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Abstract. Witness encryption was proposed by Garg, Gentry, Sahai,
and Waters as a means to encrypt to an instance, x, of an NP language
and produce a ciphertext. In such a system, any decryptor that knows
of a witness w that x is in the language can decrypt the ciphertext
and learn the message. In addition to proposing the concept, their work
provided a candidate for a witness encryption scheme built using multi-
linear encodings. However, one significant limitation of the work is that
the candidate had no proof of security (other than essentially assuming
the scheme secure).

In this work we provide a proof framework for proving witness en-
cryption schemes secure under instance independent assumptions. At
the highest level we introduce the abstraction of positional witness en-
cryption which allows a proof reduction of a witness encryption scheme
via a sequence of 2n hybrid experiments where n is the witness length of
the NP-statement. Each hybrid step proceeds by looking at a single wit-
ness candidate and using the fact that it does not satisfy the NP-relation
to move the proof forward. We show that this “isolation strategy” en-
ables one to create a witness encryption system that is provably secure
from assumptions that are (maximally) independent of any particular
encryption instance. We demonstrate the viability of our approach by
implementing this strategy using level n-linear encodings where n is the
witness length. Our complexity assumption has ≈ n group elements, but
does not otherwise depend on the NP-instance x.

1 Introduction

Witness encryption, as introduced by Garg, Gentry, Sahai, and Waters [14], is
a primitive that allows one to encrypt to an instance of an NP language L.
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An encryptor will take in an instance x along with a message m and run the
encryption algorithm to produce a ciphertext CT. Later a user will be able to
decrypt the ciphertext and recover m if they know of a witness w showing that
x is in the language L according to some witness relation R(·, ·). The security
of witness encryption states that, for any ciphertext created for an instance
x that is not in the language L, it must be hard to distinguish whether the
ciphertext encrypts m0 or m1. Concepts related to witness encryption include:
(in the computational setting) point-filter functions [16], and (in the statistical
setting for languages in SZK) non-interactive instance-dependent commitments
[23], including efficiently-extractable ones [15].

The primitive of encrypting to an instance is intriguing in its own right, and
Garg et. al. show that it has many compelling applications, including public
key encryption with very fast key generation, identity-based encryption [22,3,8],
attribute-based encryption [21] (ABE) for arbitrary circuits, and ABE for Turing
Machines [17]. The work of [17] goes on to develop even further applications, such
as reusable garbling schemes for Turing machines.

These powerful applications motivate the quest for constructions of witness
encryption with strong provable security guarantees. In [14], they gave a witness
encryption construction for the NP-complete Exact Cover problem [19] using
multilinear encodings (first suggested in [5] and first constructed by Garg, Gen-
try, and Halevi [11], with an alternative construction later provided by Coron,
Lepoint and Tibouchi [9]).

While the GGSW construction candidate demonstrates the plausibility of real-
izing secure witness encryption, they were unable to reduce the security of their
system to anything simpler than directly assuming the security of their con-
struction. Instead they applied what we will call an instance dependent family
of assumptions that they called the “Decision Graded Encoding No-Exact-Cover
Problem.” The assumption is that for each instance x not in the language, no
PPT attacker can distinguish between two particular distributions of multilinear
encodings. The distributions directly embed the Exact Cover instance x and are
almost identical to the structure of the ciphertexts from the construction.

The Importance and Difficulty of Using Simple Assumptions While a generic
group argument might give some confidence that it will be difficult to find an
attack on a scheme, a reduction to an assumption simpler than the scheme
itself is much more desirable. First, such a reduction will often provide critical
insight and understanding into why the scheme is secure. Second, the ideas
behind proof reductions often transcend their original settings and will be of use
elsewhere. Having a single, concrete assumption also provides a clearer focus for
cryptanalysis efforts to stress-test a candidate scheme.

Prior to this work, no known schemes could be reduced to instance-independent
assumptions. This is also the case for all known indistinguishability obfuscation
schemes. For example, [12] explicitly reduces to a instance-dependent family of
assumption, while [20] implicitly does this through a meta-assumption.

Our goal is to create techniques for building witness encryption systems that
are provably secure under radically simpler assumptions. To achieve this, we
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must first confront an intuitive barrier that is formalized as an impossibility re-
sult in [14] (with some restrictions). The idea is that any black-box security re-
duction to an instance-independent assumption for a witness encryption scheme
must (in some sense) verify that a statement is false. Otherwise, we could use the
reduction to break the assumption by “fooling it” on a true statement for which
we know a witness, and hence can simulate an attack. Since the best known
methods for solving NP-hard problems take exponential time, this implies an
instance independent reduction will have an exponential security loss.

Our Strategy To address the barrier above, we devise a proof technique that
employs a reduction which gradually “learns” that the instance x is not in the
language. Consider a instance x /∈ L with witness candidates of n bits. Our
strategy is to allow a reduction to build a hybrid argument by isolating and
examining each witness candidate, w, in sequence and utilizing the fact that
R(x,w) = 0 (i.e. the witness is not valid) to progress the hybrid to the next
step. (Since there are 2n witness candidates, the proof strategy will inherently
use complexity leveraging, as will any reduction strategy that falls within the
confines of the [14] impossibility result.) In this way, we obtain a “true reduction”
that represents a new understanding of the security of witness encryption.

