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Abstract. The model-checking problem for probabilistic systems cru-
cially relies on the translation of LTL to deterministic Rabin automata
(DRW). Our recent Safraless translation [KE12, GKE12] for the LTL(F,G)
fragment produces smaller automata as compared to the traditional ap-
proach. In this work, instead of DRW we consider deterministic automata
with acceptance condition given as disjunction of generalized Rabin pairs
(DGRW). The Safraless translation of LTL(F,G) formulas to DGRW re-
sults in smaller automata as compared to DRW. We present algorithms
for probabilistic model-checking as well as game solving for DGRW con-
ditions. Our new algorithms lead to improvement both in terms of theo-
retical bounds as well as practical evaluation. We compare PRISM with
and without our new translation, and show that the new translation
leads to significant improvements.

1 Introduction

Logic for ω-regular properties. The class of ω-regular languages generalizes reg-
ular languages to infinite strings and provides a robust specification language
to express all properties used in verification and synthesis. The most convenient
way to describe specifications is through logic, as logics provide a concise and
intuitive formalism to express properties with very precise semantics. The linear-
time temporal logic (LTL) [Pnu77] is the de-facto logic to express linear time
ω-regular properties in verification and synthesis.

Deterministic ω-automata. For model-checking purposes, LTL formulas can be
converted to nondeterministic Büchi automata (NBW) [VW86], and then the
problem reduces to checking emptiness of the intersection of two NBWs (rep-
resenting the system and the negation of the specification, respectively). How-
ever, for two very important problems deterministic automata are used, namely,
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(1) the synthesis problem [Chu62, PR89]; and (2) the model-checking problem
for probabilistic systems or Markov decision processes (MDPs) [BK08] which
has a wide range of applications from randomized communication, to security
protocols, to biological systems. The standard approach is to translate LTL to
NBW [VW86], and then convert the NBW to a deterministic automata with Ra-
bin acceptance condition (DRW) using Safra’s determinization procedure [Saf88]
(or using a recent improvement of Piterman [Pit06]).

Avoiding Safra’s construction. The key bottleneck of the standard approach in
practice is Safra’s determinization procedure which is difficult to implement due
to the complicated state space and data structures associated with the con-
struction [Kup12]. As a consequence several alternative approaches have been
proposed, and the most prominent ones are as follows. The first approach is
the Safraless approach. One can reduce the synthesis problem to emptiness of
nondeterministic Büchi tree automata [KV05]; it has been implemented with
considerable success in [JB06]. For probabilistic model checking other construc-
tions can be also used, however, all of them are exponential [Var85, CY95]. The
second approach is to use heuristic to improve Safra’s determinization proce-
dure [KB06, KB07] which has led to the tool ltl2dstar [Kle]. The third approach
is to consider fragments of LTL. In [AT04] several simple fragments of LTL were
proposed that allow much simpler (single exponential as compared to the gen-
eral double exponential) translations to deterministic automata. The generalized
reactivity(1) fragment of LTL (called GR(1)) was introduced in [PPS06] and a
cubic time symbolic representation of an equivalent automaton was presented.
The approach has been implemented in the ANZU tool [JGWB07]. Recently, the
(F,G)-fragment of LTL, that uses boolean operations and only F (eventually
or in future) and G (always or globally) as temporal operators, was considered
and a simple and direct translation to deterministic Rabin automata (DRW)
was presented [KE12]. Not only it covers all fragments of [AT04], but it can also
express all complex fairness constraints, which are widely used in verification.

Probabilistic model-checking. Despite several approaches to avoid Safra’s deter-
minization, for probabilistic model-checking the deterministic automata are still
necessary. Since probabilistic model-checkers handle linear arithmetic, they do
not benefit from the symbolic methods of [PPS06, MS08] or from the tree au-
tomata approach. The approach for probabilistic model-checking has been to
explicitly construct a DRW from the LTL formula. The most prominent proba-
bilistic model-checker PRISM [KNP11] implements the ltl2dstar approach.

Our results. In this work, we focus on the (F,G)-fragment of LTL. Instead of
the traditional approach of translation to DRW we propose a translation to
deterministic automata with generalized Rabin pairs. We present probabilistic
model-checking as well as symbolic game solving algorithms for the new class
of conditions which lead to both theoretical as well as significant practical im-
provements. The details of our contributions are as follows.

1. A Rabin pair consists of the conjunction of a Büchi (always eventually) and a
coBüchi (eventually always) condition, and a Rabin condition is a disjunction
of Rabin pairs. A generalized Rabin pair is the conjunction of conjunctions
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of Büchi conditions and conjunctions of coBüchi conditions. However, as
conjunctions of coBüchi conditions is again a coBüchi condition, a general-
ized Rabin pair is the conjunction of a coBüchi condition and conjunction
of Büchi conditions.1 We consider deterministic automata where the accep-
tance condition is a disjunction of generalized Rabin pairs (and call them
DGRW). The (F,G)-fragment of LTL admits a direct and algorithmically
simple translation to DGRW [KE12] and we consider DGRW for proba-
bilistic model-checking and synthesis. The direct translation of LTL(F,G)
could be done to a compact deterministic automaton with a Muller condi-
tion, however, the explicit representation of the Muller condition is typically
huge and not algorithmically efficient, and thus reduction to deterministic
Rabin automata was performed (with a blow-up) since Rabin conditions ad-
mit efficient algorithmic analysis. We show that DGRW allow both for a
very compact translation of the (F,G)-fragment of LTL as well as efficient
algorithmic analysis. The direct translation of LTL(F,G) to DGRW has the
same number of states as for a general Muller condition. For many formulae
expressing e.g. fairness-like conditions the translation to DGRW is signifi-
cantly more compact than the previous ltl2dstar approach. For example, for
a conjunction of three strong fairness constraints, ltl2dstar produces a DRW
with more than a million states, translation to DRW via DGRW requires
469 states, and the corresponding DGRW has only 64 states.

