
A Generative Approach for the Adaptive
Monitoring of SLA in Service Choreographies

Antonia Bertolino, Antonello Calabrò, and Guglielmo De Angelis

CNR–ISTI, Pisa, Italy
{antonia.bertolino,antonello.calabro,guglielmo.deangelis}@isti.cnr.it

Abstract. Monitoring is an essential means in the management of
service-oriented applications. Here, event correlation results crucial when
monitoring rules aim at checking the exposed levels of Quality of Service
against the Service Level Agreements established among the choreogra-
phy participants. However, when choreographies are enacted over dis-
tributed networks or clouds, the relevant monitoring rules might not be
completely defined a-priori, as they may need to be adapted to the spe-
cific infrastructure and to the evolution of events. This paper presents an
adaptive multi-source monitoring architecture synthesizing instances of
rules at run-time and shows examples of use on a demonstration scenario
from the European Project CHOReOS.

Keywords: Monitoring, Choreographies, Complex Event Processor,
SOA, SLA, QoS.

1 Introduction

Service choreographies specify the intended interaction protocol among a set of
cooperating services at the application business level [1]. With services becoming
more and more pervasive and critical in everyday life and business, increasing
importance assumes the quality exposed by those interactions. The agreed lev-
els of Quality of Service (QoS) between the involved parties form the Service
Level Agreements (SLAs). Hence, service choreographies are often augmented
with notations expressing the non-functional properties that the choreographed
service should abide by [2]. As a consequence, SLA monitoring and assessment
become essential assets of any environment supporting choreography enactment.

Within the context of SOA, in order to effectively detect unexpected or un-
desirable behaviors of services, locate the origin of the issue, or even predict
potential failures it is generally necessary to track, combine, and analyze events
occurring at different abstraction levels. Therefore, in contrast with the use of
more monitors operating in separate contexts, a promising strategy that is in-
vestigated in the literature is to architect SLA monitoring solutions able to
reveal or predict run-time anomalies due to the combination of phenomena orig-
inated from sources operating at different levels [3]. We have recently devel-
oped [4] a monitoring architecture supporting the SLA monitoring of service

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 408–415, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Adaptive Monitoring of SLA in Service Choreographies 409

choreographies from multiple sources, namely the infrastructure and the busi-
ness layers, within the scope of the CHOReOS project1.

The above mentioned multi-source monitoring solution, though, had not been
conceived to deal with the continuous dynamic evolution that is typical of service
compositions. In a context in which services may dynamically appear and disap-
pear and are dynamically bound, it is reasonable to assume that the same SLA
requirements to be monitored may also evolve, even as a reaction to some occur-
ring event or situation that cannot be a-priori known. Moreover, the deployment
and the execution of applications on highly dynamic Cloud infrastructures in-
troduce further requirements of adaptability with respect to monitoring. Such
requirements must be directly addressed by developers, providers, and maintain-
ers of the choreography-based applications [5].

In this paper we present a monitoring infrastructure that improves on [4]
by supporting the dynamic evolution of SLA monitoring rules. Specifically, our
contribution is a generative approach for the adaptive multi-source monitoring
of SLAs in service choreographies.

The rest of the paper is structured as follows: Section 2 introduces our adap-
tive multi-source monitoring framework including a generative module for the
monitoring rules making the architecture adaptable at run-time; Section 3 re-
ports about a case study demonstrating the application of the approach; finally
Section 4 draws the conclusions.

2 Adaptive SLA Monitoring

In [4] we presented a monitoring architecture based on Glimpse [6] that sup-
ported the SLA monitoring of service choreographies from multiple sources. In
the following we refer to such starting configuration as a Multi-source Monitoring
Framework.

Fig. 1. Multi-source Monitoring Architecture

1 See at http://www.choreos.eu

http://www.choreos.eu

410 A. Bertolino, A. Calabrò, and G. De Angelis

As shown in Figure 1, the configuration relies on a Distributed Service Bus
(DSB) sharing distributed communication channels among the choreographed
services. The DSB distinguishes between a set of channels on which both co-
ordination and application messages flow (i.e. Data Plane), and another set
dedicated to the monitoring activities (i.e., Control Plane). The data passing
through the latter, can be correlated and analyzed by means of a Complex Event
Processor (CEP).

