
CloudHKA: A Cryptographic Approach for

Hierarchical Access Control in Cloud Computing

Yi-Ruei Chen1,�, Cheng-Kang Chu2, Wen-Guey Tzeng1, and Jianying Zhou2

1 Department of Computer Science, National Chiao Tung University, Taiwan
2 Institute for Infocomm Research, Singapore

yrchen.cs98g@nctu.edu.tw, {ckchu,jyzhou}@i2r.a-star.edu.sg,
wgtzeng@cs.nctu.edu.tw

Abstract. Cloud services are blooming recently. They provide a conve-
nient way for data accessing, sharing, and processing. A key ingredient
for successful cloud services is to control data access while consider-
ing the specific features of cloud services. The specific features include
great quantity of outsourced data, large number of users, honest-but-
curious cloud servers, frequently changed user set, dynamic access control
policies, and data accessing for light-weight mobile devices. This paper
addresses a cryptographic key assignment problem for enforcing a hier-
archical access control policy over cloud data.

We propose a new hierarchical key assignment scheme CloudHKA
that observes the Bell-LaPadula security model and efficiently deals
with the user revocation issue practically. We use CloudHKA to encrypt
outsourced data so that the data are secure against honest-but-curious
cloud servers. CloudHKA possesses almost all advantages of the related
schemes, e.g., each user only needs to store one secret key, supporting dy-
namic user set and access hierarchy, and provably-secure against collusive
attacks. In particular, CloudHKA provides the following distinct features
that make it more suitable for controlling access of cloud data. (1) A user
only needs a constant computation time for each data accessing. (2) The
encrypted data are securely updatable so that the user revocation can
prevent a revoked user from decrypting newly and previously encrypted
data. Notably, the updates can be outsourced by using public information
only. (3) CloudHKA is secure against the legal access attack. The attack
is launched by an authorized, but malicious, user who pre-downloads the
needed information for decrypting data ciphertexts in his authorization
period. The user uses the pre-downloaded information for future decryp-
tion even after he is revoked. Note that the pre-downloaded information
are often a small portion of encrypted data only, e.g. the header-cipher
in a hybrid encrypted data ciphertext. (4) Each user can be flexibly
authorized the access rights of Write or Read, or both.

Keywords: Access control, hierarchical key assignment, key manage-
ment, Bell-LaPadula security model, outsourced data, cloud computing,
proxy re-encryption.

� The research was supported in part by projects NSC-101-2221-E-009-074-MY3 (Na-
tional Science Council, Taiwan) and SecDC-112172014 (A*STAR, Singapore).

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 37–52, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 Y.-R. Chen et al.

1 Introduction

Outsourcing data to cloud server (CS) becomes popular in these years. A data
provider (DP) no longer stores a large quantity of data locally. A user can access
them from anywhere at any time. However, the outsourced data often contain
sensitive information and CS naturally becomes a target of attacks. Even worse,
CS itself could distribute DP’s data for illegal profit. Therefore, DP does not
want to disclose his data to CS. Furthermore, DP wants to control access to
data of different sensitive levels. Only the authorized users can access the data
with certain security levels. We want to enforce a designated access control policy
for users over cloud data.

This work considers the hierarchical access control (HAC) policy. By the pol-
icy, data are organized into security classes SC1, SC2, . . ., SCn, which are par-
tially ordered with a binary relation ≺. SCj ≺ SCi means that the security level
of SCi is higher than that of SCj . If a user is authorized to read data at SCi, he
is also entitled to read data at SCj for SCj ≺ SCi. The HAC policy is widely
used in various computer systems, e.g., military, government, secure database,
and Pay-TV systems.

Hierarchical key assignment (HKA) is a cryptographic method for enforcing
HAC policies [1]. An HKA scheme consists of a set of cryptographic keys SK1,
SK2, . . ., SKn such that if SKj ≺ SKi, SKj can be derived by using SKi. To
enforce an HAC policy P for hierarchical data, a datum at SCj is encrypted into
ciphertext by using SKj. A user who is authorized to read the data at SCi is
assigned SKi. Thus, the user can decrypt the data at SCj , which is lower than
SCi, by using SKi to derive SKj .

An important issue in designing an HKA scheme is to revoke an authorized
user u from his associated class, say SCi. DP needs to remove u’s access rights
for the following two kinds of data:

– Newly encrypted data at SCz for SCz � SCi: The encrypted data under
new encryption keys after revoking u.

– Previously encrypted data at SCz for SCz � SCi: The encrypted data under
previous encryption keys before revoking u.

To prevent u from decrypting newly encrypted data at SCz, DP can encrypt
data by new keys and distribute the new keys to the non-revoked users only.
Nevertheless, since non-revoked users needs to access previously encrypted data
at SCz , they should keep all old keys. The key management cost is high if
revocation occurs frequently.

To prevent u from decrypting previously encrypted data by using his old keys,
DP can decrypt previously encrypted data and encrypt them with new keys,
which are distributed to non-revoked users only. Thus, the revoked user u cannot
use his old keys to decrypt previously encrypted data. Simultaneously, a non-
revoked user needs to keep the newest key of his associated class only. However,
since data are of a large quantity, DP needs substantial time in processing them.
A common solution is to use the hybrid encryption technique for data encryption.