To implement this hybrid approach, we will need a technique that somehow al-
lows a proof to compactly “save” its work for all of the witnesses it has examined.
Our starting point will be a broadcast encryption (BE) [10] system proposed by
Boneh and Waters [6] in 2006, which was the first collusion resistant system
to be proved adaptively secure. Instead of proving security all at once, they
employed a method of altering the challenge ciphertext over a sequence of N
hybrid experiments for a BE system of N users. At the center of their approach
was a new abstraction that they called augmented broadcast encryption. An
augmented BE system has an encryption algorithm EncryptAugBE(PK, S, t,m)
that takes as input a public key PK, a set of user indices S ⊆ [0, N − 1] , an
index t ∈ [0, N ], and a message m. This produces a ciphertext CT. The seman-
tics of the system are that a user with index u ∈ [0, N − 1] 1 can decrypt the
ciphertext and learn the message only if u ∈ S and u ≥ t. These are like the se-
mantics of standard broadcast encryption, but with the added constraint of the
index t. Augmented broadcast encryption has two security properties. The first
is that no poly-time attack can distinguish between EncryptAugBE(PK, S, t,m)
and EncryptAugBE(PK, S, t+1,m) if the attacker does not have the key for index
t or if t /∈ S. The second property is that the scheme is semantically secure if we
encrypt to index t = N , thus cutting off all the user keys whether or not they
are in S.

It is straightforward to make a standard broadcast encryption using an aug-
mented one, as we can create a broadcast ciphertext to the set S by simply
calling EncryptAugBE(PK, S, t = 0,m). By setting t = 0, the range condition is
never invoked. The advantage of using this condition comes into the proof where

1 The Boneh-Waters paper uses indices 1, . . . , N for the users. We shift this to
0, . . . , N − 1 to better match our exposition.
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we want to prove that no attack algorithm can distinguish an encryption to an
adaptively chosen set S∗ (meaning it is chosen after seeing the public key) if it is
only given keys for u /∈ S∗. The proof proceeds by a sequence of indistinguishable
hybrid experiments where at the i-th hybrid the challenge ciphertext is gener-
ated for index t = i. Finally, we move to t = N and the second property then
implies security of the scheme. Even though there were N indices, the abstrac-
tion and hybrid sequence allowed for a proof to isolate one user at a time. The
BW construction melded a broadcast system with the Boneh-Sahai-Waters [4]
traitor tracing [7] system to enforce the range condition.

Positional Witness Encryption With these concepts in mind, we can turn back
to the problem of devising a proof strategy for witness encryption for an NP-
complete language L. The first step we take is the introduction of a primitive that
we call positional witness encryption. A positional witness encryption system has
an encryption algorithm EncryptPWE(1

λ, x, t,m) that takes as input a security
parameter 1λ, astring x, a position index t ∈ [0, 2n], and a messagem and outputs
a ciphertext CT. Here we let n be the witness length of x and letN = 2n. One can
decrypt a ciphertext by producing a witness w such that R(x,w) = 1 and w ≥ t
where w is interpreted as an integer. Essentially, this has the same correctness
semantics as standard witness encryption, but with the range condition added.
The security properties are as follows:

– Positional Indistinguishability: If R(x, t) = 0 then no poly-time attacker can
distinguish between EncryptPWE(1

λ, x, t,m) and EncryptPWE(1
λ, x, t+1,m).

– Message Indistinguishability: No poly-time attacker can distinguish between
EncryptPWE(1

λ, x, t = 2n,m0) and EncryptPWE(1
λ, x, t = 2n,m1) for all

equal length messages m0,m1.

We point out that the security definition of positional witness encryption is
not explicitly constrained to x /∈ L in any place. However, if some x /∈ L, then
for all witnesses w ∈ [0, 2n − 1] (interpreting the bitstring w as an integer) we
have that R(x,w) = 0. This leads to a natural construction and proof strategy
for witness encryption. To witness encrypt a message m to an instance x, we
call EncryptPWE(1

λ, x, t = 0,m). To prove security, we design a sequence of
indistinguishable hybrids where we increase the value of t at each step until we
get to t = N = 2n where we can invoke message indistinguishability. Each step
can be made since x /∈ L implies R(x,w) = 0. The hybrids cause a 2n loss of
security relative to the security of the positional witness encryption and this
should be compensated for in setting the security parameter. 2

The potential advantage of positional witness encryption is that it offers a
hybrid strategy where the core security property is focused on whether a sin-
gle witness satisfies a relation. However, there is still a very large gap between

2 We note that complexity leveraging is used elsewhere in “computing on en-
crypted data”. For example, current solutions of Attribute-Based Encryption for
circuits [13,18] are naturally selectively secure and require complexity leveraging to
achieve adaptive security.
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imagining this primitive and realizing it. First, we need a data structure that
can both securely hide t and compactly store it (e.g. ciphertexts cannot grow
proportional to the number of witnesses N = 2n). Next, we need to be able to
somehow embed an instance x of an NP-complete problem. This must be done
in such a way that the security proof can isolate a property that depends on
whether R(x,w) = 0 for each witness candidate w and use this to increment the
positional data in a manner oblivious to an attacker.

