
ESPRESSO: An Encryption as a Service

for Cloud Storage Systems

Seungmin Kang1, Bharadwaj Veeravalli1, and Khin Mi Mi Aung2

1 National University of Singpore, Singapore
{kang seungmin,elebv}@nus.edu.sg

2 Data Storage Institute, A*STAR, Singapore
mi mi aung@dsi.a-star.edu.sg

Abstract. Cloud storage systems have become the primary storage
space for cloud users’ data. Despite the huge advantages and flexibility of
the cloud storage services, many challenges are hindering the migration
of users’ data into the cloud. Among them, the data privacy needs to be
considered. In this paper, we design and implement an encryption service
namely ESPRESSO (Encryption as a Service for Cloud Storage Systems)
to protect the users’ data by using advanced encryption algorithms. The
flexible design and the standalone property of ESPRESSO allow cloud
storage service providers to easily integrate it without heavy modifica-
tion and implementation of their infrastructures. ESPRESSO was inte-
grated into two open-source cloud storage platforms: OpenStack/Swift
and Nimbus/Cumulus. The real experiments were conducted, and the
results assess the performance and effectiveness of ESPRESSO.

Keywords: Cloud storage system, encryption, data privacy protection.

1 Introduction

With significant investment, many cloud storage systems are providing cloud
users high data availability and the flexibility in data management, and they
become the primary storage space for users’ data. Thus, instead of storing and
managing data in local servers, most of users nowadays are moving their data
into the cloud and paying for storage and management service by a pay-per-use
model. In this sense, cloud users are sharing a common storage space offered
by Cloud Service Providers (CSPs). This characteristic raises several challenges
which are hindering the migration of users’ softwares and data into the cloud [1].
Among them, the security and data privacy are the most important challenges
needed to be solved to attract users [2]. While consumers have been willing to
trade privacy for the convenience of cloud storage services, this is not the case
for enterprises and government organizations. This reluctance can be attributed
to several factors that range from a desire to protect mission-critical data to
regulatory obligations to preserve the confidentiality and integrity of data. The
latter can occur when the customer is responsible for keeping personally iden-
tifiable information (PII), or financial and medical records [3]. Driven by the

A. Sperotto et al. (Eds.): AIMS 2014, LNCS 8508, pp. 15–28, 2014.
c© IFIP International Federation for Information Processing 2014

16 S. Kang, B. Veeravalli, and K.M.M. Aung

need to secure growing cloud data storage systems as well as high profile secu-
rity breaches, data protection in cloud storage systems has become a hot topic
in both academia and industry [4,5,6,7]. While the current approaches, which
rely on a user-centric authentication service, can be broken by authentication at-
tacks, encryption emerged as one of the most effective means to protect sensitive
data no matter where it lives [8].

With an encryption tool, users can encrypt data on their local machine be-
fore uploading the encrypted data to a cloud. However, this approach introduces
an additional burden for users to manage the encryption key and operate the
encryption tool. Furthermore, users are required to equip local machines which
are able to handle such a compute-intensive task that incurs the time over-
head. These issues make the user-side encryption approach difficult to realize,
especially when users are using scarce resource devices such as smartphones. A
server-side encryption approach is therefore needed. On one hand, CSPs can pro-
vide the encryption to users as an added value service with minimal additional
cost. On the other hand, this encryption can be offered as a free charge service.
It then becomes a competitive advantage of a CSP against other CSPs to attract
users and increase the CSP’s reputation.

Among existing CSPs, only two commercial CSPs: Google Cloud Storage [9]
and Amazon S3 [10] offer a server-side encryption service. However, the encryp-
tion services developed by Google and Amazon cannot be adopted by many other
CSPs which want to offer the server-side encryption to users such as Microsoft
Azure [11], GoGrid [12], RackSpace [13]. This observation inspires us to design
and implement a standalone encryption service, ESPRESSO, for such CSPs to
integrate without heavy modification and implementation of their infrastruc-
tures. Furthermore, we aim at providing a configurable and flexible encryption
service for both CSPs who can choose the encryption algorithm based on their
preference, and users who can specify the critical level of their data. The data
with higher critical level needs to be more securely protected. Last but not least,
we aim at providing ESPRESSO as a transparent encryption service which makes
users perceive no difference between with and without the encryption service in
terms of latency and complexity of data management operations.