Via the DSB, the Multi-source Monitoring Framework integrates three differ-
ent monitoring facilities, each relative to a specific data source:
Infrastructure Monitor (IM): focuses on the status of the environment, providing
support for the monitoring of resources, both in terms of their utilization and
health status.
Business Service-Oriented Monitor (BSM): is responsible for monitoring the co-
ordination messages that the choreographed services exchange with each other
on the Data Plane channels of the DSB, by means of distributed interceptors.
Then, BSM analyzes the temporal sequence of those events, checks the compli-
ance of the SLA in the choreography specification, and, if any violation is found,
it notify over the Control Plane.
Event Monitor (EM): refers to a generic event-based monitoring infrastructure
able to bridge the notifications coming from the other two sources. Specifically
at this level the other two kind of sources are wrapped by means of Glimpse
Probes that forward notifications to the Glimpse CEP where they are processed
and correlated.

Let us now refer to a scenario, such as the one that is emerging within the
context of the Cloud paradigm, in which a solution that relies on the off-line
definition of the monitoring rules appears not effective, as it is not thinkable to
foresee a-priori the actual instantiation of the configurations. In fact, in the Cloud
computing model enterprises provide infrastructures (e.g. machines) on-demand
by allocating the exact amount of resources the customers need to use. Therefore,
the information about the nodes available, and the mapping of the services on
them becomes available only at run-time. Both the monitoring infrastructure
and the correlation rules should deal with such dynamic contexts and adapt
themselves according to the evolution of the deployment context.

To address such need, in this paper we propose a novel adaptive configuration
of the Multi-source Monitoring Framework that supports the definition of the
monitoring rules at run-time: the latter are synthesized by means of techniques
based on generative programming approaches [7]. In this sense, with respect
to the high-level hierarchical configuration presented in Section 2, the main
improvement toward adaptiveness at run-time is relative to the source Event
Monitoring.

In any event-based monitor, a central element is the CEP, which is the rule
engine that analyzes the primitive events, generated from some kind of probes,
in order to infer complex events matching the consumer requests. There exist
several rule engines that can be used for this task (like Drools Fusion, RuleML),
and for the sake of space we do not focus on traditional aspects of a CEP [6].

Adaptive Monitoring of SLA in Service Choreographies 411

Fig. 2. Main Components of the CEP for the Adaptive Monitor

We focus instead on the specific components that support adaptiveness: as de-
picted in Figure 2, we have extended the CEP in its functionalities by including
the sub-components: the Rules Repository, the Rule Generator, and the Tem-
plate Repository.

The component Rules Repository abstracts the definition of three kind of
repositories, each linking a dedicated kind of rule-set. Specifically, there is a
repository storing the rules matching infrastructure events; a repository storing
event rules about the SLA agreed among the choreographed business services;
finally an additional repository storing the meta-rules enabling the run-time
adaptation by means of generative procedures. A meta-rule is a special rule
whose body implements the run-time synthesis procedure for populating both
the SLA Rule Repository, and the Infrastructure Rule Repository.

Fig. 3. Diagram of Interactions during Rule Synthesis

412 A. Bertolino, A. Calabrò, and G. De Angelis

Figure 3 depicts a UML Sequence Diagram modeling the interaction schema
that takes place among the traditional CEP and its new sub-components. Specif-
ically, the rule generation is done in two steps. First, whenever a meta-rule within
the CEP matches, it triggers the synthesis by the Rule Generator component.
This will refer to the entries of the Template Repository relative to the kind
of rules to be generated: precisely, a rule template is a rule skeleton, the spec-
ification of which has to be completed at run-time by instantiating a set of
template-dependent placeholders. The Rule Generator will instantiate the latter
with appropriate values inferred at run-time. Second, once the run-time synthesis
of the new set of rules is completed, the Rule Generator loads the new rules into
their corresponding repository (either SLA Rule Repository or Infrastructure
Rule Repository) and enables them by refreshing the CEP’s rule engine.

For the sake of completeness, we remark that both the SLA Rule Repository,
and the Infrastructure Rule Repository can obviously also include sets of static
rules that do not depend on the generative process discussed above.

3 Demonstration Scenario

The presented monitoring framework provides the facilities to adaptively de-
tect and correlate events generated by different layers. In this section we show
how this can help problems detection on a scenario referred by a choreography
developed within the CHOReOS Project.

3.1 Scenario Description

In the following, the paper refers to the choreography “Manage Unexpected Ar-
rival” from the “Passenger-Friendly Airport” [8]. For the sake of presentation
with respect to the main contribution of the paper, the case study focuses on
the monitoring activities of the task Book Amenities [8], and more specifically
when the role Airport starts interacting with the other participants in the task
(e.g. Security Company, etc.).