Tribes Schemes and Their Uses We begin our realization by introducing a data
structure that we call a tribes matrix, which will be flexible enough to encode
both a position and a CNF formula. A tribes matrix will induce a boolean func-
tion from n-bit inputs to a single output bit. We then introduce a cryptographic
primitive called a tribes scheme that will hide some properties of the matrix while
still enabling evaluation of the corresponding boolean function. The benefit of
this middle layer of abstraction is that it portions the work into a manageable
hybrid security proof at the abstract level and creates a rather slim and concise
target for lower level instantiations. This naturally increases the potential for
instantiating our framework with a variety of different assumptions.

The name “tribes” was chosen because of the structural similarities between
the induced boolean function and the tribes function commonly considered in
boolean function analysis (e.g. [2]). In the tribes function, n inputs are thought
of as people that are partitioned into � tribes, and the function outputs 1 if
and only if at least one tribe takes value 1 unanimously. In our case, we define
3-dimensional n×�×2 matrix, where we think of it as having n rows, � columns,
and 2 “slots” for each row and column pair. The slots take values from a 2-
symbol alphabet, notated as {U,B} and are {0, 1}-indexed. The B stands for
“blocked” and the U stands for “unblocked.” To evaluate the boolean function
on a n bit input x1, . . . , xn, we consider each of the � columns as a tribe, but in
each row i we take the value in the slot indexed by xi (this means that the input
bits specify the composition of the tribe from a pre-existing set of values, rather
than providing the values themselves). If some tribe is unanimously “blocked,”
the function outputs 1, otherwise it outputs 0. For a tribes matrix denoted by
M , we will denote the associated boolean function by fM .

When we embed a tribes matrix into a tribes scheme, we seek to allow access
to evaluating the function without revealing full information about the matrix
entries. Of course, some properties of the matrix entries can be inferred from
black-box access to the function, and this is fine; we only seek to hide a very
specific kind of structure that does not affect the function evaluation on any
input. For this, we define the notions of “inter-column” and “intra-column”
security, and the combination essentially requires that the tribes schemes for
two matrices that differ in a single slot value are indistinguishable if there a
simple reason why this slot value does not affect the boolean function.

More precisely, suppose we wish to hide the value of a slot in row i∗, col-
umn k. If there is a column j such that the corresponding slot has value B,
and furthermore in all rows i �= i∗, occurrences of B in column k are always
matched by occurrences of B in column j, then we can change the value of this
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slot in row i∗ without affecting the boolean function. To see this, observe that
regardless of the value at this slot in column k, for any input where tribe k is
unanimously blocked, tribe j is also unanimously blocked. Inter-column security
requires that we can furthermore hide this change in the sense of computational
indistinguishability. The second property of intra-column security ensures that
if both slots of a particular row in a single column have the value U , then any
other slot in the column can be changed without an attacker noticing.

We next consider how one might encode positions and CNF formulas into a
tribes matrix. Our approach is to encode these two objects separately, and then
simply concatenate the matrices. To encode a position t, we wish to produce a
tribes matrix M where the boolean function fM will output 1 for every witness
y < t, and will output 0 otherwise. The key observation is that every potential
witness y < t will have some bit j where it first departs from t (starting from
the most significant bit), and in this bit y will be 0 and t will be 1. We leverage
this by designing the jth column of M to be blocked precisely for such y.

To encode a CNF formula in a tribes matrix, we build a column corresponding
to each clause, where the rows are indexed by the variables, x1, . . . , xn. To fill in
the slots of row i in column j, we see if the literal xi or its negation xi appear
in the jth clause. If xi appears, we put a U in the 1-indexed slot. If xi appears,
we put a U in the 0-indexed slot. For any remaining slots, we put B. This yields
a column that is blocked precisely for inputs that do not satisfy the clause. We
therefore get a matrix whose associated boolean function outputs 1 if and only
if the CNF formula is unsatisfied.

From this, we can construct a positional witness encryption scheme. To en-
crypt a message bit to a particular position and formula, the encryptor forms
tribes matrices as above, concatenates them, and concatenates one extra column
to encode the message (it will contain all U ’s if the bit is 0 and all B’s if the
bit is one). It finally embeds this matrix in a tribes scheme, which serves as the
ciphertext. A decryptor can then evaluate the boolean function to recover the
message. (If R(x,w) = 1 and w ≥ t, then the output of the tribes evaluation will
reflect the message; otherwise, it outputs 1 regardless of the message.)

To prove positional indistinguishability, we proceed through a hybrid ar-
gument that relies upon the inter-column security of the cryptographic tribes
scheme to incrementally change the matrix entries to an encoding of the next
position. During this process, we will need to leverage the fact that the current
position represents a witness that does not satisfy the CNF formula. The key
observation here is that there will be at least one clause that is not satisfied, and
the column for that clause can be used to make changes to entries in another
column through the inter-column security game.