The paper is organized as follows. Section 2 presents the problem statement
including threat model and design goals of ESPRESSO whose the architecture
is described in Section 3. Section 4 presents the detailed implementation of
ESPRESSO. The integration of ESPRESSO into the Swift and Cumulus storage
systems is presented in Section 5. Section 6 presents the experimental results
which assess the performance and effectiveness of ESPRESSO. The related work
is discussed in Section 7 followed by the conclusion of the paper in Section 8.

2 Problem Statement

2.1 The System and Threat Model

In this paper, we consider the CSPs which provide a data storage service. To
protect the data privacy, an encryption service is used to encrypt the data before

ESPRESSO: An Encryption as a Service for Cloud Storage Systems 17

being stored in the cloud, and decrypt the data whenever users need to access the
data. Depending on the deployment location of the encryption service, different
threat models can be introduced. Below, three threat models will be analyzed.

1. The first model applies the user-side encryption approach. Users deploy the
encryption software on their local machine and flexibly operate the service
without needing to trust any third party. However, users are generally not
expert in the security domain. The user’s machine therefore suffers the secu-
rity risks such as key exposure attacks or attacks from malicious programs.
Moreover, it is not an easy task for non-expert users to take full responsibil-
ity of encryption key management such as key generation, key storage and
keeping those keys always safe. Yet, if users are using scarce resource devices
such as mobile devices, performing the encryption on such devices may not
be possible since the encryption is considered as a compute-intensive task.

2. Users can rely on a third party who offers the encryption service. The third
party takes full responsibility for managing the data encryption, protecting
the encryption server and preventing the exposure of the users’ encryption
keys. Assuming that the encryption service is resistant to the security risks,
users still have the sole concern on the adversarial behavior of the third
party. With the curiosity and economic purpose, the third party might col-
lude with malicious users to harvest data contents when it is highly benefi-
cial [14]. Moreover, this model requires further effort from users to retrieve
the encrypted data to their local machine before uploading to the cloud.

3. CSPs play the role of the third party presented in the second model. CSPs
deploy the encryption software on a server in its trusted domain as one of
its components. Users therefore benefit all advantages but also suffer the
security risks as mentioned above. The operation overhead might be lesser
since users do not need to manage the encrypted data. Instead, users upload
the plaintext data to the CSP who will forward the data to the encryption
server to encrypt before storing the encrypted data in storage servers.

As described, each model has advantages and disadvantages. Assuming that
users trust the third party in the second model and the CSP in the third model
at the same level, we believe that the third model brings users the most ad-
vantages. Depending on the model, the encryption service may be designed and
implemented differently to assure that it efficiently operates at high performance.
We present in the next section the design goals of ESPRESSO, the encryption
service for CSPs as we advocate the third model presented above.

2.2 Design Goals

Several design requirements should be carefully considered since the design di-
rectly affects the overall performance of the system.

Architectural requirements. The encryption service should include two main
components. The first component is the encryption key management. To increase

18 S. Kang, B. Veeravalli, and K.M.M. Aung

isolation among users, a CSP may use different keys to encrypt different users’
data and a user may have multiple keys for different data. To prevent leaking
one’s key to another, the encryption key must also be encrypted. Additionally,
since the data availability is an important requirement of a cloud storage system,
keys need to be replicated to be available when requested.

The second component is the data encryption management. ESPRESSO needs
to provide the flexibility for both CSPs and users. Since ESPRESSO can be used
by different CSPs, it should support multiple encryption algorithms. A CSP may
choose its preferred algorithms to process users’ data, e.g., Swift may use AES
while Eucalyptus may use Blowfish. For users, the service should allow them
to specify a desired critical level for their data. Currently, the CSPs, which
offer server-side encryption, support only a single key length option, e.g., Google
Cloud uses 128-bit keys. However, users may have different levels of security.
Financial or medical records need to be more securely protected (using 256-bit
keys) than entertainment data like musics or movies (using 128-bit keys).

Choosing supported encryption algorithms and critical levels of data.
Given that CSPs offer different encryption algorithms and key lengths, choosing
the supported encryption algorithms and critical levels of data is also important
to achieve the flexibility. There exists many encryption algorithms in the litera-
ture including symmetric and asymmetric algorithms with their own advantages
and disadvantages. A symmetric algorithm eases the implementation, however,
it may not provide high level of security while an asymmetric algorithm is more
complex to manage its key pair. Additionally, an asymmetric algorithm may take
longer time for data encryption and decryption.

