A Defensive Virtual Machine Layer
to Counteract Fault Attacks on Java Cards

Michael Lackner, Reinhard Berlach, Wolfgang Raschke,
Reinhold Weiss, and Christian Steger

Institute for Technical Informatics,
Graz University of Technology, Graz, Austria
{michael.lackner,reinhard.berlach,wolfgang.raschke,
rweiss, steger}@tugraz.at

Abstract. The objective of Java Cards is to protect security-critical
code and data against a hostile environment. Adversaries perform fault
attacks on these cards to change the control and data flow of the Java
Card Virtual Machine. These attacks confuse the Java type system, jump
to forbidden code or remove run-time security checks. This work intro-
duces a novel security layer for a defensive Java Card Virtual Machine
to counteract fault attacks. The advantages of this layer from the secu-
rity and design perspectives of the virtual machine are demonstrated.
In a case study, we demonstrate three implementations of the abstrac-
tion layer running on a Java Card prototype. Two implementations use
software checks that are optimized for either memory consumption or
execution speed. The third implementation accelerates the run-time ver-
ification process by using the dedicated hardware protection units of the
Java Card.

Keywords: Java Card, Defensive Virtual Machine, Countermeasure,
Fault Attack.

1 Introduction

A Java Card enables Java applets to run on a smart card. The primary purpose of
using a Java Card is the write-once, run-everywhere approach and the ability of
post-issuance installation of applets [2I]. These cards are used in a wide range of
applications (e.g., digital wallets and transport tickets) to store security-critical
code, data and cryptographic keys. Currently, these cards are still very resource-
constrained devices that include an 8- or 16-bit processor, 4kB of volatile memory
and 128kB of non-volatile memory. To make a Java Card Virtual Machine run
on such a constrained device, a subset of Java is used [19]. Furthermore, special
Java Card security concepts, such as the Java Card firewall [I8] and a verification
process for every applet [I5], were added. The Java Card firewall is a run-time
security feature that protects an applet against illegal access from other applets.
For every access to a field or method of an object, this check is performed.
Unfortunately, the firewall security mechanism can be circumvented by applets

L. Cavallaro and D. Gollmann (Eds.): WISTP 2013, LNCS 7886, pp. 82-P7] 2013.
© IFIP International Federation for Information Processing 2013

A Defensive Virtual Machine Layer 83

that do not comply with the Java Card specification. Such applets are called
malicious applets.

To counteract malicious applets, a bytecode verification process is performed.
This verification is performed either on-card or off-card for every applet [15].
Note that this bytecode verification is a static process and not performed during
applet execution. The reasons for this static approach are the high resource needs
of the verification process and the hardware constraints of the Java Card. This
behavior is now abused by adversaries. They upload a valid applet onto the card
and perform a fault attack (FA) during applet execution. Adversaries are now
able to create a malicious applet out of a valid one [5].

A favorite time for performing a FA is during the fetching process. At this
time, the virtual machine (VM) reads the next Java bytecode values from the
memory. An adversary that performs an FA at this time can change the readout
values. The VM then decodes the malicious bytecodes and executes them, which
leads to a change in the control and data flow of the applet. A valid applet is
mutated by such an FA to a malicious applet [BII7/IT] and gains unauthorized
access to secret code and data [16]2].

To counteract an FA, a VM must perform run-time security checks to de-
termine if the bytecode behaves correctly. In the literature, different counter-
measures, such as control-flow checks [23], double checks [4], integrity checks [§]
and method encryption [20], have been proposed. Barbu [3] proposed a dynamic
attack countermeasure in which the VM executes either standard bytecodes or
bytecodes with additional security checks.

All these works do not concentrate on the question of how these security mech-
anisms can be smoothly integrated into a Java Card VM. For this integration,
we propose adding an additional security layer into the VM. This layer abstracts
the access to internal VM resources and performs run-time security checks to
counteract FAs. The primary contributions of this paper are the following:

— Introduction of a novel defensive VM (D-VM) layer to counteract FAs during
run-time. Access to security-critical resources of the VM, such as the operand
stack (OS), local variables (LV) and bytecode area (BA), is handled using
this layer.

— Usage of the D-VM layer as a dynamic countermeasure. Based on the actual
security level of the card, different implementations of the D-VM layer are
used. For a low-security level, the D-VM implementation uses fewer checks
than for a high-security level. The security level depends on the credibility of
the currently executed applet and run-time information received by hardware
or software modules.