CloudHKA: A Cryptographic Approach for Hierarchical Access Control 39

DP randomly chooses a data encryption key K for encrypting data into body-
cipher and then encryptsK into header-cipher under a cryptographic key SKi. In
processing data, CS only needs to update the header-cipher and the much larger
body-ciphers are no need to be changed. It saves computation time significantly.
Nevertheless, the solution causes a new issue, which we call it the legal access
attack. An authorized, but malicious, user may decrypt all decryptable header-
ciphers to obtain K’s. The user can use these K’s to decrypt body-ciphers in the
future even after he is revoked. Furthermore, in processing data, if decryption
and encryption operations are done in the CS side, CS gets to know the content
of data. Face to the above issues, we want a solution that updates encrypted
data without disclosing the content to CS and entailing high overhead for DP
and CS. Simultaneously, we hope that the solution is secure against the legal
access attack.

We consider the Bell-LaPadula security model [5] for HAC policies. The model
consists of two security properties: (1) The simple security property requires that
a user cannot read the data at a higher security class. (2) The �(star)-property
requires that a user cannot write data at a lower security class. To observe the
security model in an HKA scheme, we separate SKi into a write- and read-key
pair (WriteKi, ReadKi) for encrypting and decrypting data at SCi, respectively.
A user at SCi is authorized to obtain ReadKi, which is used to read (decrypt)
the data at SCz for SCz � SCi. For data writing (encryption), the user is
only authorized to obtain those WriteKz of SCz for SCi � SCz . The separation
provides flexibility in authorizing data access right of Read or Write, or both.

Our Contribution. We provide a practical CloudHKA scheme for control-
ling access for encrypted data in cloud computing. CloudHKA is a novel HKA
scheme that observes the Bell-LaPadula security model and efficiently deals with
the above issues in user revocation. The design of CloudHKA considers the spe-
cific features of cloud services. The specific features include great quantity of
outsourced data, large number of users, honest-but-curious cloud servers, fre-
quently changed user set, dynamic access control policies, and data accessing for
light-weight mobile devices.

In detail, CloudHKA has the following features.

(1) Optimal secret key size hold by each user. Each authorized user at SCi keeps
one secret distribution-key DistKi.

(2) Outsourceable computation in key derivation. An authorized user can se-
curely outsource computation for deriving a read-key to CS. He needs to do
three decryption operations only.

(3) Outsourceable data update in user revocation. To revoke a user u, DP can
outsource data update operations to CS. CS needs to update header-cipher
and a small portion (the size is the same as header-cipher) of body-cipher
only. After updating previously encrypted data, u cannot decrypt them with
his old distribution-keys and the non-revoked users can decrypt them with
their newest distribution-keys. In particular, only the distribution-key of u’s
associated class needs to be updated. It leads that the key re-distribution
occurs in u’s associated class only.

40 Y.-R. Chen et al.

(4) Secure against the legal access attack. CloudHKA enforces that an authorized
user cannot pre-download the needed information for decrypting body-cipher
by only accessing a small portion of encrypted data. Therefore, the legal
access attack can be prevented by denying uncommon (large traffic) data
access from a user.

(5) Flexible user access right authorization. Each user can be authorized the
access rights of Write or Read, or both.

(6) Provable-security. CloudHKA is formally shown to be message indistinguisha-
bility secure. Even if CS and a set of users collude, they cannot determine
the original datum (that is not entitled to be derived by them) from an
encrypted datum with non-negligible probability.

Figure 1 shows the system overview of CloudHKA. The detailed construction
is illustrated in Section 3. The system consists of CS, DP, and users. CS is
operated by cloud service providers. It is assumed to have bountiful storage
space and computation power. DP outsources his data to CS with a self-defined
HAC policy P . DP is free to add or delete data in CS and change the access
control policy. DP can execute his code over CS to manage his data. A user
can be authorized to read or write data in CS. Typically, a user is assumed to
have limited storage space and computing power. We assume that CS is always
on-line, but DP and users are only on-line when necessary.

Related Works. Akl and Taylor [1] first addressed the problem of assigning
cryptographic keys in an access hierarchy. They proposed an HKA scheme to
enforce an HAC policy. After that, many researches proposed methods for im-
proving performance, supporting dynamic access control policies, or providing
distinct features [2,3,13,17,20,21,25,27,31]. Atallah et al. formalized the security
requirement for HKA schemes and provided an efficient and provably-secure
HKA scheme against key recovery attacks [3]. Recently, they proposed another
scheme with security against key-indistinguishability attacks [2]. They also ad-
dressed the problem of reducing key derivation time for each user in a deep access
hierarchy. The result is obtained by maintaining extra public system information.

Sahai and Waters [24] proposed an attribute-based encryption (ABE) scheme
that provides fine-grained data access control. Most ABE schemes enforce mono-
tone access policies over encrypted data [6,14,16,18,23,24,30]. An ABE scheme
allows a user to encrypt data into ciphertexts according to a policy. Only the
users with a set of attributes that satisfy the policy can decrypt the ciphertexts.
Nevertheless, many ABE schemes do not address the issue of dynamic user set
and dynamic access policy. Boldyreva et al. [8] addressed the issue of revoking
a user with time. They periodically distribute the updated keys to non-revoked
users for decrypting newly encrypted data. Yu et al. [30] proposed a revocable
ABE scheme for revoking a user immediately. In contrast, Hur and Noh [18]
proposed a revocable ABE scheme with immediate attribute and user revoca-
tion capability. Sahai et al. [23] proposed the revocable storage ABE scheme
that deals with the issue of efficiently preventing a revoked user from decrypting
previously encrypted data. In addition to the user revocation issue, decryption
time of the existing ABE schemes grows with the depth of access formula. Green

CloudHKA: A Cryptographic Approach for Hierarchical Access Control 41

Fig. 1. A system overview of our CloudHKA

et al. [16] proposed a method of uotsoucing the overhead for users in decryption.
Additionally, the size of user secret key or ciphertext in existing ABE schemes
grows proportionally in the number of associated attributes. Designing an ABE
scheme with a constant size of a user secret key and a ciphertext is still an open
problem.