On the critical level of data, the longer key length is, the higher security level
is guaranteed, however, it also takes longer time for encryption and decryption
of data. Therefore, choosing the key length for each security level should take
into account the tradeoff between the security level and the processing time.

APIs for integration to cloud storage platforms. As a last requirement of
ESPRESSO, a well-designed integration API is also important since this allows
CSPs to integrate and to use ESPRESSO easily without heavy modification of
the architecture and implementation of their infrastructure. For instance, to pro-
vide an enhanced encryption service with a flexible critical level, the critical level
should be one of API parameters along with data to be stored and user identi-
fication. Depending on the design, other parameters could be added. However,
they should be carefully chosen since it may be difficult for CSPs to integrate
ESPRESSO with redundant parameters.

3 System Architecture of ESPRESSO

In this section, we first present the detailed architecture and then describe the
method to handle the flexibility and support multi-user scheme in ESPRESSO.

ESPRESSO: An Encryption as a Service for Cloud Storage Systems 19

3.1 Architecture of ESPRESSO

Encryption as a Service

Master KeyKey Generator

Key
EncryptorEncrypted Key

Storage

Encrypted Key
Replicator

Primary
Keys DB

requests
master key

requests key
encryption/
decryption

requests/stores
encrypted keys

replicates
encrypted keys

updates DB

updates DB
Backup
Keys DB

Keys
Management

Data Encryption
Management

Universal API

Data Encryptor

Encryption
Algorithms

requests
algorithm

requests
keys

requests data
encryption/
decryption

Encryption/
Decryption
Requests

submitted

Fig. 1. ESPRESSO overall architecture

The overall architecture of ESPRESSO
is depicted in Fig. 1 with two compo-
nents: Data Encryption Management
and Keys Management. The request
flow is as follows. Universal API is
the gate of ESPRESSO which can
provide a wide range of inter-
action protocols allowing multiple
CSPs to integrate ESPRESSO into
their infrastructures. After receiving a
request, Universal API delivers the re-
quest to Data Encryptor which is re-
sponsible for processing users’ data
using algorithms implemented in En-
cryption Algorithms. Data Encryptor
requests encryption key from Keys

Management through Key Generator which is the starting point of the Keys
Management component. Key Generator retrieves the key stored in Encrypted
Key Storage if it already exists, and sends it to Key Encryptor to decrypt using
a master key. If the requested key does not exist in the database, that means
the user is new on the system or the key for that specific critical level is not yet
generated, Key Generator creates a new key and sends a key encryption request
to Key Encryptor. The new key is then encrypted by the master key and sent
back to Key Generator to store in Encrypted Key Storage. To assure the avail-
ability of encryption keys, encrypted keys are replicated and stored in Backup
Keys DB.

3.2 Handling the Flexibility and Multi-user Scheme

To provide CSPs the flexibility in choosing a preferred encryption algorithm,
ESPRESSO currently supports two algorithms: AES and Blowfish which are
symmetric. By choosing symmetric algorithms, we eliminate the complexity of
managing encryption key pairs which are supposed to be stored on different
servers. Moreover, they are less intensive than asymmetric algorithms in terms
of processing time. Additional algorithms can also be integrated into the system
without breaking the architecture of ESPRESSO thanks to its agile design.

On the critical level of data, ESPRESSO provides three different critical levels
by using three key lengths: 128, 192 and 256 bits for all supported encryption
algorithms. The longer key length guarantees the higher critical level of data. A
less than 128-bit key may be broken by the modern machine while a more than
256-bit key increases the latency of the service. Thus, each user can have up to
three keys corresponding to three critical levels: the highest level uses 256-bit
keys and the lowest level uses 128-bit keys, respectively. For a certain user, all
the data with the same critical level are encrypted by the same key. Since a CSP

20 S. Kang, B. Veeravalli, and K.M.M. Aung

Table 1. Structure of the encryption keys table in MySQL

Field Type Description

key id Integer Key identification: auto increment field

user id String User identification

critical level Character Critical level of user’s data

key string String Key string for encryption and decryption.

serves multiple users, each user is therefore identified by a user identification. We
tie the user identification to the critical level and the encryption key by a tuple of
< user id, critical level, key string > in the encryption key database. Additionally,
keys are generated on request of the CSP for a specific user and critical level.