— A case study of a defensive VM using three different D-VM layer implemen-
tations. The API of the D-VM layer is used by the Java Card VM to perform
run-time checks on the currently executing bytecode.

— The defensive VMs are executed on a smart card prototype with specific HW
security features to speed up the run-time verification process. The resulting
run-time and main memory consumption of all implemented D-VM layers
are presented.

84 M. Lackner et al.

Section [2] provides an overview of attacks on Java Cards and the current coun-
termeasures against them. Section [] describes the novel D-VM layer presented
in this work and its integration into the Java Card design. Furthermore, the
method by which the D-VM layer enables the concept of dynamic countermea-
sures is presented. Section Ml presents implementation details regarding how the
three D-VM implementations are inserted into the smart card prototype. Sec-
tion [0l analyzes the additional costs for the D-VM implementations based on the
execution and main memory overhead. Finally, the conclusions and future work
are discussed in Section [Gl

2 Related Work

In this section, the basics of the Java Card VM and work related to FA on Java
Cards are presented. Then, an analysis of work regarding methods of counteract-
ing FAs and securing the VM are presented. Finally, an FA example is presented
to demonstrate the danger posed by such run-time attacks for the security of
Java Cards.

2.1 Java Card Virtual Machine

A Java Card VM is software that is executed on a microprocessor. The VM
itself can be considered a virtual computer that executes Java applets stored
in the data area of the physical microprocessor. To be able to execute Java
applets, the VM uses internal data structures, such as the OS or the LV, to store
interim results of logical and combinatorial operations. All of these internal data
structures are general objects for adversaries that attack the Java Card [4120124].

For every method invocation performed by the VM, a new Java frame [19]
is created. This frame is pushed to the Java stack and removed from it when
the method returns. In most VM implementations, this frame internally consists
of three primary parts. These parts have static sizes during the execution of
a method. The first frame part is the OS on which most Java operations are
performed. The OS is the source and destination for most of the Java bytecodes.
The second part is the LV memory region. The LV are used in the same manner
as the registers on a standard CPU. The third part is the frame data, which
holds all additional information needed by the VM and Java Card Runtime
Environment (JCRE) [I8]. This additional information includes, for example,
return addresses and pointers to internal VM-related data structures.

2.2 Attacks on Java Cards

Loading an applet that does not conform to the specification defined in [19]
onto a Java Card is a well-known problem called a logical attack (LA). After
an LA, different applets on the card are no longer protected by the so-called Java

A Defensive Virtual Machine Layer 85

sandbox model. Through this sandbox, an applet is protected from illegal write
and read operations of other applets. To perform an LA, an adversary must
know the secret key to install applets. This key is known for development cards,
but it is highly protected for industrial cards and only known by authorized
companies and authorities. In conclusion, LAs are no longer security threats for
current Java Cards.

Side-channel analyses are used to gather information about the currently ex-
ecuting method or instructions by measuring how the card changes environment
parameters (e.g., power consumption and electromagnetic emission) during run-
time. Integrated circuits influence the environment around them but can also
be influenced by the environment. This influence is abused by an FA to change
the normal control and data flow of the integrated circuit. Such FAs include
glitch attacks on the power supply and laser attacks on the cards [224]. By
performing side-channel analyses and FAs in combination, it is possible to break
cryptographic algorithms to receive secret data or keys [16].

In 2010, a new group of attacks called combined attacks (CA) was introduced.
These CAs combine LAs and FAs to enable the execution of ill-formed code
during run-time [5]. An example of a CA is the removal of the checkcast bytecode
to cause type confusion during run-time. Then, an adversary is able to break
the Java sandbox model and obtain access to secret data and code stored on
the card [BYI7]. In this work work, we concentrate on countering FAs during the
execution of an applet using our D-VM layer.

2.3 Countermeasures against Java Card Attacks

Since approximately 2010, an increasing number of researchers have started con-
centrating on the question of what tasks must be performed to make a VM more
robust against FAs and CAs. Several authors [228] suggest adding an additional
security component to the Java Card applet. In this component, they store check-
sums calculated over basic blocks of bytecodes. These checksums are calculated
off-card in a static process and added to a new component of the applet. During
run-time, the checksum of executed bytecodes is calculated using software and
compared with the stored checksums. If these checksums are not the same, a
security exception is thrown.

Another FA countermeasure is the use of control-flow graph information [23].
To enable this approach, a control-flow graph over basic blocks is calculated off-
card and stored in an additional applet component. During run-time, the current
control-flow graph is calculated and compared with the stored control graph.