Instantiating a Tribes Scheme Finally, what is left is to instantiate a tribes
scheme and reduce the inter-column and intra-column security requirements to a
computational assumption. We give three related constructions each from multi-
linear algebraic groups with an n linear map, which required for a tribes instance
of n rows.
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Our first instantiation uses composite order symmetric multilinear groups.
The group’s order is a product n + � primes for an n by � tribes matrix. Our
next instantiation (which can be found in the full version) utilizes asymmetric
groups to reduce the order of the group to the product of � primes. Also in
the full version of this paper, we modify the instantiation to be in prime order
using a translation based on eigenvectors. Each instance is based on a pair of
multilinear map assumptions that depend on n (or n and �), but are independent
of the contents of the tribes matrix. The assumptions we use in the composite
order symmetric context for example, are given in Section 5, and we call them the
multilinear subgroup decision and multilinear subgroup elimination assumptions,
as they are rather natural variants of subgroup decision assumptions typically
used in bilinear groups. In fact, in the full version we explain how to use only the
multilinear subgroup elimination assumption. We also justify the prime order
variants of our assumptions in the multilinear generic group model and show
how to translate from algebraic groups into the multilinear encodings of Coron,
Lepoint and Tibouchi (CLT) [9].

2 Positional Witness Encryption

We will first give our definition of a positional witness encryption system and
then show how it implies standard witness encryption by a hybrid argument.

We define a positional witness encryption scheme for an NP language L. Let
R(·, ·) be the corresponding witness relation and let n = n(|x|) be the witness
length for a particular witness x. The system consists of two algorithms:

Encryption. The algorithm EncryptPWE(1
λ, x, t,m) takes as input a secu-

rity parameter 1λ, an unbounded-length string x, a position index t ∈ [0, 2n]
(we let n = n(x)) and a message m ∈ M for some (fixed and finite) message
space M, and outputs a ciphertext CT.

Decryption. The algorithm DecryptPWE(CT, w) takes as input a ciphertext
CT and a length n string w, and outputs a message m or the symbol ⊥. (We
assume the ciphertext specifies the instance x and therefore n = n(|x|) is
known.)

Given a string w ∈ {0, 1}n we will sometimes slightly abuse notation and also
refer to w as an integer in [0, 2n−1] where the most significant bit is the leftmost
bit. In other words, we consider the integer Σi=1,··· ,nwi · 2n−i, where wi is the
i-th bit of the string w.

Definition 1 ( (Perfect) Correctness of Positional Witness Encryp-
tion). For any security parameter λ, for any m ∈ M, and for any x ∈ L
such that R(x,w) holds for w ≥ t, we have that

DecryptPWE

(
EncryptPWE(1

λ, x, t,m), w
)
= m.
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2.1 Security of Positional Witness Encryption

Message Indistinguishability The security of a positional witness encryption for
language L is given as two security properties. The first is message indistinguisha-
bility, which is parameterized by an instance x and two equal length messages
m0,m1. Intuitively, the security property states that if one encrypts to the “fi-
nal” position t = 2n (where n is the witness length of x) then no attacker can
distinguish whether a ciphertext is an encryption of m0 or m1. We emphasize
that this security property is entirely independent of whether x ∈ L. We define
the (parameterized) advantage of an attacker as

MsgPWEAdvA,x,m0,m1
(λ) =

∣
∣
∣Pr[A(EncryptPWE(1

λ, x, t=2n,m1))= 1]− Pr[A(EncryptPWE(1
λ, x, t = 2n,m0))=1]

∣
∣
∣ .

Definition 2 (Message Indistinguishability Security of Positional Wit-
ness Encryption).

We say that a positional witness encryption scheme for a language L with wit-
ness relation R(·, ·) is Message Indistinguishability secure if for any probabilistic
poly-time attack algorithm A there exists a negligible function in the security
parameter negl(·) such that for all instances x and equal length messages m0,m1

we have MsgPWEAdvA,x,m0,m1
(λ) ≤ negl(λ).

We letMsgPWEAdvA,x(λ) be the maximum value ofMsgPWEAdvA,x,m0,m1
(λ)

over the pairs m0,m1 ∈ M for each λ.

Position Indistinguishability The second security game is positional indistin-
guishability. Informally, this security game states that it is hard to distinguish
between an encryption to position t from an encryption to t+ 1 when t is not a
valid witness – that is, R(x, t) = 0. (Here we slightly abuse notation in the other
direction by interpreting the integer t as a bit string.) Positional indistinguisha-
bility security is parameterized by an instance x, a message m, and a position
t ∈ [0, 2n − 1] where n is the witness length of x. We define the (parameterized)
advantage of an attacker as

PosPWEAdvA,x,m,t(λ) =
∣
∣Pr[A(EncryptPWE(1

λ, x, t+ 1,m)) = 1]− Pr[A(EncryptPWE(1
λ, x, t,m)) = 1]

∣
∣ .

Definition 3 (Position Indistinguishability Security of Positional Wit-
ness Encryption).

We say that a positional witness encryption scheme for a language L with
witness relation R(·, ·) is Position Indistinguishability secure if for any prob-
abilistic poly-time attack algorithm A there exists a negligible function in the
security parameter negl(·) such that for all instances x, all message m, and any
t ∈ [0, 2n − 1] where R(x, t) = 0 we have PosPWEAdvA,x,m,t(λ) ≤ negl(λ).

We let PosPWEAdvA,x(λ) be the maximum value of PosPWEAdvA,x,m,t(λ)
over m ∈ M and t ∈ [0, 2n] where R(x, t) = 0 for each λ.

