

Abstract: Deep Learning-based Detection of Vessel Occlusions on CT-Angiography in Patients with Suspected Acute Ischemic Stroke

Gianluca Brugnara^{1,2}, Michael Baumgartner^{3,4,5}, Edwin D. Scholze^{1,2}, Katerina Deike-Hofmann^{4,5}, Klaus Kades^{3,5}, Jonas Scherer³, Stefan Denner^{3,8}, Hagen Meredig^{1,2}, Aditya Rastogi^{1,2}, Mustafa A. Mahmutoglu^{1,2}, Christian Ulfert¹, Ulf Neuberger¹, Silvia Schönenberger⁶, Kai Schlamp⁷, Zeynep Bendella⁴, Thomas Pinetz⁸, Carsten Schmeel^{4,5}, Wolfgang Wick⁶, Peter A. Ringleb⁶, Ralf Floca^{3,9}, Markus Möhlenbruch¹, Alexander Radbruch^{4,5}, Martin Bendszus¹, Klaus Maier-Hein^{3,10}, Philipp Vollmuth^{1,2,3}

 ¹Department of Neuroradiology, Heidelberg University Hospital, Heidelberg (HD)
²Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, HD
³Division of Medical Image Computing, German Cancer Research Center (DKFZ), HD
⁴Department of Neuroradiology, Bonn University Hospital, Bonn
⁵Clinical Neuroimaging Group, German Center for Neurodegenerative Diseases, DZNE, Bonn
⁶Neurology Clinic, Heidelberg University Hospital, Heidelberg
⁷Dep. of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, HD
⁸Institute for Applied Mathematics, University of Bonn
⁹Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO)
¹⁰Pattern Analysis and Learning Group, Heidelberg University Hospital philipp, vollmuth@med.uni-heidelberg.de

Swift diagnosis and treatment play a decisive role in the clinical outcome of patients with acute ischemic stroke (AIS), and computer-aided diagnosis (CAD) systems can accelerate the underlying diagnostic processes. Here, we developed an artifical neural network (ANN) which allows automated detection of abnormal vessel findings. Pseudo-prospective external validation was performed in consecutive patients with suspected AIS from 4 different hospitals during a 6-month timeframe and demonstrated high sensitivity (\geq 87%) and negative predictive value (\geq 93%). Benchmarking against two CE- and FDA-approved software solutions showed significantly higher performance for our ANN with improvements of 25–45% for sensitivity and 4–11% for NPV. We provide an imaging platform (https://stroke.neuroAI-HD.org) for online processing of medical imaging data with the developed ANN, including provisions for data crowdsourcing. Notably, this work has previously been published in Nature Communications [1].

References

1. Brugnara G, Baumgartner M, Scholze ED, Deike-Hofmann K, Kades K, Scherer J et al. Deeplearning-based detection of vessel occlusions on CT-angiography in patients with suspected acute ischemic stroke. Nat Commun. 2023;14(1):4938.

© Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2024 A. Maier et al. (Hrsg.), *Bildverarbeitung für die Medizin 2024*, Informatik aktuell, https://doi.org/10.1007/978-3-658-44037-4_4