
Automatic Type Inference for Amortised

Heap-Space Analysis

Martin Hofmann and Dulma Rodriguez

1 University of Munich
martin.hofmann@ifi.lmu.de

2 Monoidics Ltd
dulma.rodriguez@monoidics.com

Abstract. We present a fully automatic, sound and modular heap-space
analysis for object-oriented programs. In particular, we provide type infer-
ence for the system of refinement types RAJA, which checks upper bounds
of heap-space usage based on amortised analysis. Until now, the refined
RAJA types had to be manually specified. Our type inference increases
the usability of the system, as no user-defined annotations are required.

The type inference consists of constraint generation and solving. First,
we present a system for generating subtyping and arithmetic constraints
based on the RAJA typing rules. Second, we reduce the subtyping con-
straints to inequalities over infinite trees, which can be solved using an
algorithm that we have described in previous work. This paper also
enriches the original type system by introducing polymorphic method
types, enabling a modular analysis.

Keywords: Type systems, resource analysis, memory management.

1 Introduction

We study the problem of predicting the dynamic memory allocation of an object-
oriented program in a freelist-based memory model. In short, we compute a
number N such that at any point in the execution of the program the number
of “new” instructions executed thus far minus the number of “free” instructions
executed thus far does not exceed N . This (perhaps) seemingly simple task is
complicated by the following factors:

– The computed bound N should be symbolic, i.e. a closed form expression in
the size of the input which is provided, e.g., as a list of strings;

– The control flow of the program depends on the input and on the shape of
intermediate data structures like lists or trees;

– The control flow strongly depends on dynamic class tags as is common in
class-based object-oriented programming.

We remark that there is nothing special about “new” and “free”; one can in
just the same way count the number of “tick” instructions and in this way
obtain upper bounds on execution time, or indeed on the expenditure of any
other quantifiable resource (number of open connections, text messages sent,
real money spent, etc.).

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 593–613, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

594 M. Hofmann and D. Rodriguez

The need for resource prediction has been widely recognised [1–3] and is
also intuitively plausible. Just think of software running on small, resource-
constrained devices such as smart cards, microcontrollers, phones, or software
running on large servers shared between many users as in cloud computing. While
there is still some way to go until we can serve these applications at industrial
level, there has been considerable progress in the last years.

Approaches based on recurrence solving [1, 4, 5] or on abstract interpreta-
tion [6, 2, 3] have matured to a point where programs of several hundred lines of
code can be automatically analysed. These techniques work under the assump-
tion that control-flow is either fixed or determined by some easily obtainable
numeric parameters such as length or size of input or linear arithmetic functions
thereof. Other dependencies of the control flow are over-approximated by simply
taking the maximum over all possible runs. This works well for programs which
use arrays that are allocated at the beginning with a given size and processed
with a simple iteration pattern. This is very useful in embedded systems or sci-
entific computing where most programs have such a shape. It does not work
well with object-oriented programs where resource behaviour depends on the
dynamic class tags of objects, such as when functional data structures such as
lists or trees are implemented using the Composite pattern.

In previous work [7–10] we and others argued that the method of amortised
analysis [11, 12] might be of help here. Therein, data structures are assigned
non-negative numbers, called potential, in an a priori arbitrary fashion. If done
cleverly, it then becomes possible to obtain constant bounds on the “amortised
cost” of an individual operation, that is, its actual resource usage plus the differ-
ence in potential of the data structure before and after performing the operation.
This makes it possible to take into account the effect that an operation might
have on the resource usage of subsequent operations and also to merely add up
amortised costs without having to explicitly track size and shape of intermediate
data structures.

In traditional amortised analysis [11] where the emphasis lies on the manual
analysis of algorithms, the potentials were ascribed to particular data structures
such as union-find trees by some formula that must be manually provided. When
amortised analysis is used for automatic resource analysis one uses refined types
to define the potentials — typing rules then ensure that potential and actual
resource usage is accounted for correctly. Combined with type inference, it then
allows for an automatic inference of the potential functions.