We further require that both the message length and the problem statement
length must be bounded by some polynomial of the security parameter.
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A quick note on the witness encryption definition. We provide the definition
of witness encryption in the appendix of the full version. The definition of our
appendix follows the original of Garg, Gentry, Sahai, and Waters [14], but with
two modifications. First, we restrict ourselves to perfect correctness for simplic-
ity. Second, in defining soundness security we use a notation that the scheme
is secure if for all PPT attackers there exists a negligible function negl(·) such
that for any x /∈ L the attacker must only be able to distinguish encryption
with probability at most negl(λ). The GGSW definition had a different ordering
of quantifiers which allowed the bounding negligible function for a particular
attacker to depend on the instance x. Bellare and Tung Hoang [1] showed that
this formulation was problematic for multiple applications of witness encryption.
Our positional witness encryption definition follows a similar corrected ordering
of quantifiers.

Building Witness Encryption from Positional Witness Encryption Building stan-
dard witness encryption from Positional WE is straightforward. The proofs fol-
lows from the hybrid outlined in the introduction. We describe this formally in
the full version of this paper.

3 Tribes Schemes

A tribes matrix M is an n× �× 2 3-dimensional matrix, with entries belonging
to the two symbol alphabet {B,U}, which stand for “blocked” and “unblocked”.
We consider [n] = {1, 2, . . . , n} as indexing the rows, [�] as indexing the columns,
and {0, 1} as indexing the “slots” (i.e. we think of M as an n× � matrix whose
entries are pairs of slots, each containing a symbol from {B,U}).

Such a matrix M defines a boolean function fM from {0, 1}n to {0, 1} as
follows. Given an input x = (x1, x2, . . . , xn) ∈ {0, 1}n, we examine each column
of M . Suppose, for example, that we are considering column j. We cycle through
the n rows of this column, and while considering row i, we take the value of the
slot whose index matches xi. If the column contains at least one value U in these
slots, then we define the value of the column to be 0. Otherwise, we define it to
be 1. Finally, if there exists a column with value 1, we define the output of the
function to be 1, otherwise it is 0.

More formally, we define fM as:

fM (x) :=

{
1, ∃j s.t. Mi,j,xi = B ∀i ∈ [n];
0, otherwise.

The name for these matrices is inspired by the tribes function, an interesting
object in boolean function analysis. In that domain, one considers the input
boolean vector as specifying the “votes” of a population that is organized into
tribes, and the output is 1 if and only if there exists a tribe that unanimously
voted 1. This is not a perfect analogy to our setting, since we view the input
not as specifying these votes directly but rather as selecting each vote from a
predetermined set of two possible values. Nonetheless, we adopt the “tribes”
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terminology as a helpful device for reinforcing the key feature here that the
output of our function is 1 if and only some column takes on unanimous values
of B when the input is used for indexing the slots.

3.1 Tribes Schemes

We next use the notion of tribes matrices to define a cryptographic primitive
that we will call a tribes scheme. A tribes scheme will have two algorithms.
The first algorithm, Create, will take in tribes matrices and generate objects
that we will call cryptographic tribes. This algorithm is randomized. The second
algorithm, Eval, will take in a cryptographic tribe and an input and compute
the boolean function described above for the tribes matrix that is incorporated
in the cryptographic tribe. This algorithm is deterministic.

Create(λ,M) → T The creation algorithm takes in a security parameter λ and
a tribes matrix M and outputs a cryptographic tribe T .

Eval(T, x ∈ {0, 1}n) → {0, 1} The evaluation algorithm takes in a cryptographic
tribe T and a boolean vector x and outputs a value {0, 1}.

Correctness We require perfect correctness, meaning that for every tribes matrix
M ∈ {B,U}n×�×2, for any security parameter λ, and for any input vector x ∈
{0, 1}n, we have that

Eval(Create(λ,M), x) = fM (x).

3.2 Tribes Security Properties

We will define two security properties for a tribes scheme. Both will be defined
as typical distinguishing games between a challenger and an attacker. We call
the first of these the intra-column game, as it only relies on a condition within a
single column of the underlying tribes matrix. We call the other the inter-column
game, as it involves a relationship between two columns that allows us to change
a “U” symbol to a “B”.

Intra-column Game This game is parameterized by a security parameter λ, a
tribes matrix M , an index j of a column in M such that there is some row i∗

where both slots take the value U3, and an alternate column C ∈ {B,U}n×2

such that the row i∗ also has both slots equal to U . All of these parameters are
given both to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs
Create(λ,M) to produce a cryptographic tribe T . If b = 1, it forms M ′ by
replacing the jth column of M with C, and then runs Create(λ,M ′) to produce
T . It gives T to the attacker, who must then guess the value of the bit b.

3 Of course, for an arbitrary tribes matrix, such a column may not exist. This is
an extra condition we are imposing on M , and this property is only defined for
such M .
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Definition 4. We say a tribes scheme has intra-column security if for every
polynomial time attacker A, there exists a negligible function negl(λ) such that
the attacker’s advantage in the Intra-column Game is ≤ negl(λ), for any valid
settings of M, j, C. Note that the negligible function depends only on A and λ,
and is independent of the dimensions of M , for example.