4 Implementation of ESPRESSO

We use Python to implement ESPRESSO based on its broad adoption and ef-
ficiency. We implement in Universal API the Web Server Gateway Interface
(WSGI) which allows CSPs to deploy ESPRESSO as a WSGI service. The
implementation of Universal API handles the WSGI requests, i.e., extracting
user id, critical level and data, and converts them to internal requests which are
then forwarded to Data Encryptor. There are two functions in Data Encryp-
tor: encrypt data and decrypt data. The encrypt data function, which has three
parameters: user id, critical level and data, prepares the encryption. It includes
instructions for requesting the encryption key from Key Generator, initializ-
ing the encryption algorithm instance and finally invoking the execution of the
encrypt data function implemented in Encryption Algorithms. The algorithm se-
lected by the CSP is saved in an INI configuration file with simple format, for
example, [algorithm]name = AES. Instead of implementing all encryption algo-
rithms by ourselves, we use a library namely PyCrypto [15] which provides the
implementation of various algorithms such as AES, DES, RSA and ElGamal.

Since the critical level parameter is needed to retrieve the encryption key for
data decryption in the future; however, users may not remember which level was
set for the data in the past, we include this parameter in the encrypted data. For
a data retrieval request, the CSP gets the encrypted data from the storage server
and passes it to ESPRESSO with the user id parameter in a decryption request.
Data Encryptor first extracts the critical level parameter from the encrypted data
and then invokes the decryption by calling the decrypt data function.

To provide users a friendly manner to specify the data critical level, we decode
three proposed critical levels by three letters: A stands for the high level, B
stands for the medium level andC stands for the low level. Theses three symbolic
letters hide the complex technical details of critical levels from users who are not
expert in the security domain. The CSPs integrating ESPRESSO should provide
a usage guideline to make their users aware of the trade-off between the strength
and required processing time of each level, i.e., A is the strongest level but it
requires longer time to complete the encryption.

ESPRESSO: An Encryption as a Service for Cloud Storage Systems 21

Algorithm 1 Encryption and Decryption calls

Input: data, user id and critical level for an encryption; encrypted data and user id for
a decryption request; the ESPRESSO server address: server for both requests.

Output: Encrypted data for an encryption; plaintext data for a decryption request.
1: connection = HTTPConnection(server); /*Create an HTTP/HTTPS connection*/
2: connection.putrequest(’EN’, ”); /*’EN’ for encryption and ’DE’ for decryption*/
3: for header in headers do /*Send all HTTP headers: user id, critical level*/
4: connection.putheader(header name, header value);
5: end for
6: for chunk in data do /*Send data by chunks*/
7: connection.send(chunk);
8: end for
9: response = connection.getresponse(); /*Waiting for response*/
10: Extract encrypted data or plaintext data from the response;
11: return

Encryption keys are generated by the Random library supported in Python.
Each is a string including alphabet and numbers with length depending on the
critical level. All keys are stored in a MySQL database whose the structure of
the key table is shown in Table 1. Key Encryptor uses the same algorithm, i.e.,
AES or Blowfish, to encrypt the users’ keys with a master key retrieved from
Master Key. The implementation of Encrypted Key Storage and Encrypted Key
Replicator handles the interaction with MySQL database, i.e., formulating the
SQL query statements and executing the query.

5 Integration of ESPRESSO

We choose Swift [16] and Cumulus [17] to integrate ESPRESSO. These sys-
tems are open-source cloud platforms and they are widely used in both research
community for experimental purpose and industry for commercial purpose. The
integration involves determining a proper place in the source code of the stor-
age systems where ESPRESSO is connected by using provided APIs and adding
code instructions to realize that connection. The abstract pseudocode for en-
cryption and decryption invocations from the storage systems is presented in
Algorithm 1. Its detailed implementation depends on the target systems, pro-
gramming language and supported library, e.g., Swift and Cumulus use Python
while Eucalyptus uses Java. Generally, since ESPRESSO is implemented as a
WSGI service, when a storage server requests for an encryption, a WSGI con-
nection will be established (line 1). User’s information and the data critical level
are then passed by the connection header (lines 3 − 5). The data file is divided
into chunks and sent to ESPRESSO (lines 6 − 8). When the data transmission
is completed, ESPRESSO processes the data on its side while the storage server
waits for the result (line 9) and continues the process after receiving data.