2. One approach for probabilistic model-checking and synthesis for DGRW
would be to first convert them to DRW, and then use the standard al-
gorithms. Instead we present direct algorithms for DGRW that avoids the
translation to DRW both for probabilistic model-checking and game solving.
The direct algorithms lead to both theoretical and practical improvements.
For example, consider the disjunctions of k generalized Rabin pairs such that
in each pair there is a conjunction of a coBüchi condition and conjunctions
of j Büchi conditions. Our direct algorithms for probabilistic model-checking
as well as game solving is more efficient by a multiplicative factor of jk and
jk

2+k as compared to the approach of translation to DRW for probabilistic
model checking and game solving, respectively. Moreover, we also present
symbolic algorithms for game solving for DGRW conditions.

3. We have implemented our approach for probabilistic model checking in
PRISM, and the experimental results show that as compared to the existing
implementation of PRISM with ltl2dstar our approach results in improve-
ment of order of magnitude. Moreover, the results for games confirm that
the speed up is even greater than for probabilistic model checking.

1 Note that our condition (disjunction of generalized Rabin pairs) is very different
from both generalized Rabin conditions (conjunction of Rabin conditions) and the
generalized Rabin(1) condition of [Ehl11], which considers a set of assumptions and
guarantees where each assumption and guarantee consists of one Rabin pair. Syn-
tactically, disjunction of generalized Rabin pairs condition is

∨
i(FGai ∧∧

j GFbij),
whereas generalized Rabin condition is

∧
j(
∨

i(FGaij ∧ GFbij)), and generalized
Rabin(1) condition is (

∧
i(FGai ∧GFbi) ⇒

∧
j(FGaj ∧GFbj)).
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2 Preliminaries

In this section, we recall the notion of linear temporal logic (LTL) and illustrate
the recent translation of its (F,G)-fragment to DRW [KE12, GKE12] through the
intermediate formalism of DGRW. Finally, we define an index that is important
for characterizing the savings the new formalism of DGRW brings as shown in
the subsequent sections.

2.1 Linear Temporal Logic

We start by recalling the fragment of linear temporal logic with future (F) and
globally (G) modalities.

Definition 1 (LTL(F,G) syntax). The formulae of the (F,G)-fragment of
linear temporal logic are given by the following syntax:

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Fϕ | Gϕ

where a ranges over a finite fixed set Ap of atomic propositions.

We use the standard abbreviations tt := a ∨ ¬a and ff := a ∧ ¬a. Note that
we use the negation normal form, as negations can be pushed inside to atomic
propositions due to the equivalence of Fϕ and ¬G¬ϕ.
Definition 2 (LTL(F,G) semantics). Let w ∈ (2Ap)ω be a word. The ith
letter of w is denoted w[i], i.e. w = w[0]w[1] · · · . Further, we define the ith
suffix of w as wi = w[i]w[i + 1] · · · . The semantics of a formula on w is then
defined inductively as follows: w |= a ⇐⇒ a ∈ w[0]; w |= ¬a ⇐⇒ a /∈ w[0];
w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ; w |= ϕ ∨ ψ ⇐⇒ w |= ϕ or w |= ψ; and

w |= Fϕ ⇐⇒ ∃ k ∈ N0 : wk |= ϕ

w |= Gϕ ⇐⇒ ∀ k ∈ N0 : wk |= ϕ

2.2 Translating LTL(F,G) into Deterministic ω-automata

Recently, in [KE12, GKE12], a new translation of LTL(F,G) to deterministic au-
tomata has been proposed. This construction avoids Safra’s determinization and
makes direct use of the structure of the formula. We illustrate the construction
in the following examples.

Example 3. Consider a formula Fa ∨ Gb. The construction results in the follow-
ing automaton. The state space of the automaton has two components. The first
component stores the current formula to be satisfied. Whenever a letter is read,
the formula is updated accordingly. For example, when reading a letter with no
b, the option to satisfy the formula due to satisfaction of Gb is lost and is thus
reflected in changing the current formula to Fa only.
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Fa ∨ Gb
˛
˛
˛

˘{b}¯

start Fa
˛
˛
˛

˘∅, {b}¯

tt
˛
˛
˛

˘∅, {a}, {b}, {a, b}¯

{b}

∅

{a}, {a, b}

∅, {b}

{a}, {a, b}

∅, {a}, {b}, {a, b}

The second component stores the last letter read (actually, an equivalence
class thereof). The purpose of this component is explained in the next example.
For formulae with no mutual nesting of F and G this component is redundant.

The formula Fa ∨ Gb is satisfied either due to Fa or Gb. Therefore, when
viewed as a Rabin automaton, there are two Rabin pairs. One forcing infinitely
many visits of the third state (a in Fa must be eventually satisfied) and the
other prohibiting infinitely many visits of the second and third states (b in Gb
must never be violated). The acceptance condition is a disjunction of these pairs.

