CacBDD: A BDD Package with Dynamic Cache
Management

Guanfeng Lv!, Kaile Su?>%*, and Yanyan Xu*®

1 School of Comput. Sci. and Tech., Beijing University of Technology, Beijing, China
2 TIIS, Griffith University, Brisbane, Australia
kailepku@gmail.com
3 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Beijing, China
4 School of Inf. Sci. and Tech., Beijing Forestry University, China
5 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing, China

Abstract. In this paper, we present CacBDD, a new efficient BDD
(Binary Decision Diagrams) package. It implements a dynamic cache
management algorithm, which takes account of the hit-rate of computed
table and available memory. Experiments on the BDD benchmarks of
both combinational circuits and model checking show that CacBDD is
more efficient compared with the state-of-the-art BDD package CUDD.

1 Introduction

BDDs are successfully used in computer-aided verification for their efficient rep-
resentation and manipulation of Boolean functions [1l], and BDD packages con-
stitute the base of some verification tools, such as NuSMV [11] and Jtlv [12].
As given in [2], classic methods of efficient implementation of BDD package in-
clude: unique table, computed table, complement edges, garbage collection and
dynamic variable ordering. Besides, careful allocation of nodes can also speed up
BDD packages as it reduces cache misses [4]. Even though modern BDD packages
have the same cornerstone constituted by the techniques mentioned above, they
may differ in a number of ways. For example, some BDD packages are pointer
based, e.g. [3, 4], and some others, e.g. [5, |6, [13], use integer indices instead. As
for computed table, some packages use a single computed table, and others use
separate computed tables.

The unique table and computed table constitute the base data structures of
modern BDD packages. The unique table is built as a hash table and contains
all the BDD nodes with the hash collisions resolved by chaining. In some BDD
packages, the unique table is implemented as a family of sub-tables and each
of them is associated with a variable for facilitating the dynamic variable re-
ordering |13]. The computed table (also called operation cache) is a hash-based

* Corresponding author.

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 229-F34] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

230 G. Lv, K. Su, and Y. Xu

cache to record a part of the previous BDD operation results and is usually im-
plemented without a collision chain. Complement edge is also adopted by most
modern BDD packages to reduce both space and time. Besides, garbage collec-
tion and dynamic variable reordering are important for decreasing the overall
size of BDDs. Nevertheless, both of them are time consuming. The overhead
of garbage collection is non-negligible and dynamic variable reordering gets the
lion’s share of the CPU time [9].

The size of computed table has a significant impact on BDD computations in
many applications, such as model checking |10]. The management of computed
table is very important for a BDD package’s performance, and how to find a good
dynamic cache management algorithm is the first open problem given by Yang
etc. [10]. Brace etc. 2] indicated that it would be easy to control the memory and
run-time tradeoff by adjusting the ratio of the number of unique-table entries
to the number of computed-table entries. The ratio of the above two numbers is
called hit-rate. However, the method is still static and preliminary, and simply
controlling the hit-rate does not work in many cases. In the well-known BDD
package CUDD, a policy called “reward-based” is adopted [9]. The policy is as
follows: if a large hit-rate of a computed table is observed, then it is worthwhile
to increase the size of the computed table. Obviously, the power of the policy is
limited because the algorithm considers only the hit-rate of a computed table,
and the so-called large value of hit rate is not dynamically adjusted in the
process of computation.

In this paper, we present CaCBD7 a new integer-indices based BDD pack-
age. Besides careful implementations of routine techniques for efficient modern
BDD packages, we adopt a new dynamic cache management method, which sig-
nificantly accelerates BDD operations as indicated by the experimental results.
This novel method provides a promising solution to an important open problem
raised by Yang etc. [10]. Also, CacBDD has some other novel features including
a new garbage collection technique.

2 Implementation

2.1 Cache Management Algorithm

CacBDD is developed in C++, which is an index-based package similar to IBM’s
BDD [5] and TiniBDD [6]. It supports usual operations and those useful for
model checking purpose, including multiple-operand ones like AndExist. In this
paper we will not discuss the details of traditional techniques used in CacBDD
which can be found in |2, 446, |9, [14]. The main novel techniques described in
this section include a dynamic cache management method and a delayed garbage
collection strategy.