In [20], the authors propose storing a countermeasure flag in a new applet
component to indicate whether the method is encrypted. They perform this
encryption using a secret key and the Java program counter for the bytecode
of every method. Through this encryption, they are able to counteract attacks
that change the control-flow of an applet to execute illegal code or data.

86 M. Lackner et al.

Another countermeasure against FAs that target the data stored on the OS
is presented in [4]. In this work, integrity checks are performed when data are
pushed or popped onto the OS. Through this approach, the OS is protected
against FAs that corrupt the OS data.

Another run-time check against FAs is proposed in [I0J14], in which they
create separate OSes for each of the two data types, integral Value and reference.
With this approach of splitting the OS, it is possible to counteract type-confusion
attacks. A drawback is that in both works, the applet must be preprocessed.

In [3], the authors propose a dynamic countermeasure to counteract FAs.
Bytecodes are implemented in different versions inside the VM, a standard ver-
sion and an advanced version that performs additional security checks. The VM
is now able to switch during run-time from the standard to the advanced version.
By using unused Java bytecodes, an applet programmer can explicitly call the
advanced bytecode versions.

The drawbacks of current FA countermeasures are that most of them add an
additional security component to the applet or rely on preprocessing of the ap-
plet. This has different drawbacks, such as increased applet size or compatibility
problems for VMs that do not support these new applet components. In this
work, we propose a D-VM layer that performs checks on the currently executing
bytecode. These checks are performed based on a run-time policy and do not
require an off-card preprocessing step or an additional applet component.

2.4 EMAN4 Attack: Jump Outside the Bytecode Area

In 2011, the run-time attack EMAN4 was found [6]. In this work a laser was
used to manipulate the read out values from the EEPROM to 0x00. By this
laser attack an adversary is able to change the Java bytecode of post-issuance
installed applets during their execution.

The target time of the attack is when the VM fetches the operands of the
goto w bytecode from the EEPROM. Generally the goto w bytecode is used to
perform a jump operation inside a method. The goto w bytecode consists of the
operand byte Oxa8 and two offset bytes for the branch destination [I9]. This
branch offset is added to the actual Java program counter to determine the next
executing bytecode. An adversary which changes this offset is able to manipulate
the control flow of the applet.

With the help of the EMAN4 attack it is possible to jump with the Java
program counter outside the applet bytecode area (BA), as illustrated in Fig-
ure [Il This is done by changing the offset parameters of the goto w bytecode
from 0xFF20 to 0x0020 during the fetch process of the VM. The jump destina-
tion address of the EMAN4 attack is a data array outside the bytecode area.
This data array was previously filled with adversary defined data. After the laser
attack the VM executes the values of the data array. This execution of adver-
sary definable data leads to considerably more critical security problems, such as
memory dumps [7]. In this work we counteract the EMAN4 attack by our con-
trol flow policy. This policy only allows to fetch bytecodes which are inside the
bytecode area.

A Defensive Virtual Machine Layer 87

Applet A — Static Data Applet A - Objects
Bytecode Area Undefined Byte Array
Applet Applet Data
Data ... |goto_w OxFF20| ... Data [0] , M| [
, <
goto_w 0x0020 $ T Execute Malicious Data

Jump Outside the Bytecode Area!

Fig.1. The EMAN4 run-time attack changes the jump address 0xFF20 to 0x0020,
which leads to the security threat of executing bytecode outside the defined BA of the
current applet [6]

3 Defensive VM Layer

In this work, we propose adding a novel security layer to the Java Card. Through
this layer, access to internal structures (e.g., OS, LV and BA) of the VM is
handled. In reference to its defensive nature and its primary use for enabling a
defensive VM, we name this layer the defensive VM (D-VM) layer. An overview
of the D-VM layer and the D-VM API, which is used by the VM, is depicted in
Figure 2 and is explained in detail below.

Functionalities offered by the D-VM API include, for example, pushing and
popping data onto the OS, writing and reading from the LV and fetching Java
bytecodes. It is possible for the VM to implement all Java bytecodes by using
these API functions. The pseudo-code example in Listing [[LT] shows the process
of fetching a bytecode and the implementation of the sadd bytecode using our
D-VM API approach. The sadd bytecode pops two values of integral data type
from the OS and pops the sum as an integral data type back onto the OS.

Listing 1.1. Pseudo-code of the VM using the API functions of the newly introduced
D-VM layer.