Example 4. Consider now the formula ϕ = GFa∧GF¬a. Satisfaction of this for-
mula does not depend on any finite prefix of the word and reading {a} or ∅ does
not change the first component of the state. This infinitary behaviour requires the
state space to record which letters have been seen infinitely often and the accep-
tance condition to deal with that. In this case, satisfaction requires visiting the
second state infinitely often and visiting the first state infinitely often.

ϕ
∣
∣
∣
{∅} ϕ

∣
∣
∣
{{a}}

∅ {a}
{a}

∅

ϕ
∣
∣
∣
{∅}

∣
∣
∣ 1 ϕ

∣
∣
∣
{{a}}

∣
∣
∣ 1

ϕ
∣
∣
∣
{∅}

∣
∣
∣ 2 ϕ

∣
∣
∣
{{a}}

∣
∣
∣ 2

∅
{a}

{a}
∅∅

{a}

{a}
∅

However, such a conjunction cannot be written as a Rabin condition. In order
to get a Rabin automaton, we would duplicate the state space. In the first copy,
we wait for reading {a}. Once this happens we move to the second copy, where
we wait for reading ∅. Once we succeed we move back to the first copy and start
again. This bigger automaton now allows for a Rabin condition. Indeed, it is
sufficient to infinitely often visit the “successful” state of the last copy as this
forces infinite visits of “successful” states of all copies.

In order to obtain a DRW from an LTL formula, [KE12, GKE12] first constructs
an automaton similar to DGRW (like the one on the left) and then the state
space is blown-up and a DRW (like the one on the right) is obtained. However,
we shall argue that this blow-up is unnecessary for application in probabilistic
model checking and in synthesis. This will result in much more efficient algo-
rithms for complex formulae. In order to avoid the blow-up we define and use
DGRW, an automaton with more complex acceptance condition, yet as we show
algorithmically easy to work with and efficient as opposed to e.g. the general
Muller condition.
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2.3 Automata with Generalized Rabin Pairs

In the previous example, the cause of the blow-up was the conjunction of Rabin
conditions. In [KE12], a generalized version of Rabin condition is defined that
allows for capturing conjunction. It is defined as a positive Boolean combination
of Rabin pairs. Whether a set Inf(ρ) of states visited infinitely often on a run ρ
is accepting or not is then defined inductively as follows:

Inf(ρ) |= ϕ ∧ ψ ⇐⇒ Inf(ρ) |= ϕ and Inf(ρ) |= ψ

Inf(ρ) |= ϕ ∨ ψ ⇐⇒ Inf(ρ) |= ϕ or Inf(ρ) |= ψ

Inf(ρ) |= (F, I) ⇐⇒ F ∩ Inf(ρ) = ∅ and I ∩ Inf(ρ) �= ∅

Denoting Q as the set of all states, (F, I) is then equivalent to (F,Q) ∧ (∅, I).
Further, (F1, Q)∧ (F2, Q) is equivalent to (F1∪F2, Q). Therefore, one can trans-
form any such condition into a disjunctive normal form and obtain a condition
of the following form:

k∨

i=1

⎛

⎝
(
Fi, Q

)
∧

�i∧

j=1

(
∅, Iji

)
⎞

⎠ (∗)

Therefore, in this paper we define the following new class of ω-automata:

Definition 5 (DGRW). An automaton with generalized Rabin pairs (DGRW)
is a (deterministic) ω-automaton A = (Q, q0, δ) over an alphabet Σ, where
Q is a set of states, q0 is the initial state, δ : Q × Σ → Q is a transition
function, together with a generalized Rabin pairs (GRP) acceptance condition

GR ⊆ 22
Q×22

Q

. A run ρ of A is accepting for GR =
{(
Fi, {I1i , . . . , I�ii })

∣∣∣ i ∈
{1, . . . , k}} if there is i ∈ {1, . . . , k} such that

Fi ∩ Inf(ρ) = ∅ and

Iji ∩ Inf(ρ) �= ∅ for every j ∈ {1, . . . , �i}

Each (Fi, Ii) =
(
Fi, {I1i , . . . , I�ii }

)
is called a generalized Rabin pair (GRP),

and the GRP condition is thus a disjunction of generalized Rabin pairs..

W.l.o.g. we assume k > 0 and �i > 0 for each i ∈ {1, . . . , k} (whenever �i = 0 we
could set Ii = {Q}). Although the type of the condition allows for huge instances
of the condition, the construction of [KE12] (producing this disjunctive normal
form) guarantees efficiency not worse than that of the traditional determinization
approach. For a formula of size n, it is guaranteed that k ≤ 2n and �i ≤ n for each
i ∈ {1, . . . , k}. Further, the size of the state space is at most 2O(2n). Moreover,
consider “infinitary” formulae, where each atomic proposition has both F and
G as ancestors in the syntactic tree of the formula. Since the first component
of the state space is always the same, the size of the state space is bounded by
2|Ap| as the automaton only remembers the last letter read. We will make use of
this fact later.
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2.4 Degeneralization

As already discussed, one can blow up any automaton with generalized Rabin
pairs and obtain a Rabin automaton. We need the following notation. For any
n ∈ N, let [1..n] denote the set {1, . . . , n} equipped with the operation ⊕ of
cyclic addition, i.e. m⊕ 1 = m+ 1 for m < n and n⊕ 1 = 1.