22 S. Kang, B. Veeravalli, and K.M.M. Aung

Internet

Storage
server

ESPRESSO
server

Keystone
server

switch

Swift

REST requests

Users

CSP trusted domain

Storage
server

Storage
server

Proxy
server

switch

(a) With OpenStack/Swift.

Internet

Authz
DB

ESPRESSO
server Cumulus

S3 requests

Users

CSP trusted domain

Cumulus interfaces

S3

Cumulus Redirection

Cumulus API

Cumulus Service
Implementation

Cumulus Storage API

Cumulus interfaces

POSIX HDFS

(b) With Nimbus/Cumulus.

Fig. 2. Integration of ESPRESSO into cloud storage platforms

5.1 Integration of ESPRESSO into Swift

The integration of ESPRESSO into Swift is presented in Fig. 2a where we add the
ESPRESSO server as a novel component of the Swift platform. ESPRESSO is de-
ployed on a separate server rather than becoming an internal component of Swift.
This avoids breaking down the Swift’s code structure. Since the encryption and
decryption happen only when users have downloading, uploading or updating re-
quests which correspond to GET and PUTmethods in the RESTfulAPI supported
by Swift, all of modifications were made to the swift/proxy/controllers/obj.pymod-
ule in the proxy server at two functions: GET(self, req) and PUT(self, req).

On the user’s side, this integration does not complicate the data management
operation. Only the uploading and updating requests require one more parameter
to be added: the data critical level. For instance, if users use cURL [18] to interact
with Swift for data management, the data critical level will be added as a novel
header: -H ’x-critical-level:A’.

5.2 Integration of ESPRESSO into Cumulus

ESPRESSO has also been similarly integrated into the Cumulus storage system.
The encryption and decryption invocations, presented in Algorithm 1 are added in
the cumulus/cb/pycb/cbRequest.pymodule at two classes: cbGetObject(cbRequest)
and cbPutObject(cbRequest). Like Swift, the total number of code lines added
is less than 50 for both methods. This assesses the easy and light adoption of
ESPRESSO in any cloud storage platform.

Since Cumulus supports the Amazon’s S3 REST protocol, many client li-
braries and tools, including s3cmd [19], boto [20] and jets3t [21] can be leveraged
by Cumulus users. For instance, if user uses s3cmd, a novel header will be added
to specify the data critical level: --add-header "critical-level: A".

With the integrated system, if users do not specify the critical level, ESPRESSO
will automatically use the highest level, i.e., A, to encrypt the user’s data.

ESPRESSO: An Encryption as a Service for Cloud Storage Systems 23

6 Experiments and Performance Evaluation

6.1 Experiment Setup

The integrated storage systems were deployed using two dedicated physical
servers on the same rack of the Communications & Networks Lab (CNL) at
the National University of Singapore. Swift and Cumulus were installed on the
server xx.xx.xx.64 and ESPRESSO was installed on the server xx.xx.xx.65.
The servers are PowerEdge C6220 with Intel(R) Xeon(R) Processor E5-2640
2.50GHz, 24GB RAM. We used real data files which are downloaded from the
Wikipedia archive [22]. The file size varies from several MB to 4GB that allows
us to evaluate the efficiency of the encryption algorithm with different loads.
Three following performance metrics were considered for evaluation:

– Latency of encryption algorithms: To show the efficiency of encryption al-
gorithms, we measured the encryption time with different key lengths for
the same algorithm. In addition, we compared the encryption time of two
different algorithms with the same key length.

– Latency of the integrated system with and without ESPRESSO: To show the
transparency of ESPRESSO, the total operation time (i.e., sum of the data
uploading time from the client to the storage server and the data encryption
time) of Swift with and without ESPRESSO were compared.

– Impact of network bandwidth: In this experiment, a remote client which
uses the Internet backbone for transferring data was deployed. Two different
network connections: WiFi and wired connection were applied.

For each experiment, we performed 5 times to measure the average and stan-
dard deviation values of performance metrics. The second and third experiments
were performed on both systems. However, due to the space limit and to avoid
the redundancy, only results on Swift are shown. A comparison of total operation
time between Swift and Cumulus is given in the analysis of the third experiment.