//use the D-VM API to fetch the mnext bytecode from the BA
switch(dvm fetch bytecode())

{

case sadd: //implementation of the sadd bytecode.

{
//use the D-VM API to obtain the two wvalues from the OS
result = dvm pop integralData () + dvm pop integralData ();
//use the D-VM API to write the sum back onto the OS
dvm push integralData (result);

}

88 M. Lackner et al.

Applet Level | Applet A | | Applet B | | Applet C

Java Card Level Java Card VM

[Defensive VM (D-VM) API)

Defensive VM Level D-VM Layer

Operating System Level [Operating System API }

Operating System Layer

'

Hardware Level Smart Card Hardware

Instruction Set Level

Fig. 2. The VM executes Java Card applets and uses the newly introduced D-VM layer
to secure the Java Card against FAs

The security mechanisms within the security layer intended to protect the VM
from FAs are hidden from the VM programmer. A security architect, specialized
for VM security, is able to implement and choose the appropriate countermeasures
within the D-VM layer. These countermeasures are based on state-of-the-art knowl-
edge and the hardware constraints of the smart card architecture. Programmers
implementing the VM do not need to know these security techniques in detail but
rather just use the D-VM API functions.

If HW features are used, the D-VM layer communicates with these units
and configures them through specific instructions. Through this approach, it is
also very easy to alter the SW implementations by changing the D-VM layer
implementation without changing specific Java bytecode implementations. It is
possible to fulfill the same security policy on different smart card platforms where
specific HW features are available.

On a code size-constrained smart card platform, an implementation that has
a small code size but requires more main memory or execution time is used. The
appropriate implementations of security features within the D-VM API are used
without the need to change the entire VM.

A Defensive Virtual Machine Layer 89

Dynamic Countermeasures: The D-VM layer is also a further step to enable
dynamic fault attack countermeasures such as that proposed by Barbu in [3].
In this work, he proposes a VM that uses different bytecode implementations
depending on the actual security level of the smart card. If an attack or malicious
behavior is detected, the security level is decreased. This decreased security leads
to an exchange of the implemented bytecodes with more secure versions. In these
more secure bytecodes, different additional checks, such as double reads, are
implemented, which leads to decreased run-time performance.

Our D-VM layer further advances this dynamic countermeasure concept. De-
pending on the actual security level, an appropriate D-VM layer implementation
is used. Therefore, the entire bytecode implementation remains unchanged, but
it is possible to dynamically add and change security checks during run-time.
An overview of this dynamic approach is outlined in Figure 3Bl

executes Java
Applets

Java Card VM

D-VM Layer II

% choose D-VM layer implementation

A
High Security

{Middle Security}

Low Security

[

actual security level

v

security checks

Fig. 3. Based on the current security level of the VM, an appropriate D-VM layer
implementation is chosen

The actual security level of the card is determined by HW sensors (e.g., bright-
ness and supply voltage) and the behavior of the executing applet. For example,
at a high security level, the D-VM layer can perform a read operation after
pushing a value into the OS memory to detect an FA. At a lower security level,
the D-VM layer performs additional bound, type and control-flow checks.

Security Context of an Applet: Another use case for the D-VM layer is the
post-issuance installation of applets on the card. We focus on the user-centric
ownership model (UCOM) [I] in which Java Card users are able to load their own

90 M. Lackner et al.

applets onto the card. For the UCOM approach, each newly installed applet is
assigned a defined security level at installation time. The security level depends
on how trustworthy the applet is. For example, the security level for an applet
signed with a valid key from the service provider is quite high, which results in a
high execution speed. Such an applet should be contrasted with an applet that
has no valid signature and is loaded onto the card by the Java Card owner. This
applet will run at a low security level with many run-time checks but a slower
execution speed. Furthermore, access to internal resources and applets installed
on the card could be restricted by the low security level.

3.1 Security Policy

This chapter introduces the three security policies used in this work. With the
help of these policies, it is possible to counteract the most dangerous threats
that jeopardize security-critical data on the card. The type and bound policies
are taken from [I4] and are augmented with a control-flow policy. The fulfillment
of the three policies on every bytecode is checked by three different D-VM layer
implementations using our D-VM API.

Control-Flow Policy: The VM is only allowed to fetch bytecodes that are
within the borders of the currently active method’s BA. Fetching of bytecodes
that are outside of this area is not allowed. The actual valid method BA changes
when a new method is invoked or a return statement is executed. Because of this
policy, it is no longer possible for control-flow changing bytecodes (e.g., goto w
and if semp w) to jump outside of the reserved bytecode memory area. This
policy counters the EMAN4 attack [6] on the Java Card and all other attacks
that rely on the execution of a data array or code of an-other applet that is not
inside the current BA.