The DGRW defined above can now be degeneralized as follows. For each
i ∈ {1, . . . , k}, multiply the state space by [1..�i] to keep track for which Iji we
are currently waiting for. Further, adjust the transition function so that we leave
the jth copy once we visit Iji and immediately go to the next copy. Formally,

for σ ∈ Σ set (q, w1, . . . , wk)
σ−→ (r, w′

1, . . . , w
′
k) if q

σ−→ r and w′
i = wi for all i

with q /∈ Iwi

i and w′
i = wi ⊕ 1 otherwise.

The resulting blow-up factor is then the following:

Definition 6 (Degeneralization index).ForaGRPconditionGR = {(Fi, Ii) |
i ∈ [1..k]}, we define the degeneralization domain B :=

∏k
i=1[1..|Ii|] and the de-

generalization index of GR to be |B| = ∏k
i=1 |Ii|.

The state space of the resulting Rabin automaton is thus |B|-times bigger and
the number of pairs stays the same. Indeed, for each i ∈ {1, . . . , k} we have a
Rabin pair (

Fi ×B, I�ii × {b ∈ B | b(i) = �i}
)

Example 7. In Example 3 there is one pair and the degeneralization index is 2.

Example 8. For a conjunction of three fairness constraints ϕ = (FGa ∨GFb) ∧
(FGc∨GFd)∧ (FGe∨GFf), the Büchi components Ii’s of the equivalent GRP
condition correspond to tt, b, d, f, b∧d, b∧f, d∧f, b∧d∧f . The degeneralization
index is thus |B| = 1 · 1 · 1 · 1 · 2 · 2 · 2 · 3 = 24. For four constraints, it is
1 ·14 ·26 ·34 ·4 = 20736. One can easily see the index grows doubly exponentially.

3 Probabilistic Model Checking

In this section, we show how automata with generalized Rabin pairs can signifi-
cantly speed up model checking of Markov decision processes (i.e., probabilistic
model checking). For example, for the fairness constraints of the type mentioned
in Example 8 the speed-up is by a factor that is doubly exponential. Although
there are specialized algorithms for checking properties under strong fairness
constraints (implemented in PRISM), our approach is general and speeds up
for a wide class of constraints. The combinations (conjunctions, disjunctions) of
properties not expressible by small Rabin automata (and/or Streett automata)
are infeasible for the traditional approach, while we show that automata with
generalized Rabin pairs often allow for efficient model checking. First, we present
the theoretical model-checking algorithm for the new type of automata and the
theoretical bounds for savings. Second, we illustrate the effectiveness of the ap-
proach experimentally.
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3.1 Model Checking Using Generalized Rabin Pairs

We start with the definitions of Markov decision processes (MDPs), and present
the model-checking algorithms. For a finite set V , let Distr(V ) denote the set of
probability distributions on V .

Definition 9 (MDP and MEC). A Markov decision process (MDP) M =
(V,E, (V0, VP ), δ) consists of a finite directed MDP graph (V,E), a partition
(V0, VP ) of the finite set V of vertices into player-0 vertices (V0) and probabilistic
vertices (VP ), and a probabilistic transition function δ: VP → Distr(V ) such that
for all vertices u ∈ VP and v ∈ V we have (u, v) ∈ E iff δ(u)(v) > 0.

An end-component U of an MDP is a set of its vertices such that (i) the
subgraph induced by U is strongly connected and (ii) for each edge (u, v) ∈ E, if
u ∈ U ∩ VP , then v ∈ U (i.e., no probabilistic edge leaves U).

A maximal end-component (MEC) is an end-component that is maximal
w.r.t. to the inclusion ordering.

If U1 and U2 are two end-components and U1 ∩ U2 �= ∅, then U1 ∪ U2 is also an
end-component. Therefore, every MDP induces a unique set of its MECs, called
MEC decomposition.

For precise definition of semantics of MDPs we refer to [Put94]. Note that
MDPs are also defined in an equivalent way in literature with a set of actions such
that every vertex and choice of action determines the probability distribution
over the successor states; the choice of actions corresponds to the choice of edges
at player-0 vertices of our definition.

The standard model-checking algorithm for MDPs proceeds in several steps.
Given an MDP M and an LTL formula ϕ

1. compute a deterministic automaton A recognizing the language of ϕ,
2. compute the product M = M×A,
3. solve the product MDP M.

The algorithm is generic for all types of deterministic ω-automata A. The lead-
ing probabilistic model checker PRISM [KNP11] re-implements ltl2dstar [Kle]
that transforms ϕ into a deterministic Rabin automaton. This approach em-
ploys Safra’s determinization and thus despite many optimization often results
in an unnecessarily big automaton.

There are two ways to fight the problem. Firstly, one can strive for smaller
Rabin automata. Secondly, one can employ other types of ω-automata. As to
the former, we have plugged our implementation Rabinizer [GKE12] of the ap-
proach [KE12] into PRISM, which already results in considerable improvement.
For the latter, Example 4 shows that Muller automata can be smaller than Ra-
bin automata. However, explicit representation of Muller acceptance conditions
is typically huge. Hence the third step to solve the product MDP would be too
expensive. Therefore, we propose to use automata with generalized Rabin pairs.

On the one hand, DGRW often have small state space after translation. Ac-
tually, it is the same as the state space of the intermediate Muller automaton
of [KE12]. Compared to the corresponding naively degeneralized DRW it is |B|
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times smaller (one can still perform some optimizations in the degeneralization
process, see the experimental results).