2 Preliminaries

2.1 HAC Policy with the Bell-LaPadula Security Model

An HAC policy P is a 5-tuple (SC,≺,U ,D, λ), where SC = {SCi : 1 ≤ i ≤ n} is
a set of security classes, ≺ is a binary relation over SC ×SC, U is a set of users,
D is a set of data, and λ : U ∪D → SC is a security function that associates each
user and datum with a security class. (SC,≺) forms a partial order set (poset),
where SCj ≺ SCi means that the security level of class SCi is higher than that
of SCj . To observe the Bell-LaPadula security model, P requires the following
two properties.

1) Simple security property: A user U ∈ U cannot read a datum D ∈ D if
λ(U) ≺ λ(D).

42 Y.-R. Chen et al.

2) �-property: A user U ∈ U cannot write a datum D ∈ D if λ(D) ≺ λ(U).

The poset (SC,≺) is represented as a directed graph (access hierarchy) G. Each
class SCi is a node and the relation SCj ≺ SCi is represented by the directed
edge (SCi, SCj) in G. G can be simplified by eliminating the edges that are
implied by the transitive closure property. For example, Figure 1 has an ac-
cess hierarchy G with the nodes SC1, SC2, . . ., SC6 and edges (SC1, SC2),
(SC1, SC3), (SC2, SC4), (SC2, SC5), (SC3, SC5), and (SC3, SC6).

2.2 Proxy Re-Encryption (PRE) Scheme

A proxy re-encryption (PRE) scheme delegates a proxy to re-encrypt a ciphertext
under key ekA into another ciphertext under key ekB by using the re-encryption
key rkA→B without revealing the plaintext [4,7,9,15,19,26,28]. A PRE scheme Ψ
consists of the following six poly-time algorithms:

– Setup(τ) → (sp,MK). On input a security parameter κ, Setup outputs the
public system parameter sp (which is explicit used in other algorithms) and
master secret key setMK.

– KeyGen(MK, i)→ (eki, dki). On input the master secret key setMK and an
index i, KeyGen outputs a pair of encryption and decryption keys (eki, dki).

– ReKeyGen((eki, dki), (ekj , dkj))
1 → rki→j . On input two pairs of encryp-

tion and decryption key (eki, dki) and (ekj , dkj), ReKeyGen outputs a re-
encryption key rki→j .

– Enc(eki,m) → ci. On input an encryption key eki and a plaintext m, Enc
output a ciphertext ci.

– ReEnc(rki→j , ci) → cj . On input a re-encryption key rki→j and ciphertext
ci, ReEnc output a ciphertext cj under ekj .

– Dec(dki, ci) → m. On input a decryption key dki and ciphertext ci, Dec
outputs a plaintext m.

These algorithms satisfy the following two requirements.

– For all (eki, dki)← KeyGen(MK, i), Dec(dki, Enc(eki,m)) = m,
– For all rki→j ← ReKeyGen((eki, dki), (ekj , dkj)), Dec(dkj , ReEnc(rki→j ,

Enc(eki, m))) = m.

Ψ is uni-directional if rkj→i cannot be derived from rki→j . It is multi-hop if a
ciphertext can be re-encrypted many times in a sequence.

For security, a uni-directional PRE scheme is IND-CPA secure if, for a given
ciphertext, a collusive set of malicious entities cannot determine which message,
m0 or m1, is encrypted under an uncorrupted eki. A malicious entity is the
proxy, a non-user, or an authorized user with a partial set of decryption keys.
The formal security notion is described in the full version of this paper [10].

1 For the construction of a PRE scheme, it is preferable to compute rki→j in a non-
interactive way, that is, without using the secret key dkj . While using PRE scheme
as a building block in our scheme, an interactive PRE scheme is also suitable.

CloudHKA: A Cryptographic Approach for Hierarchical Access Control 43

2.3 All-Or-Nothing Transformation

All-or-nothing transformation (AONT) AONT is an unkeyed and randomized
function with the property that it is hard to compute the whole message unless
the entire function output is known [22]. AONT maps an �-block message X =
X1||X2|| · · · ||X� and a random string r to an �′-block string Y = Y1||Y2|| · · · ||Y�′ .
AONT satisfies the following properties:

– Given X and r, Y ← AONT(X, r) can be computed efficiently.

– Given Y , X ← AONT−1(Y) can be computed efficiently.
– If any block of Y is lost, it is infeasible to recover X .

3 Our CloudHKA

3.1 Overview

The construction of CloudHKA is based on a uni-directional and multi-hop PRE
scheme Ψ . Assume that the given HAC policy is P , which is represented by a
directed graph G = (V,E). For each class SCi ∈ V , DP generates a pair of write-
and read-key (WriteKi, ReadKi). A message that is encrypted by using WriteKi
can be decrypted by using ReadKi. A user who obtains the write-key WriteKi is
authorized the Write right for SCi. A user who obtains the read-key ReadKi
is authorized the Read right for SCi and its lower classes. Although the pair
of write- and read-key is like the pair of public- and private-key of a public-key
system, neither of them can be published to a public domain in CloudHKA. A
write-key WriteKz is given to a user at SCi (through a secure channel) when he
requests to write data into SCz for SCi � SCz .