Inter-column Game This game is parameterized by a security parameter λ, a
tribes matrix M , two indices j and k of columns of M , an index i∗ of a row of
M , and a slot index β such that Mi∗,j,β = B. We require the following condition
on the jth and kth columns of M . For every row i and slot γ except for i = i∗

and γ = 1 − β, if Mi,k,γ = B, then Mi,j,γ = B as well (i.e. when there is only
one U among these values, it is always in column k)4. All of these parameters
are given both to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs
Create(λ,M) to produce a cryptographic tribe T . If b = 1, it forms M ′ by
copying M except for flipping just one entry: M ′

i∗,k,β = B if Mi∗,k,β = U , and
M ′

i∗,k,β = U if Mi∗,k,β = B. It then runs Create(λ,M ′) to produce T . The
challenger gives T to the attacker, who finally must guess the value of the bit b.

Definition 5. We say a tribes scheme has inter-column security if for every
polynomial attacker A, there exists a negligible function negl(λ) such that the
attacker’s advantage in the Inter-Column Game is ≤ negl(λ), for any valid
settings of M, j, k, i, β. Note that the negligible function depends only on A and
λ, and is independent of the dimensions of M , for example.

In the full version, we define a tribes-lite scheme as a relaxed notion of a tribes
scheme, where only inter-column security is required. We then demonstrate how
to be build a tribes scheme from a tribes-lite scheme.

Required Security To be useful for ultimately building witness encryption, the
required security of all of our security games is that they must be negl(λ) ·
2−n where negl(λ) is some negligible function. The demand for the 2−n term is
passed down from the positional hybrid of the previous Section 2. In the next
section we show how to build positional WE from a Tribes scheme. Since that
reduction involves only a polynomial number of hybrids in n (and thus λ) these
are absorbed in the negligible function.

4 Constructing a Positional Witness Encryption Scheme
from a Tribes Scheme

We will now show how to build a positional witness encryption scheme from a
tribes scheme.

4 Again, these are extra conditions we are imposing on M, j, k, β in order for this game
to be applicable.
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4.1 Encoding a CNF in a Tribal Matrix

Suppose we have a CNF formula φ with n variables and � clauses. In other words,
we can write φ = φ1 ∧ φ2 ∧ . . . ∧ φ�, where each φi is a clause over the variables
X1, . . . , Xn and their negations, denoted X1, . . . , Xn. We will define an n× �× 2
tribes matrix Mφ.

In order to set the entries of the jth column of Mφ, we consider the jth

clause φj . For each row i, we do the following: (A) If Xi appears in φj , we set

Mφ
i,j,1 = U . (B) If Xi appears in φj , we set Mφ

i,j,0 = U . (C) For any entries

Mφ
i,j,β not yet defined, set Mφ

i,j,β = B. We note the following property of Mφ:

Lemma 1. If we consider a boolean string x ∈ {0, 1}n as an assignment of
truth values to the variables X1, . . . , Xn of φ, then if clause φj is unsatisfied by
x, column j of Mφ will evaluate to value 1, and hence fMφ(x) = 1. If x satisfies
φ, then fMφ(x) = 0.

Proof. Suppose clause φj is unsatisfied by the assignment x. For each i ∈ [n], we

consider Mφ
i,j,xi

. If xi = 0, then φj unsatisfied implies that Xi does not appear

in φj , and so Mφ
i,j,0 = B. Similarly, if xi = 1, then φj unsatisfied implies Xi does

not appear in φj , so Mφ
i,j,1 = B. Thus, fMφ(x) = 1. Conversely, if x satisfies φ,

then for each column j, there exists some row i such that either xi = 0 and Xi

appears in φj or xi = 1 and Xi appears in φj . Either way, M
φ
i,j,xi

= U . Hence,
fMφ(x) = 0.

4.2 Encoding a Position in a Tribal Matrix

Suppose we have a position t considered as a binary string t = (t1, t2, . . . , tn) ∈
{0, 1}n. We will define an n × n × 2 tribes matrix M t. We describe M t by
specifying how to fill in the jth column of M t. To Set Column j:

For i < j, M t
i,j,0 = B, M t

i,j,1 =

{
U, if ti = 0;

B, if ti = 1.

For i = j, M t
i,j,0 =

{
U, if ti = 0;

B, if ti = 1.
M t

i,j,1 = U

For i > j, M t
i,j,0 = B = M t

i,j,1.

We now establish some relevant properties of M t. First, we observe that the
associated boolean function fMt evaluates to 1 for every boolean string y < t
and evaluates to 0 for every y ≥ t. Here, we use “<” and “≥” to denote the
order induced by the usual ordering of integers, when we think of t, y as binary
expansions with t1, y1 being the most significant bits.
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Lemma 2. If y < t, then fMt(y) = 1.

Proof. Since y < t, there must be some index k ∈ [n] such that ti = yi for all
i < k and tk = 1 while yk = 0. We consider the kth column of M t. We claim
that for all i, M t

i,k,yi
= B. To see this, we can consult our description of the kth

column of M t above, noting that for i < k, whenever yi = 1, then ti = 1 as well
(by definition of k). Thus, fMt(y) = 1.