On the other hand, as we show below the acceptance condition is still algo-
rithmically efficient to handle. We now present the steps to solve the product
MDP for a GRP acceptance condition, i.e. a disjunction of generalized Rabin
pairs. Consider an MDP with k generalized Rabin pairs (Fi, {I1i , . . . , I�ii }), for
i = 1, 2, . . . , k. The steps of the computation are as follows:

1. For i = 1, 2, . . . , k;

(a) Remove the set of states Fi from the MDP.
(b) Compute the MEC decomposition.

(c) If a MEC C has a non-empty intersection with each Iji , for j = 1, 2, . . . , �i,
then include C as a winning MEC.

(d) let Wi be the union of winning MECs (for the ith pair).

2. Let W be the union of Wi, i.e. W =
⋃k

i=1Wi.
3. The solution (or optimal value of the product MDP) is the maximal proba-

bility to reach the set W .

Given an MDP with n vertices and m edges, let MEC(n,m) denote the complex-
ity of computing the MEC decomposition; and LP(n,m) denotes the complexity
to solve linear-programming solution with m constraints over n variables.

Theorem 10. Given an MDP with n vertices and m edges with k generalized
Rabin pairs (Fi, {I1i , . . . , I�ii }), for i = 1, 2, . . . , k, the solution can be achieved in

time O(k ·MEC(n,m) + n ·∑k
i=1 �i) +O(LP(n,m)).

Remark 11. The best known complexity to solve MDPs with Rabin conditions
of k pairs require time O(k ·MEC(n,m)) +O(LP(n,m)) time [dA97]. Thus de-
generalization of generalized Rabin pairs to Rabin conditions and solving MDPs
would require time O(k · MEC(|B| · n, |B| · m)) + O(LP(|B| · n, |B| · m)) time.
The current best known algorithms for maximal end-component decomposition
require at least O(m · n2/3) time [CH11], and the simplest algorithms that are
typically implemented require O(n ·m) time. Thus our approach is more efficient
at least by a factor of B5/3 (given the current best known algorithms), and even
if both maximal end-component decomposition and linear-programming can be
solved in linear time, our approach leads to a speed-up by a factor of |B|, i.e. ex-
ponential in O(k) the number of non-trivially generalized Rabin pairs. In general
if β ≥ 1 is the sum of the exponents required to solve the MEC decomposition
(resp. linear-programming), then our approach is better by a factor of |B|β .

Example 12. A Rabin automaton for n constraints of Example 8 is of doubly
exponential size, which is also the factor by which the product and thus the run-
ning time grows. However, as the formula is “infinitary” (see end of Section 2.3),
the state space of the generalized automaton is 2Ap and the product is of the
very same size as the original system since the automaton only monitors the
current labelling of the state.
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3.2 Experimental Results

In this section, we compare the performance of

L the original PRISM with its implementation of ltl2dstar producing Rabin
automata,

R PRISM with Rabinizer [GKE12] (our implementation of [KE12]) producing
DRW via optimized degeneralization of DGRW, and

GR PRISM with Rabinizer producing DGRW and with the modified MEC check-
ing step.

We have performed a case study on the Pnueli-Zuck randomized mutual ex-
clusion protocol [PZ86] implemented as a PRISM benchmark. We consider the
protocol with 3, 4, and 5 participants. The sizes of the respective models are
s3 = 2 368, s4 = 27 600, and s5 = 308 800 states. We have checked these models
against several formulae illustrating the effect of the degeneralization index on
the speed up of our method; see Table 1.

In the first column, there are the formulae in the form of a PRISM query.
We ask for a maximal/minimal value over all schedulers. Therefore, in the Pmax

case, we create an automaton for the formula, whereas in the case of Pmin we
create an automaton for its negation. The second column then states the number
i of participants, thus inducing the respective size si of the model.

The next three columns depict the size of the product of the system and the
automaton, for each of the L,R,GR variants. The size is given as the ratio of the
actual size and the respective si. The number then describes also the “effective”
size of the automaton when taking the product. The next three columns display
the total running times for model checking in each variant.

The last three columns illustrate the efficiency of our approach. The first col-
umn tR/tGR states the time speed-up of the DGRW approach when compared
to the corresponding degeneralization. The second column states the degeneral-
ization index |B|. The last column tL/tGR then displays the overall speed-up of
our approach to the original PRISM.

In the formulae, an atomic proposition pi = j denotes that the ith participant
is in its state j. The processes start in state 0. In state 1 they want to enter the
critical section. State 10 stands for being in the critical section. After leaving
the critical section, the process re-enters state 0 again.

Formulae 1 to 3 illustrate the effect of |B| on the ratio of sizes of the product
in the R and GR cases, see sR

si
, and ratio of the required times. The theoretical

prediction is that sR/sGR = |B|. Nevertheless, due to optimizations done in the
degeneralization process, the first is often slightly smaller than the second one,
see columns sR

si
and B. (Note that sGR/si is 1 for “infinitary” formulae.) For

the same reason, tR
tGR

is often smaller than |B|. However, with the growing size
of the systems it gets bigger hence the saving factor is larger for larger systems,
as discussed in the previous section.

Formulae 4 to 7 illustrate the doubly exponential growth of |B| and its impact
on systems of different sizes. The DGRW approach (GR method) is often the
only way to create the product at all.



Automata with Generalized Rabin Pairs 569

Table 1. Experimental comparison of L, R, and GR methods. All measurements
performed on Intel i7 with 8 GB RAM. The sign “−” denotes either crash, out-of-
memory, time-out after 30 minutes, or a ratio where one operand is −.