6.2 Performance Analysis

Evaluation of Encryption Algorithms. Fig. 3a presents the encryption la-
tency of the AES algorithm with respect to the data size. We executed AES with
three different key lengths: 128, 192 and 256 bits. It is expected that with the
same key length, the larger data volume is, the longer time is needed to complete
the encryption. With the largest file at 4GB, the encryption time with 256-bit
key is 93 seconds. Comparing the latency of AES with three key lengths, it is
trivial that the longer key needs longer time to complete, however, it generates
a more robust encryption, i.e., the data is more securely protected.

We also measured the encryption time of Blowfish and observed that there is
the same behavior as AES. In Fig. 3b, we present the encryption time of AES
and Blowfish with respect to the data size and with the same key length, 256 bits.
The results show that Blowfish needs a longer time to complete the encryption
for the same data compared to that of AES. Indeed, since Blowfish uses a 64-bit

24 S. Kang, B. Veeravalli, and K.M.M. Aung

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
nc

ry
pt

io
n

tim
e

(s
)

Data size (MB)

256-bit key length
192-bit key length
128-bit key length

(a) Encryption time of AES

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
nc

ry
pt

io
n

tim
e

(s
)

Data size (MB)

256-bit AES
256-bit Blowfish

(b) AES vs. Blowfish.

Fig. 3. Performance of encryption algorithms

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

O
pe

ra
tio

n
tim

e
(s

)

Data size (MB)

With encryption service
Without encryption service

(a) With and without ESPRESSO.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

D
at

a
tr

an
sf

er
 a

nd
 e

nc
ry

pt
io

n
tim

e
(s

)

Data size (MB)

Data transfer time
Encryption time

(b) Details of the encryption time.

Fig. 4. Uploading time with/without ESPRESSO and details of encryption time

block size while AES uses a 128-bit block size, the number of blocks processed
by Blowfish is doubled compared to that of AES. The processing transition
between blocks leads to the overhead of Blowfish. The results also show the
nature of the encryption algorithms that the decryption time is almost the same
as the encryption time as expected. Thus, to avoid the redundancy, we do not
present the results on decryption time here.

Integrated System Validation. To validate the integrated system, we run the
Swift client on a machine located in the same LAN to reduce the data transfer
time between the client and Swift. The encryption algorithm is AES and the
critical level is A. Fig. 4a depicts the total operation time for uploading requests
of Swift with and without ESPRESSO. In the case without ESPRESSO, the
total operation time can be considered as the data transfer time from the client
to the Swift server. It is expected that the total operation time of Swift with
ESPRESSO is longer than that without ESPRESSO since an additional time is
needed for data encryption. This overhead includes data transfer time from Swift
to ESPRESSO, the encryption time and the transfer time from ESPRESSO back
to Swift for resulted data. In the worst case, the total operation time increases
63.95%. The details of the encryption time overhead are presented in Fig. 4b.
While the data transfer time between the Swift and ESPRESSO servers is small
and not affected by other users since the servers are installed on the same rack,

ESPRESSO: An Encryption as a Service for Cloud Storage Systems 25

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

O
pe

ra
tio

n
tim

e
(s

)

Data size (MB)

WiFi connection
Wired connection

Total encryption time

(a) Upload time from a distant client

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

O
pe

ra
tio

n
tim

e
(s

)

Data size (MB)

Swift
Cumulus

(b) Swift vs. Cumulus performance.

Fig. 5. Total uploading time from a distant client to Swift and Cumulus

the encryption time dominates when the file size is large, i.e., larger than 3.5GB.
Even though we assume 4GB files as the worst case scenario, which roughly
corresponds to the total content of a single-sided DVD, one may have larger files
to store. However, the results show that it is strongly discouraged to store large
files to not significantly degrade the performance of the system.

Impact of Network Bandwidth In practice, users are not always located
nearby the cloud. Therefore, the data transfer time from the user’s location to
the cloud is much larger than that presented in previous experiment. Indeed,
we did the third experiment by running the client machine locating 3 kms from
the Swift/Cumulus servers, using the Internet backbone for transferring data. In
Fig. 5a, we present the total operation time of Swift for uploading requests when
the client uses the WiFi and wired connection. The average uploading speed is
1.54 Mbps and 6.72 Mbps, respectively. The results show that the data transfer
time from the client to the Swift server dominates in both connections. With the
largest file with the WiFi connection, the total operation time is 37.45 mins while
the encryption time overhead is only 2.75 mins, corresponding to 7.34% of the
total operation time. From the point of view of a user who is sensitive with the
latency, he may still not accept such overhead. However, considering the security
aspect that the user’s data is securely protected by CSPs, we believe that the
cost represented by the time overhead is worth for such a security service. Fig. 5b
presents the comparison of operation time between Swift and Cumulus when the
remote client uses wired connection. The operation times of both systems are
almost the same. While Swift needs longer time for replicating the data with 3
copies, Cumulus does not provide the replication service. However, this overhead
on Swift is compromised by the fluctuation of the data transfer time.