In amortised resource analysis for statically typed functional programs the
data structures remain fixed (e.g. lists or trees) and only the potential functions
must be found. In the object-oriented case, even the data structures themselves
must be discovered by the analysis because objects can be used for just anything
be it lists, trees, graphs, etc. As a result, automatic inference becomes consider-
ably more challenging unless one is willing to accept user annotations specifying
the way in which objects are to be used, for instance in the form of separation
logic annotations [13].

Automatic Type Inference for Amortised Heap-Space Analysis 595

Here, we investigate how far we can go without requiring any such annota-
tions. We build upon a system of refinement types for amortised analysis for a
Java-like language called Resource Aware JAva (RAJA) [7]. This is a powerful
type system that can capture the heap-space requirements of many programs.
Moreover, the type system takes aliasing into account, which means that the re-
source analysis based on this system is sound for programs which contain shared
or even cyclic data structures. In previous work [8], we have described a type
checking algorithm for RAJA and an implementation capable of checking user
supplied typing annotations which were still quite cumbersome and difficult to
come up with and this hindered practical use.

In this paper, we remove this obstacle and show how the refinement types
can be inferred, so as to make the analysis fully automatic and eliminate the
burden of manual annotations from the programmer. The main contributions of
this paper are as follows:

1. We provide for the first time fully automatic amortised resource inference
for object-oriented programs, which is sound and modular.

2. We reduce the problem of type inference for RAJA to the problem of sat-
isfiability of inequalities over infinite trees labelled with non-negative real
numbers.

3. We validate the type system RAJA and the type inference algorithm with a
publicly available implementation and experimental evaluation.

In previous work [14] we presented the novel problem of satisfiability of arith-
metic constraints over infinite labelled trees. Moreover, we provided a heuristic
algorithm for constraint solving, which consists of reducing the constraints to an
equivalent finite set of linear arithmetic constraints. This was possible in many
cases when the solutions were regular trees.

The fact that we can only solve constraints when their solutions are regular
trees implies that our analysis is restricted to linear bounds. We shall explain
this connection later when we describe how we obtain the bounds from the
infinite trees. Since this problem has only been described recently, it is still
unknown whether it is decidable. If it is decidable and an algorithm for solving
the constraints was found, we would be able to compute non-linear bounds with
the same method.

The type system that we present in this paper is a slightly modified version of
the original type system from [7]: we present syntax-directed typing rules that
make the system more suitable for automatic type inference. We also introduce
polymorphic method types that enable a modular analysis. However, we do not
allow polymorphic recursion since it would cause many difficulties to the type
inference and we have not found useful examples where it is required.

This paper is organised as follows. In the next section we give an informal
presentation of the system and show its use in some examples. In Section 3 we
describe briefly our target language FJEU and we introduce formally the typing
system RAJA. Section 4 describes the type inference algorithm. In Section 5
we show experimental results. Finally we review related work and conclude in
Section 6.

596 M. Hofmann and D. Rodriguez

1 ab s t ra c t c l a s s L i s t {
2 ab s t ra c t L i s t copy () ; ab s t r a c t DList toDList (DList prev) ;}
3 c l a s s Ni l extends L i s t {
4 L i s t copy () { re turn t h i s ; }
5 DList toDList (DList prev) { re turn new DNil () ;}}
6 c l a s s Cons extends L i s t { Li s t next ; i n t elem ;
7 L i s t copy () {
8 Cons r e s = new Cons () ;
9 r e s . elem = t h i s . elem ;

10 r e s . next = t h i s . next . copy () ; re turn r e s ; }
11 DList toDList (DList prev) {
12 DCons r e s = new DCons () ;
13 r e s . elem = t h i s . elem ;
14 r e s . next = t h i s . next . toDList (r e s) ;
15 r e s . prev = prev ; re turn r e s ; }}
16 ab s t ra c t c l a s s DList { }
17 c l a s s DNil extends DList { }
18 c l a s s DCons extends DList { i n t elem ; DList next ; DList prev ;}
19 c l a s s Main {
20 Li s t main copy (L i s t l i s t) { re turn l i s t . copy () ;}
21 DList ma in d l i s t (L i s t l i s t) { re turn l i s t . toDList (new DNil ()) ;} }

Fig. 1. Example program

2 Informal Presentation and Examples

We aim to statically analyse the heap-space consumption of class-based object-
oriented programs. Since we wish to abstract from concrete memory models, we
assume a simple freelist based model where we maintain a set of free memory
units, the freelist. When creating an object, a heap unit required to store it is
taken from the freelist, provided it contains enough units. When deallocating an
object, the unit returns to the freelist. We remark that we deallocate objects
explicitly by means of a free expression, since we assume no garbage collection.
We also assume that any attempt to access a previously deallocated object leads
to immediate abortion of the program and all resource predictions are on condi-
tion that no such abortion takes place. Static analysis for preventing such illicit
accesses is an orthogonal problem and not addressed in this paper.