Formula # sL
si

sR
si

sGR
si

tL tR tGR
tR

tGR
|B| tL

tGR

Pmax =?[GFp1=10 3 4.1 2.6 1 1.2 0.4 0.2 2.2 3 6.8
∧ GFp2=10 4 4.3 2.7 1 17.4 1.8 0.3 6.4 3 60.8
∧ GFp3=10] 5 4.4 2.7 1 257.5 15.2 0.6 26.7 3 447.9

Pmax =?[GFp1=10 ∧ GFp2=10 4 6 3.5 1 27.3 2.5 0.9 2.8 4 32.1
∧ GFp3=10 ∧ GFp4=10] 5 6.2 3.6 1 408.5 17.8 0.9 20.4 4 471.2

Pmin =?[GFp1=10 ∧ GFp2=10 4 − 1 1 − 36.5 36.3 1 1 −
∧ GFp3=10 ∧ GFp4=10] 5 − 1 1 − 610.6 607.2 1 1 −

Pmax =?[(GFp1=0 ∨ FGp2 �=0) 3 79.7 1.9 1 225.5 4.1 2.2 1.8 2 101.8
∧(GFp2=0 ∨ FGp3 �=0)] 4 − 1.9 1 − 61.7 29.2 2.1 2 −

5 − 1.9 1 − 1007 479 2.1 2 −
Pmax =?[(GFp1=0 ∨ FGp1 �=0) 3 23.3 1.9 1 66.4 3.92 2.2 1.8 2 30.7

∧(GFp2=0 ∨ FGp2 �=0)] 4 23.3 1.9 1 551.5 61 28.2 2.2 2 19.6
5 − 1.9 1 − 1002.7 463 2.2 2 −

Pmax =?[(GFp1=0 ∨ FGp2 �=0) 3 − 16.3 1 − 122.1 7.1 17.2 24 −
∧(GFp2=0 ∨ FGp3 �=0) 4 − − 1 − − 75.6 − 24 −
∧(GFp3=0 ∨ FGp1 �=0)] 5 − − 1 − − 1219.5 − 24 −

Pmax =?[(GFp1=0 ∨ FGp1 �=0) 3 − 12 1 − 76.3 7.2 12 24 −
∧(GFp2=0 ∨ FGp2 �=0) 4 − 12.1 1 − 1335.6 78.9 19.6 24 −
∧(GFp3=0 ∨ FGp3 �=0)] 5 − − 1 − − 1267.6 − 24 −

Pmin =?[(GFp1 �=10 ∨ GFp1=0 ∨ FGp1=1) 3 2.1 1 1 1.2 0.9 0.8 1 1 1.5
∧GFp1 �=0 ∧ GFp1=1] 4 2.1 1 1 11.8 8.7 8.8 1 1 1.3

5 2.1 1 1 186.3 147.5 146.2 1 1 1.3

Pmax =?[(Gp1 �=10 ∨ Gp2 �=10 ∨ Gp3 �=10) 3 − 32 5.9 − 405 80.1 5.1 8 −
∧ (FGp1 �=1 ∨ GFp2 = 1 ∨ GFp3 = 1) 4 − − 6.4 − − 703.5 − 8 −
∧ (FGp2 �=1 ∨ GFp1 = 1 ∨ GFp3 = 1) 5 − − − − − − − 8 −

Pmin =?[(FGp1 �=0 ∨ FGp2 �=0 ∨ GFp3=0) 3 55.9 4.7 1 289.7 12.6 3.4 3.7 12 84.3
∨ (FGp1 �=10 ∧ GFp2 = 10 ∧ GFp3 = 10) 4 − 4.6 1 − 194.5 33.2 5.9 12 −

5 − − 1 − − 543 − 12 −

Formula 8 is a Streett condition showing the approach still performs compet-
itively. Formulae 9 and 10 combine Rabin and Streett condition requiring both
big Rabin automata and big Streett automata. Even in this case, the method
scales well. Further, Formula 9 contains non-infinitary behaviour, e.g. Gp1 �=10.
Therefore, the DGRW is of size greater than 1, and thus also the product is
bigger as can be seen in the sGR/si column.

4 Synthesis

In this section, we show how generalized Rabin pairs can be used to speed up
the computation of a winning strategy in an LTL(F,G) game and thus to speed
up LTL(F,G) synthesis. A game is defined like an MDP, but with the stochastic
vertices replaced by vertices of an adversarial player.

Definition 13. A game M = (V,E, (V0, V1)) consists of a finite directed game
graph (V,E) and a partition (V0, V1) of the finite set V of vertices into player-0
vertices (V0) and player-1 vertices (V1).
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An LTL game is a game together with an LTL formula with vertices as atomic
propositions. Similarly, a Rabin game and a game with GRP condition (GRP
game) is a game with a set of Rabin pairs, or a set of generalized Rabin pairs,
respectively.

A strategy is a function V ∗ → E assigning to each history an outgoing edge
of its last vertex. A play conforming to the strategy f of Player 0 is any infi-
nite sequence v0v1 · · · satisfying vi+1 = f(v0 · · · vi) whenever vi ∈ V0, and just
(vi, vi+1) ∈ E otherwise. Player 0 has a winning strategy, if there is a strategy f
such that all plays conforming to f of Player 0 satisfy the LTL formula, Rabin
condition or GRP condition, depending on the type of the game. For further
details, we refer to e.g. [PP06].