7 Related Work

Most of literatures on data encryption have focused on providing a user-side en-
cryption tool which allows the owner to share his data with different consumers.
[23] proposed an Identity-Based Authentication scheme by which the owner can
share his encrypted data stored in the cloud. In [5], YI Cloud, a framework for

26 S. Kang, B. Veeravalli, and K.M.M. Aung

protecting the data privacy in the cloud, is presented. The framework includes
two components: a client component which is deployed on the user’s machine
for encryption and key management, and a server component installed on Sec-
tor [24] for management of users and storage nodes. Both [5] and [23] did not
provide the flexibility for providers and users as ESPRESSO did.

In [25], a progressive encryption system has been proposed based on Ellip-
tic Curve Cryptography. The system allows the owner to share his encrypted
data with other consumers without revealing the plaintext data to untrusted
entities. The work did not present any real experiment but we believe that this
approach involves an intensive computation, thus introduces high latency. Fur-
thermore, [25] focused on the encryption algorithm and the sharing mechanism
while we aim at providing an entire encryption service which can be adopted
by any existing CSP. Similarly, [14] proposed a secure and scalable fine-grained
data access control scheme for cloud computing by combining attribute-based
encryption with techniques of proxy re-encryption and lazy re-encryption. Both
[14] and [25] considered a different threat model where users do not trust any
third party such as cloud providers. Hence, users must take full responsibility
for the data encryption and key management on their local machines.

In [7], the authors presented PasS (Privacy as a Service), a set of security
protocols for ensuring the privacy of data stored in the cloud. Although pre-
senting a server-side encryption service, this work assumed that the encryption
service is maintained by a third party that is trusted by users as well as CSPs.
Instead of trusting the third party, CSPs can integrate ESPRESSO as a security
component in their infrastructures. Thus, they can increase the reputation and
help cloud users alleviate the security concerns with the third party.

8 Conclusion and Future Work

We proposed ESPRESSO, a standalone and transparent encryption service for
cloud storage systems. It provides CSPs the flexibility of choosing their pre-
ferred encryption algorithm by supporting two algorithms: AES and Blowfish.
With the flexible design, CSPs can easily integrate ESPRESSO without heavy
modification and implementation of their infrastructures. ESPRESSO provides
users three data critical levels which allow users to specify an appropriate level
of their data. The integrated system does not require much effort from users to
make their data protected. The experiments on the Swift and Cumulus storage
systems show that the introduced encryption latency is negligible compared to
the total operation time of a data management request. All these advantages
assess the effectiveness of ESPRESSO to be integrated into any CSP on the
production level. The work can be extended to support data-owner and data-
consumer schemes. The access control will be used to handle access permission
and an encryption key for each consumer. While we focused only on protecting
the backup data in this paper, a secured computation could be considered since
the data stored in the cloud can be also used for further computation. However,
tackling secured computation properly would require a paper by its self to do
justice to the issues involved. Thus, we address this issue in a future paper.

ESPRESSO: An Encryption as a Service for Cloud Storage Systems 27

Acknowledgements. This work is supported by A*STAR SERC from the
project entitled “Towards Designing Flexible, Cost Effective, Secured Service
Provisioning Strategies for Heterogeneous Data Centres in a Cloud-of-Clouds
infrastructure” (Grant No. 112 280 4009), and A*STAR TSRP from the project
entitled “Secured Large Scale Shared Storage System” (DSI/11-200006).