In data outsourcing, a datum M at SCi is transformed into

M ′ = M ′
1||M ′

2|| . . . ||M ′
�′ ← AONT(M, r)

and then encrypted in the form

〈data ID, uploader ID, class, header-cipher, body-cipher, 〉
= 〈ID, uID, SCi, Hdr

SCi

ID = {K}ΨWriteKi , BodySCi

ID = {M ′
1}AESK || . . . ||{M ′

ρ−1}AESK ||
� ||{M ′

ρ}ΨWriteKi ||{M ′
ρ+1}AESK || . . . ||{M ′

�′}AESK 〉, (1)

where

– uID is a user who stores (uploads) his data into CS,
– {K}ΨWriteKi and {M ′

ρ}ΨWriteKi are respectively the ciphertexts of a randomly
chosen AES encryption key K and ρ-th block of M ′ under WriteKi,

– ρ ∈ {1, 2, · · · , �′} only known by CS and DP,
– � is a special symbol for marking the start position of BodySCi

ID [ρ], and

– {M ′
ω}AESK is the ciphertext of M ′

ω for ω ∈ {1, 2, . . . , �′} \ {ρ} under K.

44 Y.-R. Chen et al.

Before CS storing an encrypted datum into SCi, he should authenticate that
the associated class of a data uploader is no lower than SCi. It observes the
�-property.

For each relation (SCj , SCi) ∈ E, DP generates a (public) relation-key
RelatKi→j that is used to re-encrypt a header-cipher and body-cipher (ρ-th
block) of SCi into that of SCj . Assume that a user who is authorized the
Read right of SCj wants to read (decrypt) datum ID encrypted as (1). CS re-
encrypts {K}ΨWriteKi and {M ′

ρ}ΨWriteKi into {K}ΨWriteKj and {M ′
ρ}ΨWriteKj by using

the relation-key RelatKi→j . The user then decrypts {K}ΨWriteKj and {M ′
ρ}ΨWriteKj

to obtain K and M ′
ρ by using ReadKj . By using K to decrypt {M ′

ω}AESK for
ω ∈ {1, 2, . . . , �′} \ {ρ}, the user obtains M ′

ω and combines it with M ′
ρ to re-

cover M ← AONT−1(M ′). The concept can be easily extended for the case with
d = dstG(SCj , SCi) > 1, where dstG(SCj , SCi) is the distance between SCj

and SCi in the access hierarchy G.
To revoke a user u at SCi, DP does the following procedures.

– Removing Write right: DP simply removes u from his SCi in P . Then, u’s
Write right of SCz for SCi � SCz is removed since he cannot pass CS’s
authentication in data writing.

– Removing Read right: This part can be separated into two cases.

(1) Preventing u from decrypting newly encrypted data at SCz for SCz �
SCi: DP re-generates SCz’s key pair and related relation-keys. Then,
the new data at SCz will be encrypted under the new write-key of SCz .
The new read-key of SCz is distributed to the non-revoked users only.

(2) Preventing u from decrypting previously encrypted data at SCz for
SCz � SCi: DP sends CS a (public) transform-key TranKz for trans-
forming (re-encrypting) SCz’s header-ciphers and body-ciphers under
the old write-key into the new one under the new write-key. Thus, only
the non-revoked users who obtain the new read-keys can decrypt the
updated header-ciphers and body-ciphers.

Remark. The data encryption form in (1) enforces a user accesses the whole
body-cipher for decryption. Assume that an authorized user u at SCi wants to
access a datum ID in (1). u needs to obtainK andM ′

ρ by using ReadKi so that he

can recover M . To obtain M ′
ρ, u needs to find the start position of {M ′

ρ}ΨWriteKi .
Since u does not know ρ, he needs to find � by accessing whole BodySCi

ID (or the
part before meeting �.) This design effectively prevents the legal access attack.
In the legal access attack, u pre-downloads K and M ′

ρ for each datum. However,
u does not know the position of � until the whole body-cipher is retrieved. In
CloudHKA, a authorized, but malicious, user needs to access a large portion
of a data for pre-downloading the needed information for decryption. A large
collection of pre-downloaded information will cause traffic in accessing. A traffic
limitation mechanism (with a specified policy according to the system) can easily
deny the legal access attack. For example, in a protected database, the amount
of transmitted data for each user in a time period is often limited.

CloudHKA: A Cryptographic Approach for Hierarchical Access Control 45

3.2 The Construction

Let Ψ = (Ψ.Setup, Ψ.KeyGen, Ψ.ReKeyGen, Ψ.Enc, Ψ.ReEnc, Ψ.Dec) be a uni-
directional and multi-hop PRE scheme. Let AES be a symmetric key encryp-
tion scheme with key generation, encryption, and decryption algorithms (AES.G,
AES.E, AES.D). Let PKE be an asymmetric key (or public-key) encryption scheme
with key generation, encryption, and decryption algorithms (PKE.G, PKE.E,
PKE.D). Let AONT be an all-or-nothing transformation function that maps an
�-block message and a random string to an �′-block string.

To simplify the description of our scheme, we assume that two system entities
of CS, DP, and users can authenticate the identity of each other. The integrity
and correctness of messages or data transmitted between two system entities can
be verified by each other.

System Setup. DP defines an initial HAC policy P = (SC,≺,U ,D, λ) with
n security classes SC1, SC2, . . ., SCn. Assume that P is represented as an
access hierarchy G = (V,E). Then, DP generates (sp,MK) ← Ψ.Setup(κ)
with a given security parameter κ and associates each SCi ∈ V with the
following keys and tokens.

– Write- and read-key pair (WriteKi, ReadKi)← Ψ.KeyGen(MK, i).
– Distributed-key DistKi ← AES.G(κ).
– ReadKey-cipher {ReadKi}AESDistKi

← AES.E(DistKi, ReadKi).