One way to solve an LTL game is to make a product of the game arena with
the DRW corresponding to the LTL formula, yielding a Rabin game. The cur-
rent fastest solution of Rabin games works in time O(mnk+1kk!) [PP06], where
n = |V |,m = |E| and k is the number of pairs. Since n is doubly exponential
and k singly exponential in the size of the formula, this leads to a doubly ex-
ponential algorithm. And indeed, the problem of LTL synthesis is 2-EXPTIME-
complete [PR89].

Similarly as for model checking of probabilistic systems, we investigate what
happens (1) if we replace the translation to Rabin automata by our new trans-
lation and (2) if we employ DGRW instead. The latter leads to the problem of
GRP games. In order to solve them, we extend the methods to solve Rabin and
Streett games of [PP06].

We show that solving a GRP game is faster than first degeneralizing them
and then solving the resulting Rabin game. The induced speed-up factor is |B|k.
In the following two subsections we show how to solve GRP games and analyze
the complexity. The subsequent section reports on experimental results.

4.1 Generalized Rabin Ranking

We shall compute a ranking of each vertex, which intuitively states how far
from winning we are. The existence of winning strategy is then equivalent to
the existence of a ranking where Player 0 can always choose a successor of the
current vertex with smaller ranking, i.e. closer to fulfilling the goal.

Let (V,E, (V0, V1)) be a game, {(F1, I1), . . . , (Fk, Ik)} a GRP condition with
the corresponding degeneralization domain B. Further, let n := |V | and denote
the set of permutations over a set S by S!.

Definition 14. A ranking is a function r : V ×B → R where R is the ranking
domain {1, . . . , k}!× {0, . . . , n}k+1 ∪ {∞}.

The ranking r(v,wf ) gives information important in the situation when we are

in vertex v and are waiting for a visit of Iwf (i)
i for each i given by wf ∈ B. As

time passes the ranking should decrease. To capture this, we define the following
functions.



Automata with Generalized Rabin Pairs 571

Definition 15. For a ranking r and given v ∈ V and wf ∈ B, we define nextv :
B → B

nextv(wf )(i) =

{
wf (i) if v /∈ Iwf (i)

i

wf (i)⊕ 1 if v ∈ Iwf (i)
i

and next : V ×B → R

next(v,wf ) =

{
min(v,w)∈E r(w, nextv(wf )) if v ∈ V0

max(v,w)∈E r(w, nextv(wf )) if v ∈ V1

where the order on (π1 · · ·πk, w0w1 · · ·wk) ∈ R is given by the lexicographic order
>lg on w0π1w1π2w2 · · ·πkwk and ∞ being the greatest element.

Intuitively, the ranking r(v,wf ) = (π1 · · ·πk, w0w1 · · ·wk) is intended to bear the
following information. The permutation π states the importance of the pairs. The
pair (Fπ1 , Iπ1) is the most important, hence we are not allowed to visit Fπ1 and
we desire to either visit Iπ1 , or not visit Fπ2 and visit Iπ2 and so on. If some
important Fi is visited it becomes less important. The importance can be freely
changed only finitely many (i0) times. Otherwise, only less important pairs can
be permuted if a more important pair makes good progress. Further, wi measures
the worst possible number of steps until visiting Iπi . This intended meaning is
formalized in the following notion of good rankings.

Definition 16. A ranking r is good if for every v ∈ V,wf ∈ B with r(v,wf ) �=
∞ we have r(v,wf ) >v,wf next(v,wf ).

We define (π1 · · ·πk, w0w1 · · ·wk) >v,wf (π′
1 · · ·π′

k, w
′
0w

′
1 · · ·w′

k) if either w0 >
w′

0, or w0 = w′
0 with >1

v,wf hold. Recursively, >�
v,wf holds if one of the following

holds:

– π� > π′
�

– π� = π′
�, v �|= Fπ�

and w� > w′
�

– π� = π′
�, v �|= Fπ�

and v |= Iwf (π�)
π�

– π� = π′
�, v �|= Fπ�

and w� = w′
� and >�+1

v,wf holds (where >k+1
v,wf never holds)

Moreover, if one of the first three cases holds, we say that ��
v,wf holds.

Intuitively, > means the second element is closer to the next milestone and ��,
moreover, that it is so because of the first � pairs in the permutation.

Similarly to [PP06], we obtain the following correctness of the construction.
Note that for |B| = 1, the definitions of the ranking here and the Rabin ranking
of [PP06] coincide. Further, the extension with |B| > 1 bears some similarities
with the Streett ranking of [PP06].

Theorem 17. For every vertex v, Player 0 has a winning strategy from v if and
only if there is a good ranking r and wf ∈ B with r(v,wf ) �= ∞.
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4.2 A Fixpoint Algorithm

In this section, we show how to compute the smallest good ranking and thus
solve the GRP game. Consider a lattice of rankings ordered component-wise, i.e.
r1 >c r2 if for every v ∈ V and wf ∈ B, we have r1(v,wf ) >lg r2(v,wf ). This
induces a complete lattice. The minimal good ranking is then a least fixpoint of
the operator Lift on rankings given by:

Lift(r)(v,wf ) = max
{
r(v,wf ),min{x | x >v,wf next(v,wf )}}

where the optima are considered w.r.t. >lg. Intuitively, if Player 0 cannot choose
a successor smaller than the current vertex (or all successors of a Player 1 vertex
are greater), the ranking of the current vertex must rise so that it is greater.