Fig. 4. The Passenger-Friendly Airport Use Case

Adaptive Monitoring of SLA in Service Choreographies 413

Specifically, with respect to the interactions between the Airport, and the
Security Company, the paper reports how to combine the run-time assessment
of the QoS by the BSM with the information provided by the IM referring to
the status of the nodes hosting the services.

Within the configuration of the scenario the infrastructural nodes were
equipped on-purpose with means (i.e. “Load Knob”) for injecting artificial dis-
ruptions by overloading them.

The components of the Multi-source Monitoring framework were distributedly
deployed on dedicated nodes (i.e. hosting the DSB, the CEP, and the BSM).
According to the configuration presented in Section 2, the scenario included a
set of probes (i.e. Glimpse Probes) notifying either violations of SLAs at business
service level, or information about the status of the nodes in the cloud hosting
the services.

In addition, the BSM has been configured to intercept events on the Data
Plane, while the CEP and the Glimpse Probe were bound to the Control Plane.
Finally, an SLA regulating the latency of the interactions between the partic-
ipants Airport, and Security Company has been loaded and activated within
the BSM.

3.2 Execution and Adaptation

Within this case study we assumed that the rule knowledge base of the CEP
has been instructed with a meta-rule specifying the action/countermeasure to
activate if an SLA violation message occurs. We are assuming that the action
depends on the specific machine where the violation occurred, and moreover it
varies for the two different configurations about the monitored notifications: 1)
SLA violation && node overload; 2) SLA violation && node not overloaded.

When the BSM reveals that an SLA violation has occurred, its associated
Glimpse Probe sends a warning to the CEP. According to the generative process
described in Section 2, the CEP first interacts with an internal registry associated
with the Data Plane of the DSB in other to identify the IP address of the
machine running the specific instance of the service that violated the SLA; then,
its Rule Generator component synthesizes and enables a new rule looking for
issues on the node hosting that service.

Listing 1 reports the auto-generated rule after an SLA violation of the service
Security Company is raised to the CEP.

The generated rule is composed by two parts: the first begins at line 7, where
the $aEvent represents the SLA Alert event sent by the BSM to the CEP. It is
identified by the timestamp, a parameter checking if the event has been already
managed by the CEP (i.e. isConsumed), and the name of the event. The second
part begins at line 8, and represents the infrastructure event the Multi-source
Monitoring framework looks for matching. Notably, this second part specifies
a parameter called getMachineIP containing the IP address of the node that
generated the infrastructure-level notification, which would be matched with
the IP address retrieved from the SLA notification during the generation of the
rule. In addition, such a declaration refers to a filter on the window frame within

414 A. Bertolino, A. Calabrò, and G. De Angelis

which the correlation should be considered valid (see at line: 8). Specifically
Listing 1 specifies that two events can be correlated if $bEvent occurred within
a 10 seconds interval after $aEvent.

1 <ComplexEventRuleActionList xmlns="http://labse.isti.cnr.it/glimpse/xml/ComplexEventRule"...>
2 <Insert RuleType="drools"><RuleName>

SLA_violation_overload_Autogenerated_SecutiryCompanyService</RuleName>
3 <RuleBody>
4 rule "SecurityCompanyService_INFRASTRUCTUREVIOLATION"
5
6 when
7 $aEvent : GlimpseBaseEventChoreos(this.isConsumed == true, this.getTimeStamp == 1360752708858,

this.getEventName == "SLA Alert − SecurityCompanyService");
8 $bEvent : GlimpseBaseEventChoreos(this.isConsumed == false, this.getEventName == "load_one",

this.getMachineIP == "67.215.65.132", this after[0,10s] $aEvent);
9 then

10 $bEvent.setConsumed(true); update($bEvent);
11 ResponseDispatcher.LogViolation("...","auto_generated_rule", "\nSLA and Infrastructure violation by

service: SecurityCompanyService" + "\npossibly due to an overload on machine: " + $bEvent.
getMachineIP());

12 retract($aEvent); retract($bEvent);
13 end
14 </RuleBody>
15 </Insert>
16 </ComplexEventRuleActionList>

Listing 1. Generated Rule : SLA violation due to the overload of the hosting node

In the simulation case that no artificial overload is injected, the rule at Listing 1
applies, and a notification is dispatched to the service provider/administrator as
potentially the violation may be due to the service itself. On the other hand, by
querying the “Load Knob” on the node hosting the Security Company service , it
is possible to inject some artificial disruption at the infrastructure level. In this
case, when both the SLA violation on Security Company and a notification of an
overload peak from the machine hosting it occur, the rule at Listing 1 matches.
The assigned countermeasure is to dispatch a notification for redistributing some
of the services active on that specific node onto some others nodes of the cluster.