References

1. IMEX: The Promise & Challenges of Cloud Storage. Technical report, IMEX Re-
search (August 2010)

2. Tian, L.Q., Lin, C., Ni, Y.: Evaluation of User Behavior Trust in Cloud Computing.
In: ICCASM 2010, Taiyuan, pp. 567–572 (October 2010)

3. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010 Workshops.
LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

4. Factor, M., Hadas, D., Hamama, A., Har’el, N., Kolodner, E., Kurmus, A.,
Shulman-Peleg, A., Sorniotti, A.: Secure logical isolation for multi-tenancy in cloud
storage. In: IEEE MSST 2013, Long Beach, CA, pp. 1–5 (May 2013)

5. Huang, Z., Li, Q., Zheng, D., Chen, K., Li, X.: YI Cloud: Improving User Privacy
with Secret Key Recovery in Cloud Storage. In: IEEE SOSE 2011, Irvine, CA, pp.
268–272 (December 2011)

6. Hao, L., Han, D.: The study and design on secure-cloud storage system. In: ICECE
2011, Yichang, China, pp. 5126–5129 (September 2011)

7. Itani, W., Kayssi, A., Chehab, A.: Privacy as a Service: Privacy-aware Data Storage
and Processing in Cloud Computing Architectures. In: IEEE DASC 2009, Chengdu,
China, pp. 711–716 (December 2009)

8. Harrin, E.: Cloud Storage Vendors Offering Encryption as a Service. Technical
report, Enterprise Networking Planet (February 2012)

9. Google, http://googlecloudplatform.blogspot.sg/2013/08/
google-cloud-storage-now-provides.html

10. Amazon S3, http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
11. Microsoft Azure (April 2014), http://www.windowsazure.com/en-us/
12. GoGrid, http://www.gogrid.com/
13. RackSpace, http://www.rackspace.com/
14. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained

data access control in cloud computing. In: IEEE INFOCOM 2010, San Diego, CA,
pp. 1–9 (March 2010)

15. Litzenberger, D.C.: PyCrypto (April 2014),
https://www.dlitz.net/software/pycrypto

16. OpenStack (April 2014), http://swift.openstack.org/
17. Bresnahan, J., Keahey, K., LaBissoniere, D., Freeman, T.: Cumulus: An Open

Source Storage Cloud for Science. In: ScienceCloud 2011, CA, pp. 25–32 (June
2011)

18. cURL, http://curl.haxx.se
19. s3cmd (April 2014), http://s3tools.org/s3cmd
20. boto (April 2014), http://code.google.com/p/boto

http://googlecloudplatform.blogspot.sg/2013/08/google-cloud-storage-now-provides.html
http://googlecloudplatform.blogspot.sg/2013/08/google-cloud-storage-now-provides.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://www.windowsazure.com/en-us/
http://www.gogrid.com/
http://www.rackspace.com/
https://www.dlitz.net/software/pycrypto
http://swift.openstack.org/
http://curl.haxx.se
http://s3tools.org/s3cmd
http://code.google.com/p/boto

28 S. Kang, B. Veeravalli, and K.M.M. Aung

21. jets3t (April 2014), http://jets3t.s3.amazonaws.com
22. Wikipedia: Wikipedia archive (February 2014), http://dumps.wikipedia.org
23. Kang, L., Zhang, X.: Identity-based Authentication in Cloud Storage Sharing. In:

MINES 2010, Nanjing, China, pp. 851–855 (November 2010)
24. Gu, Y., Grossman, R.L.: Sector and Sphere: The Design and Implementation of

a High Performance Data Cloud. Philosophical Transactions of The Royal Society
A: Mathematical Physical and Engineering Sciences 367 (1897), 2429–2445 (2009)

25. Zhao, G., Rong, C., Li, J., Zhang, F., Tang, Y.: Trusted Data Sharing over Un-
trusted Cloud Storage Providers. In: IEEE CloudCom 2010, Indianapolis, IN, pp.
97–103 (November 2010)

http://jets3t.s3.amazonaws.com
http://dumps.wikipedia.org

	ESPRESSO: An Encryption as a Service
for Cloud Storage Systems
	1 Introduction
	2 Problem Statement
	2.1 The System and Threat Model
	2.2 Design Goals

	3 System Architecture of ESPRESSO
	3.1 Architecture of ESPRESSO
	3.2 Handling the Flexibility and Multi-user Scheme

	4 Implementation of ESPRESSO
	5 Integration of ESPRESSO
	5.1 Integration of ESPRESSO into Swift
	5.2 Integration of ESPRESSO into Cumulus

	6 Experiments and Performance Evaluation
	6.1 Experiment Setup
	6.2 Performance Analysis

	7 Related Work
	8 Conclusion and Future Work
	References