Theorem 18. The smallest good ranking can be computed in time O(mnk+1kk!·
|B|) and space (nk · |B|).

Proof. The lifting operator can be implemented similarly as in [PP06]. With
every change, the affected predecessors to be updated are put in a worklist, thus
working in time O(k ·out-deg(v)). Since every element can be lifted at most |R|-
times, the total time is O(

∑
v∈V

∑
wf∈B k·out-deg(v)·|R|) = |B|km·nk+1k!. The

space required to store the current ranking is O(
∑

v∈V

∑
wf∈B k) = n · |B| ·k. ��

We now compare our solution to the one that would solve the degeneralized
Rabin game. The number of vertices of the degeneralized Rabin game is |B|
times greater. Hence the time needed is multiplied by a factor |B|k+2, instead of
|B| in the case of a GRP game. Therefore, our approach speeds up by a factor
of |B|k+1, while the space requirements are the same in both cases, namely
O(nk · |B|).

Example 19. A conjunction of two fairness constraints of example 8 corresponds
to |B| = 2 and k = 4, hence we save by a factor of 24 = 16. A conjunction of
three fairness constraints corresponds to |B| = 24 and k = 8, hence we accelerate
248 ≈ 1011 times.

Further, let us note that the computation can be implemented recursively as
in [PP06]. The winning set is μZ. GR(GR, tt,♥Z) where GR(∅, ϕ,W ) =W ,

GR(GR, ϕ,W ) =
∨

i∈[1..k]

νY.
∧

j∈[1..|Ii|]
μX. GR

(
GR \ {(Fi, Ii)}, ϕ ∧ ¬Fi,

W ∨ (ϕ ∧ ¬Fi ∧ Iji ∧ ♥Y ) ∨ (ϕ ∧ ¬F ∧ ♥X)
)

♥ϕ = {u ∈ V0 | ∃(u, v) ∈ E : v |= ϕ} ∪ {u ∈ V1 | ∀(u, v) ∈ E : v |= ϕ} and
μ and ν denote the least and greatest fixpoints, respectively. The formula then
provides a succinct description of a symbolic algorithm.
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4.3 Experimental Evaluation

Reusing the notation of Section 3.2, we compare the performance of the methods
for solving LTL games. We build and solve a Rabin game using

L ltl2dstar producing DRW (from LTL formulae),
R Rabinizer producing DRW, and
GR Rabinizer producing DGRW.

We illustrate the methods on three different games and three LTL formulae; see
Table 2. The games contain 3 resp. 6 resp. 9 vertices. Similarly to Section 3.2,
si denotes the number of vertices in the ith arena, sL, sR, sGR the number
of vertices in the resulting games for the three methods, and tL, tR, tGR the
respective running times.

Formula 1 allows for a winning strategy and the smallest ranking is relatively
small, hence computed quite fast. Formula 2, on the other hand, only allows for
larger rankings. Hence the computation takes longer, but also because in L and
R cases the automata are larger than for formula 1. While for L and R, the
product is usually too big, there is a chance to find small rankings in GR fast.
While for e.g. FG(a ∨ ¬b ∨ c), the automata and games would be the same for
all three methods and the solution would only take less than a second, the more
complex formulae 1 and 2 show clearly the speed up.

Table 2. Experimental comparison of L, R, and GR methods for solving LTL games.
Again the sign “−” denotes either crash, out-of-memory, time-out after 30 minutes, or
a ratio where one operand is −.

Formula si
sL
si

sR
si

sGR
si

tL tR tGR
tR
tGR

|B| tL
tGR

(GFa ∧GFb ∧GFc) 3 22 7.3 4 63.2 1.6 1.1 1.4 9 48.2
∨(GF¬a ∧GF¬b ∧GF¬c) 6 21.3 7.3 3.7 878.6 14.1 7.3 2 9 130.3

9 20.6 7 3.6 − 54.8 31.3 1.8 9 −
(GFa ∨ FGb) ∧ (GFc ∨GF¬a) 3 21 10 4 − 117.5 12 9.8 6 −

∧(GFc ∨GF¬b) 6 16.2 9.2 3.7 − − 196.7 − 6 −
9 17.6 9.2 3.6 − − 1017.8 − 6 −

5 Conclusions

In this work we considered the translation of the LTL(F,G) fragment to deter-
ministic ω-automata that is necessary for probabilistic model checking as well as
synthesis. The direct translation to deterministic Muller automata gives a com-
pact automata but the explicit representation of the Muller condition is huge and
not algorithmically amenable. In contrast to the traditional approach of transla-
tion to deterministic Rabin automata that admits efficient algorithms but incurs
a blow-up in translation, we consider deterministic automata with generalized
Rabin pairs (DGRW). The translation to DGRW produces the same compact
automata as for Muller conditions. We presented efficient algorithms for prob-
abilistic model checking and game solving with DGRW conditions which shows



574 K. Chatterjee, A. Gaiser, and J. Křet́ınský

that the blow-up of translation to Rabin automata is unnecessary. Our results
establish that DGRW conditions provide the convenient formalism that allows
both for compact automata as well as efficient algorithms. We have implemented
our approach in PRISM, and experimental results show a huge improvement over
the existing methods. Two interesting directions of future works are (1) extend
our approach to LTL with the U(until) and the X(next) operators; and (2) con-
sider symbolic computation and Long’s acceleration of fixpoint computation (on
the recursive algorithm), instead of the ranking function based algorithm for
games, and compare the efficiency of both the approaches.
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