DP associates each relation (SCj , SCi) ∈ E a relation-key

RelatKi→j ← Ψ.ReKeyGen((WriteKi, ReadKi), (WriteKj , ReadKj)).

Finally, DP uploads P , 〈SCi, WriteKi, {ReadKi}AESDistKi
〉 for SCi ∈ V , and

〈(SCj , SCi), RelatKi→j〉 for (SCj , SCi) ∈ E to CS. DP keeps P and 〈SCi,
WriteKi, ReadKi, DistKi〉 for SCi ∈ V locally. Each user u of the system
generates his public- and private-key pair (pku, sku).

Access Right Authorization. Assume that DP associates a user u with a
class SCi in P . To authorize u the Read right of SCz for SCz ≺ SCi, DP
uses u’s public-key pku to encrypt the distribution-key DistKi as a distKey-
cipher

{DistKi}PKEu ← PKE.E(pku, DistKi)

and uploads 〈u, {DistKi}PKEu 〉 to CS. CS forwards {DistKi}PKEu to u and u
decrypts it to obtain DistKi. To observe the �-property, CS gives the current
WriteKz to u when u requests to write data into SCz for SCi � SCz.

Data Writing. To write a datum M into SCi, an uploader uID computes
M ′ ← AONT(M, r), where r is a random string. uID then generates a data
encryption key K ← AES.G(κ), randomly chooses an index ρ ∈ {1, 2, . . . , �′},
and sends CS the encrypted data in the form

〈ρ, SCi, C1, C2〉 = 〈ρ, SCi, {K}ΨWriteKi , {M ′
1}AESK || . . . ||{M ′

ρ−1}AESK ||
� ||{M ′

ρ}ΨWriteKi ||{M ′
ρ+1}AESK || . . . ||{M ′

�′}AESK 〉.

46 Y.-R. Chen et al.

After receiving the data, CS checks the validity of the writing request from
uID. If uID is associated with SCz for SCi � SCz, CS selects a unique
data identity ID and stores the data with the format

〈data ID, uploader ID, class, header-cipher, body-cipher〉
= 〈ID, uID, SCi, Hdr

SCi

ID = C1, Body
SCi

ID = C2〉. (2)

CS keeps ρ as a secret. The value will be used when CS needs to update
body-ciphers.

Data Reading. Assume that an authorized user u at SCj wants to read a
datum encrypted as (2). If SCi � SCj , CS re-encrypts the header-cipher
and body-cipher as follows. Let d = dstG(SCj , SCi).
– Extract the relation-keys on the path from SCi to SCj as RelatKv1→v2 ,

RelatKv2→v3 , . . ., RelatKvd→vd+1
, where v1 = i and vd+1 = j.

– For each vz from v1 to vd, replace {K}ΨWriteKvz and {M ′
ρ}ΨWriteKvz as

{K}ΨWriteKvz+1
← Ψ.ReEnc(RelatKvz→vz+1, {K}ΨWriteKvz),

{M ′
ρ}ΨWriteKvz+1

← Ψ.ReEnc(RelatKvz→vz+1, {M ′
ρ}ΨWriteKvz).

CS returns 〈C0, C1, C2〉 = 〈{ReadKj}AESDistKj
, Hdr

SCj

ID , Body
SCj

ID 〉 to u. After re-
ceiving the ciphertexts, u decrypts C0 to obtain ReadKj by using his (newest)
DistKj . u finds � to extract {M ′

ρ}ΨWriteKj from C2. Then, u decrypts C1 and

{M ′
ρ}ΨWriteKj to obtain K and M ′

ρ by using ReadKj . u then decrypts the other
blocks of C2 to obtain M ′

ω for ω ∈ {1, 2, . . . , �′} \ {ρ} by using K. Finally, u
combines M ′

ρ and M ′
ω’s as M

′ and recovers M ← AONT−1(M ′).
Data Deletion. A datum can be deleted by its uploader only. To delete a

datum ID, its uploader with identity uID sends a deletion request of ID to
CS. CS deletes the datum ID and its associated information.

User Revocation with Outsourceable Data Update. Assume that DP
wants to revoke a user u from SCi.

– Removing u’s Write right: DP simply updates his HAC policy. Here-
after, when u wants to write data into SCz for SCi � SCz, he cannot
pass CS’s validity check in data writing.

– Removing u’s Read right:
(1) To remove u’s Read right for newly encrypted data at SCz

for SCz � SCi: DP re-generates the key pair of SCz as
(WriteK′z, ReadK′z) and affected relation-keys. DP then updates the
affected readKey-ciphers as follows.
• For SCz ≺ SCi, DP updates SCz’s readKey-cipher as
{ReadK′z}AESDistKz

.
• For SCi, DP updates SCi’s distribution-key as DistK′i and
readKey-cipher as {ReadK′i}AESDistK′i

.

DP distributes the updated distribution-key DistK′i to the non-
revoked users at SCi. For each non-revoked user ū, DP updates 〈ū,
{DistKi}PKEū 〉 as 〈ū, {DistK′i}PKEū 〉.

CloudHKA: A Cryptographic Approach for Hierarchical Access Control 47

(2) To remove u’s Read right for previously encrypted data at SCz for
SCz � SCi: DP sends CS a transform-key

TranKz ← Ψ.ReKeyGen((WriteKz , ReadKz), (WriteK
′
z, ReadK

′
z)).