Type Policy: Java bytecodes are strongly typed in the VM specification [19].
This typing means that for every Java bytecode, the type of operand that the
bytecode expects and the type of the result stored in the OS or LV are clearly
defined. An example is the sastore bytecode, which stores a short value in an
element of a short array object. The sastore bytecode uses the top three elements
from the OS as operands. The first element is the address of the array object,
which is of type reference. The second element is the index operand of the array,
which must be of type short. The third element is the value, which is stored
within the array element and is of type short.

Type confusion between values of integral data (boolean, byte or short) and
object references (bytef], shortf] or class A, for example) is a serious problem for
Java Cards [24T7T32506/TT]. To counter these attacks, we divide all data types
into the two main types, integralData and reference. Note that this policy does
not prevent type confusion inside the main type reference between array and
class types.

A Defensive Virtual Machine Layer 91

Bound Policy: Most Java Card bytecodes push and pop data onto the OS or
read and write data into the LV, which can be considered similar to registers. The
OS is the main component for most Java bytecode operations. Similar to buffer
overflow attacks in C programs [9], it is possible to overflow the reserved memory
space for the OS and LV. An adversary is then able to set the return address of
a method to any value. Such an attack was first found in 2011 by Bouffard [6l[7].
An overflow of the OS happens by pushing or popping too many values onto
the OS. An LV overflow happens when an incorrect LV index is accessed. This
index parameter is decoded as an operand for several LV-related bytecodes (e.g.,
sstore, sload and sinc). This operand is therefore stored permanently in the non-
volatile memory. Thus, changing this operand through an FA gives an attacker
access to memory regions outside the reserved LV memory region. These memory
regions are created for every method invoked and are not changed during the
method execution. Therefore in this work, we permit Java bytecodes to operate
only within the reserved OS and LV memory regions.

4 Java Card Prototype Implementation

In this work three implementations of the D-VM layer are proposed to perform
run-time security checks on the currently executing bytecode. Two implementa-
tions perform all checks in SW to ensure our security policies. One implementa-
tion uses dedicated HW protection units to accelerate the run-time verification
process. The implementations of the D-VM layer were added into a Java Card
VM and executed on a smart card prototype. This prototype is a cycle-accurate
SystemC [I2] model of an 8051 instruction set-compatible processor. All software
components, such as the D-VM layer and the VM, are written in C and 8051
assembly language.

4.1 D-VM Layer Implementations

This section presents the implementation details for the three implemented
D-VM layers used to create a defensive VM. All three implemented D-VM layers
fulfill our security policy presented in Chapter Bl but differ from each other in
the detailed manner in which the policies are satisfied. The key characteristic of
the two SW D-VM implementations is that they use a different implementation
of the type-storing approach to counteract type confusion. The run-time type
information (integralData or reference) used to perform run-time checks can be
stored either in a type bit-map (memory optimization) or in the actual word size
of the microprocessor (speed optimization). The HW Accelerated D-VM uses a
third approach and stores the type information in an additional bit of the main
memory. Through this approach, the HW can easily store and check the type
information for every OS and LV entry. An overview of how the type-storing
policy is ensured by our D-VM implementations and a memory layout overview
are shown in Figure Ml and explained in detail in the next sections.

92 M. Lackner et al.

Bit Storing D-VM Word Storing D-VM HW Accelerated D-VM
| 0s | 0s | 0S

" | Frame || type entry| - | Frame - Frame

Data *bitmap type ‘ Data type “.._ | Data
N oW oW Y

Fig. 4. The Bit Storing D-VM stores the type information for every OS and LV entry
in a type bitmap. The Word Storing D-VM stores the type information below the
value in the reserved OS and LV spaces. The HW Accelerated D-VM holds the type
information as an additional type bit, which increases the memory size of a word from
8 bits to 9 bits.

Bit Storing D-VM: This D-VM layer implementation stores the type informa-
tion for every element on the OS and LV in a type bitmap. The type information
for every entry of the OS and LV is now represented by a one-bit entry. A problem
with this approach is that the run-time overhead is quite high because different
shift and modulo operations must be performed to store and read the type infor-
mation from the type bitmap. These operations (shift and modulo) are, for the
8051 architecture, computationally expensive operations and thus lead to longer
execution times. An advantage of the bit-storing approach is the low memory
overhead required to hold the type information in the type bitmap.