Computed table is used as a cache to improve BDD manipulation, and its
size is limited by the available memory. It is a space and time tradeoff issue. In
many applications, the hit-rate of computed table is a function of the instance at

! Available at http://kailesu.net/CacBDD

CacBDD: A BDD Package with Dynamic Cache Management 231

ite(F, G, H)

1: cce = cec+ 1;

2: if (cce >= occ) AND (cts < limitedValue) then
3: if (cchr >= ochr) OR (cts < ne* cchr) then
4 computed_table_increase size();
5 end if

6 ochr = cchr;
i} oce = 2 * cec
8: end if

9: if (terminal case) then

10: return result;

11: end if

12: if (computed-table has entry {F,G, H}) then

13: return result;

14: else

15: Let v be the top variable of {F,G, H};

16: T =ite(Fv, Gv, Hv);

17 E =ite(Fv,Gv, Hv);

18 if (T'==E) then
19: return T
20: endif

21: R = find_or.add_unque_table(v, T, E);
22: Insert_computed_table(F, G, H, R);
23: return R;

24: end if

Fig. 1. The ite operation with dynamic computed table management algorithm

hand. Because the hit-rate of computed table is dynamic, the size of computed
table should be adjusted dynamically. Therefore, if the new hit-rate of computed
table is larger than the old one after resizing the computed table, then it should
be necessary to extend the size of the computed table.

The idea above leads to our dynamic computed table management method.
The algorithm for ite operation (the core of BDD packages) with a dynamic
cache (computed table) management algorithm is give in Fig. [l

In this algorithm, the codes from lines 1 to 8 is for the computed table man-
agement, and the remainder codes constitute the classic algorithm of ite oper-
ation. Number cce (its initial value is 0) is the current counter of ite operation
triggered, and number occ (its initial value is equal to the initial size of the com-
puted table) serves as the threshold of ccc for triggering the cache management
algorithm. Number cts is the size of computed table and nc is the count of the
nodes. Number cchr is the current hit-rate of the computed table, and ochr is
the last hit-rate of the computed table and it is initialized to 0. We also note that
limitedV alue is the max value which can be reached by the size of the computed
table, and it can be determined by the user or the BDD package according to
the memory resource.

The cache management algorithm is triggered upon occ times running of ite
operation. The code in line 4 is to increase the cache size, by which CacBDD
doubles the size of the current cache. Accordingly, in the code of line 7, occ is
assigned the 2 times of ccc. Clearly, by varying the constant 2, we can control
the frequency of triggering cache resizing. In the current version of CacBDD,

232 G. Lv, K. Su, and Y. Xu

the constant is set to 2 by preliminary experiments, although it can be further
tuned in the future study.

Moreover, for unary operations, if the available memory is enough, then a
temporary complete operation hash is utilized by allocating a continuous array
of memory of integer whose count is equal to the count of nodes. When the
operation is finished, the memory block is released.

Finally, if the available memory is not enough for new added nodes, then the
cache size is to shrink (by half) and the memory space is released for new added
nodes. Note that the information of available physical memory can be readily
obtained from modern operating systems.

2.2 Garbage Collection

Garbage collection is also a space and time tradeoff issue. In the classic BDD
packages, the garbage collection is usually triggered based solely on the percent-
age of the dead nodes. However, the high rebirth rate indicates that garbage
collection should be delayed as long as possible in some applications, such as
model checking. Therefore, in CacBDD, we use a simple garbage collection trig-
gering condition: if the free physical memory is nearly used up, then garbage
collection is triggered. It is easy to see that the garbage collection triggering is
almost delayed to the maximal extent.