CS uses TranKz to update each SCz’s header-cipher and ρ-th block
of body-cipher as

{K}ΨWriteK′z ← Ψ.ReEnc(TranKz , {K}ΨWriteKz),

{M ′
ρ}ΨWriteK′z ← Ψ.ReEnc(TranKz , {M ′

ρ}ΨWriteKz).
Updates of Access Hierarchy. The update operations include relation in-

sertion, relation deletion, class insertion, and class deletion.
– Relation insertion. To insert a new relation (SCj , SCi), DP generates

a new RelatKi→j ← Ψ.ReKeyGen((WriteKi, ReadKi), (WriteKj , ReadKj))
and uploads the updated HAC policy and 〈(SCj , SCi), RelatKi→j〉 to
CS.

– Relation deletion. To delete a relation (SCj , SCi), DP needs to prevent
the users at SCi from re-encrypting the header-ciphers and body-cipher
of SCz into that of SCj for SCz � SCi. The procedure is like to re-
voke a ”psuedo-user” from SCi. The differences are that DP does not
need to re-generate (1) SCi’s distribution-key and readKey-cipher and
(2) (SCj , SCi)’s relation-key. There is no need to distribute the new
distribution-key of SCi.

– Class insertion. To insert a class SCi, DP generates (WriteKi, ReadKi),
DistKi, and {ReadKi}AESDistKi

and uploads the updated HAC policy and
〈SCi, WriteKi, {ReadKi}AESDistKi

〉 to CS. DP then runs the relation insertion
procedure to insert the incoming and outgoing relations of SCi.

– Class deletion. To delete a class SCi, DP deletes SCi’s associated pa-
rameters in CS and runs the relation deletion procedure for every SCi’s
incoming and outgoing relations.

4 Analysis

4.1 Performance Analysis

This section illustrates the performance of CloudHKA. We compare CloudHKA
with the first HKA scheme [1] and recent two HKA schemes [2,3] in Table 1. To
our best knowledge, the schemes in [2,3] provide most features up to now and
are provably-secure.

Storage Cost. In CloudHKA, each user at SCi stores the distribution-key
DistKi. In the other three schemes, the secret key size for each user is also one.

Key Derivation Cost. In CloudHKA, when a user u at SCj requests to
read a datum at SCi for SCi � SCj , CS runs d = dstG(SCj , SCi) times of
Ψ.ReEnc to re-encrypt the header-cipher under WriteKi into the header-cipher
under WriteKj . u then runs one AES.D to obtain ReadKj and two Ψ.Dec to

48 Y.-R. Chen et al.

Table 1. A comparison of our CloudHKA with previous HKA schemes

AT [1] AFB [3] ABFF [2] CloudHKA

Storage cost
#(user secret key) 1 1 1 1

Key derivation cost (for a user u at SCj to derive a key of SCi)

Full computation tExp d · (tH + tXOR) 2d · (tH + tAES.D) + tH 2d · tΨ.ReEnc + 2tΨ.Dec + tAES.D
Outsourceable - - - 2d · tΨ.ReEnc
computation

User revocation cost (revoking a user u from SCi)
Rekey - O(|Ei| +

∑
SCz∈Vi

nz) O(|Vi| + |Ei| + ni) O(|Vi| + |Ei| + ni)

Full data update - #c(u) · (tAES.D + tAES.E) #c(u) · (tAES.D + tAES.E) |Vi| · tΨ.ReKeyGen + 2 · #c(u) · tΨ.ReEnc
Outsourceable - - - 2 · #c(u) · tΨ.ReEnc
data update

User access right authorization
Read-Write

√ √ √ √
Read-only - - -

√
Write-only - - -

√
Security

Security game - Key-Recovery Key-Indistinguishability Message-Indistinguishability
Building block - PRF family PRF family and AES Uni-directional PRE
† Exp: A modular exponentiation over a large group.
† H: A cryptographic hash function.
† tf : The computation time of function f .

obtain K and M ′
ρ. The total key derivation cost of the other three schemes

are also linear in d. Nevertheless, only CloudHKA can outsource most of the
computation operations to CS so that a user only needs constant computation
time in key derivation. Note that in [1], although the computation operation
only contains a modular exponentiation, the size of the used group equals to the
size of the multiplication of d large co-prime numbers. The computation time in
key derivation is still linear to d.

User Revocation Cost. In CloudHKA, to revoke a user u at SCi, the rekey
operation for DP contains: (1) |Vi| times of Ψ.KeyGen, Ψ.ReKeyGen, and AES.E,
(2) one AES.G, (3) |Ei| times of Ψ.ReKeyGen, (4) ni times of PKE.E, and (5)
2 · #c(u) times of Ψ.ReEnc, where Vi = {SCz : SCz � SCi} is the set of SCi

and its lower classes, Ei = {(SCξ, SCz) : SCz ∈ Vi} is the set of relations
related to the classes in Vi, ni is the number of users (excluding u) at SCi, and
#c(u) is the number of decryptable data ciphertexts of u. The distribution-key
update only occurs in the class SCi, the distribution of the new distribution-
key is needed for the non-revoked users at SCi only. Note that the extended
HKA scheme in [2] is the first HKA scheme supporting this kind of local key re-
distribution property. To let the non-revoked users decrypt previously encrypted
data, in CloudHKA, DP only needs to run |Vi| times of Ψ.ReKeyGen to generate
the needed transform-keys to CS. CS can update every u’s decryptable header-
cipher into the one under the new write-key by using Ψ.ReEnc. In other three
HKA schemes, to update all u’s decryptable ciphertexts, DP needs to download
them, decrypt them with old data encryption keys, encrypt them with new data
encryption keys, and then upload them to CS.