Word Storing D-VM: The run-time performance of the type storing and
reading process is increased by storing the type information using the natural
word size of the processor and data bus on which the memory for the OS and
LV is located. Every element in the OS and LV is extended with a type element
of a word size such that it can be processed very quickly by the architecture. By
choosing this implementation, the memory consumption of the type-storing pro-
cess increases compared with the previously introduced SW Bit Storing D-VM.
Pseudo-codes for writing to the top of the stack of the OS for the bit- and
word-storing approach are shown in Listings and [[3]

Listing 1.2. Operations needed to push an Listing 1.3. Operations needed to
element on the OS by the Bit Storing D-VM push an element on the OS by the Word
Storing D-VM

dvm push integralData (value) dvm push integralData (value)
//push value onto OS and //push value onto OS
//increase OS size //increase OS size
OS[size4++] = value; OS[size++] = value;

//store type information //store type information
//into type bitmap //into next memory word,
//INT—>integralData type //INT—>integralData type

bitmap [size /8] = INT<<(size %8); OS[size++] = INT;
} }

A Defensive Virtual Machine Layer 93

HW Accelerated D-VM: Performing type and bound checks in SW to ful-
fill our security policy consumes a lot of computational power. Types must be
loaded, checked and stored for almost every bytecode. The bounds of the OS
and LV must be checked such that no bytecode performs an overflow. The HW
Accelerated D-VM layer uses specific HW protection units of the smart card
to accelerate these security checks. New protection units (bound protection and
type protection) are able to check if the current memory move (MOV) operation
is operating in the correct memory bounds. The type information for the OS and
LV entries is stored as an additional type bit for every main memory word. The
information is decoded into new assembly instructions to specify which memory
region (OS, LV or BA) and with which data type (integralData or reference) the
MOYV operation should write or read data. An overview of the HW Accelerated
D-VM is shown in Figure Bl Depending on the assembly instruction, the HW
protection units perform four security operations:

— Check if the Java opcode is fetched from the current active BA.

— Check if the destination address of the operation is within the memory area
of the OS or LV. If the operation is not within these two bounded areas, a
HW security exception is thrown.

— For every write operation write the type decoded in the CPU instruction
into the accessed memory word.

— For every read operation, check if the stored type is equal to the type decoded
in the CPU instruction. If they are not equal, throw a hardware security
exception.

Policy Policy Policy

Y 1 2
______________ e

:Typed Assembly Instructions: | HW Protection Units : § Memory

[l MOV_OS_integralData | | | g Operand Stack
| | | | £ (e15)]

[l MOV_OS_reference | | 18

| | | | Local Variables
[l MOV_OS_untyped | ™ (LV)

| | |

[l MOV_LV_integralData [: Type | Bytecode Area
| | | Protection | (BA)

[l MOV_LV_reference | | |

[- 1

[vmov_BA |

| |

Fig.5. Overview of the HW Accelerated D-VM implementation using new typed as-
sembly instructions to access VM resources (OS, LV and BA). Malicious Java bytecodes
violating our run-time policy will be detected by new introduced HW protection units.

94 M. Lackner et al.

5 Prototype Results

In this section, we present the overall computational overhead of the three im-
plemented D-VM layers and their main memory consumption. All of them are
compared with a VM implementation without the D-VM layer. The speed com-
parison is performed for different groups of bytecodes by self written micro-
benchmarks where all bytecodes under test are measured. These test programs
first perform an initialization phase where the needed operands for the bytecode
under test are written into the OS or LV. After the execution of the bytecode
under test the effects on the OS or LV are removed. Note that our smart card
platform has no data or instruction cache. Therefore, no caching effects must be
taken into account for all test programs.

5.1 Computational Overhead

Speed comparisons for specific bytecodes are shown in Figure[Gl For example, the
Java bytecode sload requires 148% more execution time for the Word Storing
D-VM. For the Bit Storing D-VM, the execution overhead is 212%. The in-
creased overhead is because of the expensive calculations used to store the type
information in a bitmap. For the HW Accelerated D-VM, the execution speed
decreases by only 4% because all type and bound checks are performed using
HW. Additional run-time statistics for groups of bytecodes are listed in Table[Il
As expected, the Bit Storing D-VM consumes the most overall run-time, with
an increase of 208%. The Word Storing D-VM needs 142% more run-time. The
HW Accelerated D-VM has only 6% more overhead.