Lemma 3. If y ≥ t, then fMt(y) = 0.

Proof. We let k ∈ [n] denote an index such that yi = ti for all i ≤ k, and
yk+1 = 1, tk+1 = 0, if k + 1 ≤ n. For a column j where j ≤ k, we observe
that Mj,j,yj = U , since yj = tj . For any column j where j > k, we observe that
Mk+1,j,yk+1

= U . This is because tk+1 = 0 and yk+1 = 1. Hence, fMt(y) = 0.

This defines an effective encoding of positions t from 0 to 2n − 1 (considering
t as an integer). We also require an encoding of 2n. We define M2n to be the
same as M2n−1, except that the first diagonal entry has both slots equal to B.
We observe that fM2n (y) = 1 for all n-bit values y, since the first column is all
filled with B values.

4.3 Our Positional Witness Encryption Scheme

We let our message space be {0, 1}.

EncryptPWE(1
λ, φ, t,m) The encryptor constructs Mφ and M t as above. For

m ∈ {0, 1}, it constructs an additional column Cm (which is n × 2) as follows.
If m = 1, Cm

i,0 = Cm
i,1 = B for all i, and if m = 0, Cm

i,0 = Cm
i,1 = U for all i. It

also constructs a completely unblocked column S, meaning that Si,0 = Si,1 = U
for all i. Note that appending such a column to a tribes matrix will not affect
the evaluation function. (This “scratch column” S will be useful in the proof of
security.)

It then forms an n× (�+n+2)×2 tribes matrix M as M := Mφ||M t||Cm||S,
meaning that the first � columns are taken to be Mφ, the next n columns
are taken to be M t, and the final two columns are taken to be Cm and S.
The encryptor then calls Create(λ,M) to produce a tribes scheme T , and sets
CT := T .

DecryptPWE(CT, w) The decryptor runs Eval(CT, w) and outputs the result.

4.4 Security of our Positional Witness Encryption Scheme

We now prove security of the positional witness encryption based on the two
tribes properties on inter-column and intra-column security. The most complex
part is the proof of position hiding, which is given over a sequence of hybrid
steps. At a very high level the proof (for indistinguishability of position t from
t+1) proceeds in two stages. In the first stage the reduction algorithm identifies
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a clause, j, in the CNF formula that the witness candidate w = t does not
satisfy. Such a clause must exist for this to be a valid instance of the positional
game. The proof then uses the j-th column in the CNF portion of the matrix to
(undetectably) change the scratch column S from having U ’s in each of its 2 · n
slots to having a B in row i slot ti for each i. (The other n slots remain U .) The
security properties are used to argue that such a change is indistinguishable to
an attacker. This copy action into the scratch column will cause the column to
evaluate as “blocked” on input t and remain evaluating to unblocked on all other
inputs. Intuitively, this will have no impact on the overall evaluation since the
j-th column caused a block on input t anyway — providing a conceptual sanity
check for our claim. Intuitively, this stage reflects the fact that t is not a valid
witness and represents this fact in the scratch column.

The next stage of our proof solely involves the scratch column and position
matrix. A series of hybrid steps will use the scratch column to update the posi-
tional part of the matrix from position t to position t+ 1 by “assimilating” the
scratch column from the previous stage. At the end of these steps that scratch
column will again become unblocked in all slots and thus matching the end goal
of our argument. Our proof can be found in the full version.

5 An Instantiation in a Symmetric Model of Composite
Order Multilinear Groups

We provide a description of our first instance of a tribes schemes by instantiating
it in symmetric composite order multilinear groups. Its proof of security and
intuition on the assumptions appear in the full version.

5.1 An Abstract Model of Composite Order Multilinear Groups

We let G denote a (cyclic) group of order N = p1p2 · · · pr, where p1, . . ., pr are
distinct primes. We let GT also denote a cyclic group of order N . We suppose
that we have a k-linear map E : Gk → GT . We assume this is non-degenerate,
meaning that if g generates G, then E(g, g, . . . , g) generates GT . We write the
group operations multiplicatively, and we let 1G, 1GT denote the identity ele-
ments in G and GT respectively.

For each prime pi dividing the group order of N , we have a subgroup Gpi

of order pi inside G. We let gpi denote a generator for Gpi . We let Gp1p2 , for
example, denote the subgroup of order p1p2 that is generated by gp1gp2 .

These subgroups are “orthogonal” under G, meaning (for example) that if
h ∈ Gp1p2···pi−1pi+1pr , then for any g2, . . . , gk−1 ∈ G,

E(h, g2, . . . , gk−1, gpi) = 1GT .

More generally, each element of G can be expressed as gα1
p1
gα2
p2

· · · gαr
pr

. Thus if we

have k elements ofG that are input to E, we can write them as g
α1,1
p1 g

α2,1
p2 · · · gαr,1

pr ,
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. . ., g
α1,k
p1 g

α2,k
p2 · · · gαr,k

pr , and by multi-linearity of E and orthogonality we then
have:

E(g
α1,1
p1

g
α2,1
p2

· · · gαr,1
pr , . . . , g

α1,k
p1

g
α2,k
p2

· · · gαr,k
pr ) = E(g

α1,1
p1

, . . . , g
α1,k
p1

) · · ·E(g
αr,1
pr , . . . , g

αr,k
pr ).