4.2 Bell-LaPadula Security Model Observation

Our CloudHKA observes the simple security property and �-property. The uni-
directional property of Ψ ensures that a relation-key RelatKj→i cannot be re-
versed. Thus, it is not possible to compute the inverted header-cipher and

CloudHKA: A Cryptographic Approach for Hierarchical Access Control 49

body-cipher re-encryptions from class SCi to its lower class SCj . Therefore,
CloudHKA observes the simple security property. The �-property is observed
in CloudHKA since CS only allows a user at SCi to write data into SCi and
its higher classes. Note that giving all write-keys to CS does not violate the
�-property since CS does not have the Read right of any class in the policy.

4.3 Security Analysis

In this section, we formally show that CloudHKA ensures data confidentiality
based on the security of PRE schemes. We also demonstrate that the user revo-
cation mechanism in CloudHKA removes the access rights of a revoked user.

To simplify our security analysis, we assume that the encryption schemes AES
and PKE are IND-CPA secure. For example, AES with CBC mode and ElGa-
mal suit our need, respectively. The IND-CPA security of an encryption scheme
ensures that an unauthorized user cannot distinguish an encrypted distribution-
key, read-key, or datum from an encrypted random string. By the assumption,
CloudHKA ensures that only an authorized user can obtain legal distribution-
keys and read-keys. Then, the security of our CloudHKA only relies on the
security of PRE scheme Ψ for protecting (K,M ′

ρ).
User- and Read-Key Authorization. In CloudHKA, DP stores DistKi as

{DistKi}PKEu under user u’s individual public-key pku for a user u at SCi. Only u
can decrypt {DistKi}PKEu to obtain DistKi. DP stores ReadKi as {ReadKi}AESDistKi

.
Only an authorized user who is assigned DistKi can obtain ReadKi.

Data Confidentiality. Our goal is to show that even if CS and a set of
malicious users collude, for a given SCi∗ ’s header-cipher and ρ-th block body-
cipher pair (HdrSCi∗

ID , BodySCi∗
ID [ρ]) that encrypts eitherm0 = (K0,M

′
ρ,0) orm1 =

(K1,M
′
ρ,1), it is hard for the collusive entities to determine the original message

of the ciphertext pair. The original messages m0 and m1 are chosen by the
collusive entities. A malicious user can be a non-user, a revoked user, or an
authorized user. They are not authorized to read the data at SCz for SCi∗ �
SCz. The formal security notion for message-indistinguishable HKA and detailed
proof of the following theorem is described in the full version [10].

Theorem 1. Our CloudHKA is message-indistinguishable if the underlying
PRE scheme Ψ is IND-CPA secure.

Revocation of Access Rights. We illustrate that the user revocation mecha-
nism in CloudHKA removes the Write and Read rights of a revoked user.

– Preventing a revoked user from writing data. To revoke a user from SCi, DP
removes u from SCi in his HAC policy directly. Then, the request of writing
operations from u will not pass CS’s validity check. u is no longer allowed
to write data into SCz for SCi � SCz .

– Preventing a revoked user from reading newly encrypted data. The rekey
operation for revoking u ensures that u cannot decrypt newly encrypted
data. We give an illustration with the following three parts:

50 Y.-R. Chen et al.

• u cannot obtain the updated ReadK′i. The readKey-cipher of SCi is up-
dated as {ReadK′i}AESDistK′i

. Only the non-revoked users at SCi can update

the distribution-key as DistK′i for decrypting {ReadK′i}AESDistK′i
to obtain

ReadK′i.
• u no longer decrypts new ciphertext pair (Hdr′SCz

ID , Body′SCz

ID [ρ]) for
SCz � SCi. Since u cannot obtain ReadK′i, u cannot decrypt
(Hdr′SCz

ID , Body′SCz

ID [ρ]). The relation-keys RelatKz→ξ for SCz � SCi

are re-generated by using the updated key pairs. u cannot use the new
(or old) relation-keys to re-encrypt new (Hdr′SCz

ID , Body′SCz

ID [ρ]) into the
old one under WriteKz. Thus, u cannot derive the original message in
(Hdr′SCz

ID , Body′SCz

ID [ρ]).

• u no longer decrypts new body-ciphers Body′SCz

ID for SCz � SCi. Since u

cannot decrypt the new (Hdr′SCz

ID , Body′SCz

ID [ρ]) for SCz � SCi to obtain
(K,M ′

ρ), he cannot recover M by computing AONT−1(M ′).
– Preventing a revoked user from reading previously encrypted data. In revok-

ing a user u from SCi, DP sends a transform-key TranKz for each SCz , SCz �
SCi. CS uses TranKz to update (re-encrypt) each old (HdrSCz

ID , BodySCz

ID [ρ])

as a new (Hdr′SCz

ID , Body′SCz

ID [ρ]). Hereafter, when u requests to read old da-

tum ID, CS returns the new 〈{ReadK′z}AESDistK′z
, Hdr′SCz

ID , Body′SCz

ID 〉. Since u

cannot obtain DistK′z, he cannot obtain (K,M ′
ρ) and recover M .

5 Discussion

This section introduces some existing desirable PRE schemes for CloudHKA.
Then, we demonstrate that CloudHKA can be slightly extended for dealing with
the following extra issues in practical system. (Please refer to the full version
[10] for detailed illustrations.)

– Issue 1. The outsourced data stored in CS may be altered by unexpected bit
flips from system errors or accidentally deleted by CS. (Solution: To apply
data integrity check schemes such as hash-then-sign.)