400% B HW Accelerated D-VM |
350% M Word Storing D-VM I
300% M Bit Storing D-VM
250%
200%
150%
100%

50% -

0% - .
sload sadd saload bspush ifeq overall

Fig. 6. Speed comparison of individual bytecodes for the different D-VM layer imple-
mentations proposed in this work. The results are compared with a VM without the
D-VM layer.

5.2 Main Memory Consumption

The HW Accelerated D-VM requires one type bit per 8 bits of data to store
the type information during run-time. This results in an overall main memory
increase of 12.5%. The Word Storing D-VM requires in the worst case 33% more
memoy because one type byte holds the type information for two data bytes.

A Defensive Virtual Machine Layer 95

Table 1. Speed comparison for different groups of bytecodes compared with a VM
without the D-VM layer

Bytecode Groups HW Accelerated D-VM Word Storing D-VM Bit Storing D-VM

Arithmetic/Logic +7% +146% +240%
LV Access +5% +185% +243%
OS Manipulation +5% +151% +231%
Control Transfer +7% +113% +173%
Array Access +5% +130% +166%
Overall +6% +142% +208%

The Bit Storing D-VM requires approximately 6.25% more memory in the case
in which the entire memory is filled with OS and LV data. This is because the
Bit Storing D-VM requires one type bit per 16 bits of data.

6 Conclusions and Future Work

This work presents a novel security layer for the virtual machine (VM) on Java
Cards. Because it is intended to defend against fault attacks (FAs), it is called
the defensive VM (D-VM) layer. This layer provides access to security-critical
resources of the VM, such as the operand stack, local variables and the bytecode
area. Inside this layer, security checks, such as type checking, bound checking
and control-flow checks, are performed to protect the card against FAs. These
FAs are executed during run-time to change the control and data flow of the
currently executing bytecode.

By storing different implementations of the D-VM layer on the card, it is
possible to choose the appropriate security implementation based on the ac-
tual security level of the card. Through this approach, the number of security
checks can be increased during run-time by switching among different D-VM
implementations. Furthermore, it is possible to assign a trustworthy applet a
low security level, which results in high execution performance, and vice versa.
One D-VM layer implementation can be, for example, low security with high
execution speed or high security with low execution speed. Another advantage
is the concentration of the security checks inside the layer.

To demonstrate this novel security concept, we implemented three D-VM
layers on a smart card prototype. All three layers fulfill the same security policy
(control-flow, type and bound) for bytecodes but differ in their implementation
details. Two D-VM layer implementations are fully implemented in software but
differ in the manner in which the type information is stored. The Bit Storing
D-VM has the highest run-time overhead, 208%, but the lowest memory increase,
6.25%. The Word Storing D-VM decreases the run-time overhead to 142% but
consumes approximately 33% more memory. The HW Accelerated D-VM uses
dedicated Java Card HW to accelerate the run-time verification process and has
an execution overhead of only 6% and a memory increase of 12.5%.

96

M. Lackner et al.

In future work, we will focus on the question of which sensor data should be

used to increase the internal security of the Java Card. Another question is how
many security states are required and how much they differ in their security
needs.

Acknowledgments. The authors would like to thank the Austrian Federal
Ministry for Transport, Innovation, and Technology, which funded the CoCoon
project under the FIT-IT contract FFG 830601. We would also like to thank our
project partner NXP Semiconductors Austria GmbH.

References

10.

11.

Akram, R., Markantonakis, K., Mayes, K.: A Paradigm Shift in Smart Card Own-
ership Model. In: 2010 International Conference on Computational Science and Its
Applications (ICCSA), pp. 191-200 (March 2010)

Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. Proceedings of the IEEE 94(2), 370-382 (2006)
Barbu, G., Andouard, P., Giraud, C.: Dynamic Fault Injection Countermeasure. In:
Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 16-30. Springer, Heidelberg
(2013)

Barbu, G., Duc, G., Hoogvorst, P.: Java Card Operand Stack: Fault Attacks, Com-
bined Attacks and Countermeasures. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 297-313. Springer, Heidelberg (2011)

Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148-163. Springer, Heidelberg (2010)
Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283-296. Springer, Heidelberg (2011)

Bouffard, G., Lanet, J.-L.: The Next Smart Card Nightmare. In: Naccache, D.
(ed.) Cryphtography and Security: From Theory to Applications. LNCS, vol. 6805,
pp. 405-424. Springer, Heidelberg (2012)