Table 1. Comparisons with CUDD and CacBDD Fix

Instance CUDD CacBDD CacBDD Fix CUDD/CacBDD CacBDD Fix/CacBDD
Time Mem Time Mem Time Mem TR MR TR MR
¢2670 144 3090 4.4 2771 4.4 2771 3.27 1.12 1.0 1.0
¢3540 11.7 5270 5.0 360.9 53 4249 234 1.46 1.06 1.18
c6288-10 0.3 38.6 0.1 21.6 0.1 22.1 3.0 1.79 1.0 1.02
c6288-11 0.9 815 0.5 499 0.5 659 1.8 1.63 1.0 1.32
c6288-12 3.6 209.7 2.3 1602 2.3 160.2 1.57 1.31 1.0 1.0
c6288-13 129 576.8 9.7 4186 9.8 546.6 1.33 1.38 1.01 1.31
c6288-14 439 1665 33.2 1331.2 33.5 1331.2 1.32 1.25 1.01 1.0
c6288-15 142.2 4806.1 103.1 3474.4 113.4 44984 1.38 1.38 1.10 1.29
c6288-16 456.7 13822.8 337.8 10966.7 373.5 10966.7 1.35 1.26 1.11 1.0
total (1-9) 686.6 22036.5 496.1 17060.6 542.8 18293.1 1.38 1.29 1.09 1.07
abpll 7.9 535 8.5 56.8 109 536.8 0.93 0.94 1.28 9.45
dartes 2.0 44.4 1.4 81.2 1.8 25.2 1.43 0.55 1.29 0.31
dme2-16 241.7 1582 51.4 343.0 121.5 335 4.70 0.46 2.36 0.98
dpd75 565.4 187.2 35.0 647.3 34.5 263.3 16.15 0.29 0.99 0.41
ftp3 42.0 2924 18.9 5709 34.6 3189 222 0.51 1.83 0.56
furnacel? 430.4 122.7 10.3 376.0 1274.3 128 41.79 0.33 123.72 0.34
futurebus 255.3 372.7 546.7 691.6 1504.2 183.6 0.47 0.54 2.75 0.27
key10 48.2 173.0 12.9 400.7 37.5 148.7 3.74 0.43 2.91 0.37
mmgt20 344.8 1221 13.9 357.5 14.3 165.5 24.81 0.34 1.03 0.46
motors-stuck 4.1 64.6 7.8 58.7 10.3 30.7 0.53 1.10 1.32 0.52
overl2 101.8 303.7 24.7 421.2 133.2 169.2 4.12 0.72 5.39 0.40
phone-async 134.8 837.9 60.7 1088.1 79.5 864.1 222 0.77 1.31 0.79
phone-sync-CW 997.8 3895.6 825.0 4384.9 831.3 11552.9 1.21 0.89 1.01 2.63
tcas 334.2 4878.7 182.4 3608.9 179.7 32249 1.83 1.35 0.99 0.89
tomasulo 596.1 4403.3 188.0 2779.3 199.5 2779.3 3.17 1.58 1.06 1.0
valves-gates 3.0 68.3 5.6 45.3 6.9 333 0.54 1.51 1.23 0.74
total (10-25) 4109.5 15978.3 1993.2 15911.4 4474 20759.4 2.06 1.00 2.24 1.30

total 4796.1 38014.8 2489.3 32972 5016.8 39052.5 1.93 1.15 2.02 1.18

CacBDD: A BDD Package with Dynamic Cache Management 233

3 Experimental Results

In this section, we present the experimental results, in order to demonstrate the
efficiency of CacBDD and the effectiveness of the dynamic cache management al-
gorithm in CacBDD. We compare CacBDD with CUDD (version 2.5.0), a pointer-
based and publicly available BDD package. CUDD is one of the most efficient BDD
packages [7,110], and perhaps the most widely used open source package. Most im-
portantly, CUDD is constantly updated by its author over years. To demonstrate
the effectiveness of the dynamic cache management algorithm in CacBDD, we also
compare CacBDD with a slightly modified version of CacBDD, called
CacBDD Fix. CacBDD Fix is the same as CacBDD, except for that it replaces
the cache management method in CacBDD with the one used by CUDD.

The benchmarks used are ISCAS85 and smv-bdd-traces98, which are repre-
sentative in combinational circuits and model checking, respectively [8]. Note
that the main characteristic of ISCAS85 is that all the benchmarks in it have
almost the same hit-rate (nearly to 0.5) of the computed table. In contrast, the
benchmarks of smv-bdd-traces98 come from different models and have different
hit-rates.

The experiments are carried out on a PC workstation (Linux 64, Intel Xeon
2.80GHz CPU and 16GB RAM). We do not report the cases that are either too
small (< 0.1 CPU seconds) or too large (> 16 GB of memory requirement). For
fair comparison, the initial cache size is set to the same value 2'8. The variable
order used follows the order of appearance in the file.

Table 1 reports the runtime and memory comparisons with the CUDD and
CacBDD Fix. The runtime is measured in seconds and the memory in M Bytes.
TR represents the time ratio and M R the memory ratio in the table.