We let G(λ, r, k) denote a group generation algorithm that takes in a security
parameter λ, a desired number of prime factors r, and a desired level of mul-
tilinearity k and outputs a description of a group G as above. We assume the
description includes a generator g ∈ G, the group order N , the primes p1, . . . , pr
comprising N , and efficient algorithms for the group operation in G, the group
operation in GT , and the multilinear map E. Note that with a generator g for
the full group plus knowledge of the prime factors, one can efficiently produce a
generator for any subgroup of order dividing N .

Computational Assumption 1S Our first computational assumption in the sym-
metric setting will be parameterized by positive integers n and ν. It will concern
a group of orderN = a1 . . . anb1 . . . bνc, where a1, . . . , an, b1, . . . , bν , c are n+ν+1
distinct primes. We give out generators ga1 , . . . , gan , gb1 , . . . , gbν for each prime
order subgroup except for the subgroup of order c. For each i ∈ [n], we also give
out a group element hi sampled uniformly at random from the subgroup of or-
der ca1 · · · ai−1ai+1 · · ·an. The challenge term is a group element T ∈ G that
is either sampled uniformly at random from the subgroup or order ca1 · · · an
or uniformly at random from the subgroup of order a1 · · · an. The task is to
distinguish between these two distributions of T .

We name this assumption the (n, ν)-multilinear subgroup elimination assump-
tion.

Computational Assumption 2S Our second computational assumption will be
parameterized by positive integers n and ν. It will again concern a group of
order N = a1 . . . anb1 . . . bνc, where a1, . . . , an, b1, . . . , bν , c are n+ ν +1 distinct
primes. As in Assumption 1, we give out generators ga1 , . . . , gan , gb1 , . . . , gbν for
each prime order subgroup except for the subgroup of order c. The challenge term
is a group element T that is either sampled uniformly at random the subgroup
of order can or the subgroup of order an. The task is to distinguish between
these two distributions of T .

We name this assumption the (n, ν)-multilinear subgroup decision assumption.

5.2 Instantiating a Tribes Scheme

Suppose we wish to build a tribes scheme for n× � × 2 tribes matrices, and we
have a generation algorithm G for producing composite order multilinear groups.
We construct a tribes scheme as follows:

Create(λ,M): The creation algorithm takes in a security parameter λ and an
n × � × 2 tribes matrix M (entries in {U,B}). It then calls G(λ, r = n + �, n)
to produce a group G of order N = p1 · · · pnq1 · · · q� equipped with an n-linear



Witness Encryption from Instance Independent Assumptions 441

map E. It will produce 2n group elements, each indexed by a row i ∈ [n] and
a slot β ∈ {0, 1}. We let gi,β be sampled as follows. First, for each i′ �= i, a
uniformly random element si′ of the subgroup of order pi′ is sampled. Next, for
each column index j ∈ [�], if Mi,j,β = B, then zj is sampled as a uniformly
random element of the subgroup of order qj . If Mi,j,β = U , then zj := 1G. (All
of these values are freshly resampled for each i, β.) We set:

gi,β :=
∏

i′ �=i

si′
�∏

j=1

zj .

The tribes scheme T consists of these 2n elements {gi,β} (we assume this implic-
itly includes a description of G that enables efficient computation of the group
operation and E, and the full group order N , but not the individual primes
comprising N).

Eval(T, x): The evaluation algorithm takes in a tribes scheme T and a boolean
vector x = (x1, . . . , xn) ∈ {0, 1}n. It computes E(g1,x1 , g2,x2, . . . , gn,xn) and
checks whether this is equal to 1GT or not. If is it the identity, it outputs 0.
Otherwise, it outputs 1.

Correctness We first establish that Eval(Create(λ,M), x) = fM (x). We first
observe that (by orthogonality of distinct prime order subgroups)
E(g1,x1 , g2,x2, . . . , gn,xn) can be considered as a product of contributions within
each prime order subgroup. Consider a prime pi. No component in the subgroup
of order pi appears in gi,xi (regardless of the value of xi), so this contribution
is trivial (just the identity element). For analyzing the contribution of the qj
primes, we consider two cases. Suppose ∃ a column j such that Mi,j,xi = B for
all i ∈ [n]. This is equivalent to supposing that fM (x) = 1. In this case, there is
a random component in the subgroup of order qj incorporated in every gi,xi , so
the contribution will be (with high probably) a non-identity element in the qj
order subgroup of GT . This cannot be “canceled out” by a contribution in any
other prime order subgroup, so the result will be �= 1GT in this case, resulting
in an output that matches fM . In the other case, no such column j exists. This
means that for every column j, there is some gi,xi which lacks a component
in the order qj subgroup, hence causing a result of 1GT , and the output again
matches fM .

In the full version, we show that inter-column security for this tribes scheme is
implied by the multilinear subgroup elimination assumption, and intra-column
security is implied by the multilinear subgroup decision assumption. One can
alternatively rely solely on the multlinear subgroup elimination assumption to
build a tribes-lite scheme first and then derive a tribes scheme from it.

Acknowledgements. We thank Mihir Bellare and Amit Sahai for helpful dis-
cussions and comments.
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