Bouffard, G., Lanet, J.-L., Machemie, J.-B., Poichotte, J.-Y., Wary, J.-P.: Evalu-
ation of the Ability to Transform SIM Applications into Hostile Applications. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 1-17. Springer, Heidelberg
(2011)

Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: attacks
and defenses for the vulnerability of the decade. In: Foundations of Intrusion Tol-
erant Systems, 2003 [Organically Assured and Survivable Information Systems],
pp. 227-237 (2003)

Dubreuil, J., Bouffard, G., Lanet, J.-L., Cartigny, J.: Type Classification against
Fault Enabled Mutant in Java Based Smart Card. In: 2012 Seventh International
Conference on Availability, Reliability and Security (ARES), pp. 551-556 (August
2012)

Hamadouche, S., Bouffard, G., Lanet, J.-L., Dorsemaine, B., Nouhant, B., Ma-
gloire, A., Reygnaud, A.: Subverting Byte Code Linker service to characterize Java
Card API. In: Proceedings of the 7th Conference on Network and Information Sys-
tems Security (SAR-SSI), pp. 122-128 (2012)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A Defensive Virtual Machine Layer 97

IEEE: Open SystemC Language Reference Manual IEEE Std 1666-2005, IEEE
Iguchi-Cartigny, J., Lanet, J.-L.: Developing a Trojan applets in a smart card.
Journal in Computer Virology 6, 343-351 (2010)

Lackner, M., Berlach, R., Loinig, J., Weiss, R., Steger, C.: Towards the Hardware
Accelerated Defensive Virtual Machine — Type and Bound Protection. In: Mangard,
S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 1-15. Springer, Heidelberg (2013)
Leroy, X.: Bytecode verification on Java smart cards. Software: Practice and Ex-
perience 32(4), 319-340 (2002)

Markantonakis, K., Mayes, K., Tunstall, M., Sauveron, D., Piper, F.: Smart card
security. In: Nedjah, N., Abraham, A., de Macedo Mourelle, L. (eds.) Computa-
tional Intelligence in Information Assurance and Security. SCI, vol. 57, pp. 201-233.
Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-71078-3_8
Mostowski, W., Poll, E.: Malicious Code on Java Card Smartcards: Attacks and
Countermeasures. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 1-16. Springer, Heidelberg (2008)

Oracle: Runtime Environment Specification. Java Card Platform, Version 3.0.4,
Classic Edition (2011)

Oracle: Virtual Machine Specification. Java Card Platform, Version 3.0.4, Classic
Edition (2011)

Razafindralambo, T., Bouffard, G., Thampi, B.N., Lanet, J.-L.: A Dynamic Syntax
Interpretation for Java Based Smart Card to Mitigate Logical Attacks. In: Thampi,
S.M., Zomaya, A.Y., Strufe, T., Alcaraz Calero, J.M., Thomas, T. (eds.) SNDS
2012. CCIS, vol. 335, pp. 185-194. Springer, Heidelberg (2012)

Sauveron, D.: Multiapplication smart card: Towards an open smart card? Informa-
tion Security Technical Report 14(2), 70-78 (2009); Smart Card Applications and
Security

Séré, A.A K., Iguchi-Cartigny, J., Lanet, J.-L.: Checking the Paths to Identify Mu-
tant Application on Embedded Systems. In: Kim, T.-H., Lee, Y.-H., Kang, B.-H.,
Slezak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 459-468. Springer, Heidelberg
(2010)

Séré, A.A.K., Iguchi-Cartigny, J., Lanet, J.-L.: Evaluation of Countermeasures
Against Fault Attacks on Smart Cards. International Journal of Security and Its
Applications 5(2), 49-61 (2011)

Vertanen, O.: Java Type Confusion and Fault Attacks. In: Breveglieri, L., Koren,
L, Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 237-251.
Springer, Heidelberg (2006)

Vetillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In: Goll-
mann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035,
pp. 133-147. Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/978-3-540-71078-3_8

	A Defensive Virtual Machine Layer to Counteract Fault Attacks on Java Cards
	1 Introduction
	2 Related Work
	2.1 Java Card Virtual Machine
	2.2 Attacks on Java Cards
	2.3 Countermeasures against Java Card Attacks
	2.4 EMAN4 Attack: Jump Outside the Bytecode Area

	3 Defensive VM Layer
	3.1 Security Policy

	4 Java Card Prototype Implementation
	4.1 D-VM Layer Implementations

	5 PrototypeResults
	5.1 Computational Overhead
	5.2 Main Memory Consumption

	6 Conclusions and Future Work
	References

