0,0,0,0,0,1,0 8

9 - - 2,d,2,4,3,d,5,2 50
8 1,0,1,1,2,9,2,1 27 * *
7 1,0,0,1,1,1,2,9 22 1,0,2,1,1,1,2,0 22

GF (24), α4 + α + 1 6 1,0,0,0,1,1,1,2 17 1,1,0,0,1,1,2,0 17
5 1,0,0,0,0,1,1,2 13 1,0,0,1,1,1,0,0 12
4 1,0,0,0,0,0,1,1 8 1,0,0,0,0,1,1,0 8
3 1,0,0,0,0,0,0,2 5 1,0,0,0,0,0,1,0 4

GF (22), α2 + α + 1

9 - 8 - - - -
7 - - 2,1,0,3,1,2,0,1 13
6 1,0,0,0,1,1,1,2 9 1,0,0,1,1,1,0,2 9
5 1,0,0,0,0,1,1,2 7 1,0,0,1,1,1,0,0 6
4 1,0,0,0,0,0,1,1 4 1,0,0,0,0,1,1,0 4
3 1,0,0,0,0,0,0,2 3 1,0,0,0,0,0,1,0 2

GF (2)

9 - 6 - - - -
5 - - 1,0,0,1,1,1,0,0 3
4 1,0,0,0,0,0,1,1 2 1,0,0,0,0,1,1,0 2
3 - - 1,0,0,0,0,0,1,0 1
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Table 4. FOAM for 64-bit SPN based on 4-bit PRESENT S-box and Circulant Matrices
or Serial Matrices

Circulant Matrices

Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Field rd based serial rd based serial half-half

GF (24) 2 8 3 16 55 1156 541 46.76 3.88 25.32

GF (22) 2 8 3 16 87 1199 540 43.48 2.46 22.97

4 4 5 8 1579 652 50.16 5.77 27.96
GF (24) 4 4 4 8 51 1280 633 76.34 6.12 41.23

4 4 3 16 1156 630 46.76 3.09 24.92

GF (22)
4 4 4 8

83
1280 627 76.34 3.83 40.08

4 4 3 16 1199 629 43.48 1.90 22.69

GF (2) 4 4 4 8 147 1280 624 76.34 2.18 39.26

GF (24)

8 2 8 8

49

2091 873 28.58 3.35 15.96
8 2 7 10 1882 864 28.22 2.73 15.48
8 2 6 12 1669 851 29.92 2.35 16.14
8 2 5 14 1498 840 31.83 2.07 16.95
8 2 4 16 1284 827 37.89 1.87 19.88
8 2 3 22 1161 823 33.73 1.37 17.55

GF (22)

8 2 6 12

81

1712 834 28.45 1.48 14.96
8 2 5 14 1541 829 30.09 1.28 15.69
8 2 4 16 1284 821 37.89 1.15 19.52
8 2 3 22 1204 823 31.38 0.83 16.10

GF (2) 8 2 4 16 145 1284 818 37.89 0.64 19.27

Serial Matrices

Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Field rd based serial rd based serial half-half

GF (24) 2 8 3 16 39 1156 513 46.76 6.09 26.42

GF (22) 2 8 3 16 63 1199 508 43.48 3.85 23.67

4 4 5 8 1579 586 50.16 10.39 30.27
GF (24) 4 4 4 8 35 1322 570 71.48 10.99 41.23

4 4 3 16 1113 561 50.41 5.66 28.04

GF (22)
4 4 4 8

55
1365 559 67.08 7.26 37.17

4 4 3 16 1113 556 50.41 3.67 27.04

GF (2) 4 4 3 16 87 1113 553 50.41 2.35 26.38

GF (24)

8 2 9 6

33

3074 794 17.64 8.01 12.82
8 2 7 10 1882 724 28.22 5.78 17.00
8 2 6 12 1669 711 29.92 5.00 17.46
8 2 5 14 1455 697 33.73 4.45 19.09
8 2 4 16 1284 687 37.89 4.02 20.95
8 2 3 22 1118 681 36.36 2.97 19.67

8 2 7 10 2053 700 23.72 4.00 13.86
8 2 6 12 1712 689 28.45 3.44 15.94

GF (22) 8 2 5 14 51 1455 681 33.73 3.02 18.37
8 2 4 16 1284 676 37.89 2.68 20.29
8 2 3 22 1118 675 36.36 1.95 19.16

8 2 5 14 1455 673 33.73 1.90 17.81
GF (2) 8 2 4 16 83 1284 671 37.89 1.67 19.78

8 2 3 22 1118 673 36.36 1.21 18.78
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