The experimental results show that CacBDD is more efficient than CUDD.
As shown in Table 1, for all the benchmarks of ISCAS85, CacBDD is more
efficient and consumes less memory than CUDD. For the benchmarks of smv-
bdd-traces98, we can see that the runtime of CUDD is about as twice as that of
CacBDD, while the memory usage of CUDD is almost the same for CacBDD.
Especially, for dpd75, furnacel7, and mmgt20, CacBDD achieves tens of times
speedup over CUDD.

The experiments also demonstrate that the dynamic cache management in
CacBDD is effective. The overall runtime performance of CacBDD is about two
times better than that of CacBDD Fix. Table 1 indicates that CacBDD is con-
sistently better than CacBDD Fix in both time and memory dimensions on the
benchmarks of ISCAS85. For most benchmarks of smv-bdd-traces98, the time
consumption of CacBDD Fix is several times more than that of CacBDD. In
particular, for furnace17 CacBDD is 100 times faster than CacBDD Fix.

4 Conclusion
In this paper, we presented a new BDD package (CacBDD) with a dynamic

method for managing computed table. Our experimental results show that
CacBDD outperforms the state-of-the-art package CUDD.

234 G. Lv, K. Su, and Y. Xu

We believe that the efficiency of BDD packages can be further improved,
though it seems that the classical techniques for efficient implementation of BDD
packages have been mature for many years. The proposed dynamic method for
computed table management can be integrated into the other existing BDD
packages as future work. Also, we would like to investigate some other techniques
used in BDD packages, such as hash function.

Acknowledgement. This work was Supported by ARC grants FT0991785 and
DP120102489, 973 Program 2010CB328103, National Natural Science Founda-
tion of China (61073033, 61003056 and 60903054), and Open Project SYSKF1003
of State Key Laboratory of Computer Science. We would like to thank the anony-
mous reviewers for their insightful comments, and Shaowei Cai and Chuan Luo
for their valuable help.

References

1. Bryant, R.E.: GraphBased Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers, 677-691 (1986)

2. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient Implementation of a BDD Pack-
age. In: Proc. 27th DAC 1990, pp. 40-45 (1990)

3. Somenzi, F.: CUDD: CU Decision Diagram Package Release,
http://vlsi.colorado.edu/~fabioi/

4. Long, D.E.: The Design of a Cache-Friendly BDD Library. In: International Con-
ference on Computer-Aided Design (ICCAD 1998), pp. 639-645 (1998)

5. Janssen, G.: Design of a Pointerless BDD Package. In: Workshop Handouts, 10th
IWLS, pp. 310-315 (2001)

6. Lv, G., Su, K., Chen, Q., Chen, Y., Feng, Y.: A Succinct and Efficient Implementa-
tion of a 232 BDD Package. In: The Sixth International Symposium on Theoretical
Aspects of Software Engineering (TASE 2012), Beijing, China (2012)

7. Janssen, G.: A Consumer Report on BDD Packages. In: Proceedings of the 16th

Symposium on Integrated Circuits and Systems Design (SBCCI 2003), Sao Paulo,

Brazil (2003)

The BDD benchmark, http://www.cs.cmu.edu/~bwolen/software/

Somenzi, F.: Efficientmanipulation of decision diagrams. International Journal on

Software Tools for Technology Transfer 3, 17-181 (2001)

10. Yang, B., Bryant, R.E., O’Hallaron, D.R., Biere, A., Coudert, O., Janssen, G.,
Ranjan, R.K., Somenzi, F.: A performance study of BDD-based model checking.
In: Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp.
255-289. Springer, Heidelberg (1998)

11. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359-364. Springer, Heidelberg (2002)

12. Pnueli, A., Sa’ar, Y., Zuck, L.D.: JTLv: A Framework for Developing Verification
Algorithms. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 171-174. Springer, Heidelberg (2010)

13. Rudell, R.: Dynamic Variable Reordering for Ordered Binary Diagrams. In: Proc.
ICCAD, pp. 139-144 (1993)

14. Armin Biere: ABCD, http://fmv. jku.at/abcd/

© ®

http://vlsi.colorado.edu/~fabioi/
http://www.cs.cmu.edu/~bwolen/software/
http://fmv.jku.at/abcd/

	CacBDD: A BDD Package with Dynamic Cache
Management
	1 Introduction
	2 Implementation
	2.1
Cache Management Algorithm
	2.2 Garbage Collection

	3 Experimental Results
	4 Conclusion
	References