– Issue 2. The re-encryption operations in key derivation and ciphertext up-
date may cause some unexpected errors. (Solution: To apply IND-CCA se-
cure PRE schemes [26,28])

– Issue 3. The rekey cost in computation and communication for distributing a
new distribution-key of SCi is linear in the number of users at SCi. (Solution:
To apply a tree-based group key management (GKM) scheme [11,12,29] to
maintain distribution-key among a dynamic set of users at each class.)

6 Conclusion

In this paper we propose a practical CloudHKA for controlling data access in
cloud computing. CloudHKA observes the Bell-Lapadula security model. We
use ciphertext re-encryption technique to minimize the computation cost for a

CloudHKA: A Cryptographic Approach for Hierarchical Access Control 51

user in key derivation and for DP and CS in ciphertext update. CloudHKA
deals with the user revocation issue practically and provides flexible authoriza-
tion of data access rights. Simultaneously, CloudHKA is secure against the le-
gal access attack. The proposed CloudHKA is formally shown to be message-
indistinguishable by assuming IND-CPA security of the underlying PRE scheme.

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Transactions on Computer Systems 1(3), 239–248 (1983)

2. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM Transactions on Information and System
Security 12(3) (2009)

3. Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and efficient key management
for access hierarchies. In: Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pp. 190–202 (2005)

4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Transactions on
Information and System Security 9(1), 1–30 (2006)

5. Bell, D.E., Lapadula, L.J.: Secure computer systems: Unified exposition and mul-
tics interpretation. Technical Report MTR-2997, Mitre Corporation, Bedford, Mas-
sachusetts (1976)

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the IEEE Symposium on Security and Privacy (S&P), pp.
321–334 (2007)

7. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

8. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient re-
vocation. In: ACM Conference on Computer and Communications Security (CCS),
pp. 417–426 (2008)

9. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of ACM Conference on Computer and Communications Security
(CCS), pp. 185–194 (2007)

10. Chen, Y.-R., Chu, C.-K., Tzeng, W.-G., Zhou, J.: Cloudhka: A cryptographic
approach for hierarchical access control in cloud computing. Cryptology ePrint
Archive, Report 2013/208 (2013), http://eprint.iacr.org/

11. Chen, Y.-R., Tygar, J.D., Tzeng, W.-G.: Secure group key management using uni-
directional proxy re-encryption schemes. In: Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), pp. 1952–1960 (2011)

12. Chou, K.-Y., Chen, Y.-R., Tzeng, W.-G.: An efficient and secure group key man-
agement scheme supporting frequent key updates on pay-tv systems. In: Proceed-
ings of the IEEE Asia-Pacific Network Operations and Management Symposium
(APNOMS), pp. 1–8 (2011)

13. Crampton, J., Martin, K.M., Wild, P.R.: On key assignment for hierarchical access
control. In: Proceedings of the IEEE Computer Security Foundations Workshop
(CSFW), pp. 98–111 (2006)

14. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the ACM Conference
on Computer and Communications Security (CCS), pp. 89–98 (2006)

http://eprint.iacr.org/

52 Y.-R. Chen et al.

15. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

16. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of abe cipher-
texts. In: Proceedings of the USENIX Security Symposium (2011)

17. Harn, L., Lin, H.-Y.: A cryptographic key generation scheme for multilevel data
security. Computers & Security 9(6), 539–546 (1990)

18. Hur, J., Noh, D.K.: Attribute-based access control with efficient revocation in data
outsourcing systems. IEEE Transactions on Parallel and Distributed Systems 22(7),
1214–1221 (2011)

19. Luo, S., Shen, Q., Chen, Z.: Fully secure unidirectional identity-based proxy re-
encryption. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 109–126. Springer,
Heidelberg (2012)

20. MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An optimal algorithm for
assigning cryptographic keys to control access in a hierarchy. IEEE Transactions
on Computers 34(9), 797–802 (1985)

21. Ray, I., Ray, I., Narasimhamurthi, N.: A cryptographic solution to implement access
control in a hierarchy and more. In: ACM Symposium on Access Control Models
and Technologies (SACMAT), pp. 65–73 (2002)

22. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997)

23. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext dele-
gation for attribute-based encryption. In: Safavi-Naini, R. (ed.) CRYPTO 2012.
LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

24. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

25. De Santis, A., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical key
assignment schemes. Theoretical Computer Science 412(41), 5684–5699 (2011)

26. Shao, J., Liu, P., Cao, Z., Wei, G.: Multi-use unidirectional proxy re-encryption.
In: Proceedings of IEEE International Conference on Communications (ICC), pp.
1–5 (2011)

27. Tzeng, W.-G.: A time-bound cryptographic key assignment scheme for access
control in a hierarchy. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 14(1), 182–188 (2002)

28. Wang, H., Cao, Z., Wang, L.: Multi-use and unidirectional identity-based proxy
re-encryption schemes. Information Sciences 180(20), 4042–4059 (2010)

29. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure group communications using key
graphs. IEEE/ACM Transactions on Network 8(1), 16–30 (2000)

30. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), pp. 534–542 (2010)

31. Zhong, S.: A practical key management scheme for access control in a user hierar-
chy. Computers & Security 21(8), 750–759 (2002)

	CloudHKA: A Cryptographic Approach for Hierarchical Access Control in Cloud Computing
	1 Introduction
	2 Preliminaries
	2.1 HAC Policy with the Bell-LaPadula Security Model
	2.2 Proxy Re-Encryption (PRE) Scheme
	2.3 All-Or-Nothing Transformation

	3 Our CloudHKA
	3.1 Overview
	3.2 The Construction

	4 Analysis
	4.1 Performance Analysis
	4.2 Bell-LaPadula Security Model Observation
	4.3 Security Analysis

	5 Discussion
	6 Conclusion
	References