4 Conclusion and Future Work

Adaptability is a key problem in the distributed and dynamic environments
subsumed by the paradigm of the service choreographies. Specifically, as chore-
ographies are abstract specifications, they may include interaction schema that
can evolve after the design phase, so that unexpected events or scenarios may
actually take place at run-time.

In addition, adaptability is a crucial asset for monitoring infrastructures cor-
relating phenomena originated from sources operating at different abstraction
layers; for example trying to understand the causes of run-time anomalies such
as the SLA violations among participants of a choreography. In these contexts
the dynamicity is even more evident when the participants are executing in a
distributed cloud-based infrastructure.

In this work we extended the Multi-source Monitoring framework originally
introduced in [4] with features supporting the adaptive generation of the moni-
toring rules at run-time. Other works already exist, e.g. [3], and [5], arguing that
SOA monitoring cannot address separately layer-specific issues. Moreover, the

Adaptive Monitoring of SLA in Service Choreographies 415

authors of both [9], and [10] previously considered that the monitoring activity
can be enhanced with adaptation. On the one hand, these frameworks mainly
refer to orchestrated service compositions while we focused on decentralized and
message-oriented scenarios that are typical of service choreographies. On the
other hand, our architecture refers to “adaptiveness” as a mean to deal with
configurations/scenarios that cannot be completely specified either at design, or
deployment time. The work and the application case study have been developed
as part of the demonstrators of the CHOReOS project.

An interesting aspect of [9] that our work did not consider yet concerns the
verification of the consistency between the run-time generated rules and the ones
already loaded within the CEP. We are interested in supporting means ensuring
such kind of consistency for the Multi-source Monitoring framework.

Acknowledgments. This work is part of the European Project FP7 IP 257178:
CHOReOS. We thank the colleagues from Linagora and University of São Paulo
for their contribution to some components of the Multi-source Monitoring
Framework.

References

1. Barker, A., Walton, C.D., Robertson, D.: Choreographing Web Services. IEEE T.
Services Computing 2(2), 152–166 (2009)

2. Bartolini, C., Bertolino, A., Ciancone, A., De Angelis, G., Mirandola, R.: Non-
Functional Analysis of Service Choreographies. In: Proc. of the Workshop on Prin-
ciples of Engineering Service Oriented Systems. IEEE-CS (June 2012)

3. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered Monitoring
and Adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2012. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011)

4. Ben Hamida, A., Bertolino, A., Calabrò, A., De Angelis, G., Lago, N., Lesbegueries,
J.: Monitoring service choreographies from multiple sources. In: Avgeriou, P. (ed.)
SERENE 2012. LNCS, vol. 7527, pp. 134–149. Springer, Heidelberg (2012)

5. Katsaros, G., Kousiouris, G., Gogouvitis, S.V., Kyriazis, D., Menychtas, A.,
Varvarigou, T.: A Self-adaptive hierarchical monitoring mechanism for Clouds.
JSS 85(5), 1029–1041 (2012)

6. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a
Model-Driven Infrastructure for Runtime Monitoring. In: Troubitsyna, E.A. (ed.)
SERENE 2011. LNCS, vol. 6968, pp. 130–144. Springer, Heidelberg (2011)

7. Czarnecki, K., Eisenecker, U.W.: Generative programming - methods, tools and
applications. Addison-Wesley (2000)

8. Chatel, P., Vincent, H. (eds.): Passenger Friendly Airport Services Choreographies
Design. Number Del. D6.2. The CHOReOS Consortium (2012)

9. Contreras, R., Zisman, A., Marconi, A., Pistore, M.: PRadapt: A framework for
dynamic monitoring of adaptable service-based systems. In: Proc. of the Workshop
on Principles of Engineering Service Oriented Systems, pp. 50–56 (June 2012)

10. Wetzstein, B., Karastoyanova, D., Kopp, O., Leymann, F., Zwink, D.: Cross-
organizational process monitoring based on service choreographies. In: Proc. of
the Symposium on Applied Computing, pp. 2485–2490. ACM (2010)

	A Generative Approach for the AdaptiveMonitoring of SLA in Service Choreographies
	1 Introduction
	2 Adaptive SLA Monitoring
	3 Demonstration Scenario
	3.1 Scenario Description
	3.2 Execution and Adaptation

	4 Conclusion and Future Work
	References