We also note that we can treat free -instructions as no-ops and use a garbage
collector. Assuming that the garbage collector discovers all deallocation oppor-
tunities and that it is invoked whenever the freelist becomes short then our
inferred bounds are also valid in the presence of garbage collection. We have not
explored this avenue in detail, however.

We then demonstrate the front end of our method with a couple of small
examples. Fig. 1 shows a method for copying a singly-linked-list and a method
for converting a singly-linked-list into a doubly-linked-list. Here we use Java
syntax to simplify the understanding of the programs; the syntax of our target
language FJEU is slightly different. Consider the method main copy. Running
the analysis yields the following results; no annotations by the programmer are
required. The length of the input refers to the length of the list given as argument
to the method.

Program will execute successfully with a free-list >= |input|

Automatic Type Inference for Amortised Heap-Space Analysis 597

It is clear that the heap-space consumption of this program is exactly the length
of the list. When we analyse the method main dlist we obtain the following:

Program will execute successfully with a free-list >= 2 + |input|

Here the heap-space consumption is the length of the list plus the two DNil
objects that represent the two ends of the doubly-linked list.

Our goal is to find (statically) an upper bound on the initial size of the freelist
so that the given program can be executed without running out of memory. We
seek to assign data structures a potential that can be used to pay for any object
creation. Then, the potential of the data structures in their initial state will
represent an upper bound on the total heap consumption of the program.

We wish to assign different objects of the same class different potentials, thus,
we need to refine the notion of classes. We introduce the views, a set of names,
which, together with the classes, build the appropriate refined types to which we
will assign potential. Moreover, since classes are compound types consisting of
fields and methods, we need to give refined types for these also. A refined type
consist of a class C and a view r, written Cr. The potential function ♦(.) assigns
each refined type a potential, which is a non-negative real number. The functions
Aget(· , ·) and Aset(· , ·) assign views to the fields, where Aget(Cr, a) represents the
view used when reading the field a of class C under the view r, and Aset(Cr, a)
is the view used when writing a.

Thus, views consist of a set of names, together with maps ♦(·),Aget(· , ·) and
Aset(· , ·). Alternatively, we can see them as infinite trees, where nodes are labelled
by a tuple of non-negative real numbers (one number for each class in the given
program), and edges are labelled with elements of the set

{C.a.get, C.a.set |C is a class and a is a field of C}

For instance, if we assume that the only class in the program is Cons and g
denotes Cons.next.get and s denotes Cons.next.set, then the following tree rep-
resents a view: 1

1

1

...
...

1

...
...

g s

1

1

...
...

1

...
...

g s

g s

This view is regular, because it contains only finitely many different subtrees.
We define an inequality relation� on views, which is covariant in the get subtrees
and contravariant in the set subtrees. We also define subtyping over refined types:
Cr is a subtype of Ds iff C is a subclass of D and r � s.

A monomorphic method type for a methodm consists of views for the method’s
arguments, a view for its result and two numbers representing the potential con-
sumed and released by the method respectively. More concretely, if a method

m has a type Cr0 ;Er1
1 , . . . , E

rj
j

n/n′
−−→Hrj+1 , this means that it is defined in the

598 M. Hofmann and D. Rodriguez

Nil.copy() = Nilvself q1/q2−−−→Listvres & vself � vres

Cons.copy() = Consvself q1/q2−−−→Listvres &
Aget(Consvself, next) � vself ∧ ♦(Consvself) ≥ ♦(Consvres) + 1

Main.main copy() = Mainvself ; Listvl q1/q2−−−→Listvres & vl � vres
Aget(Consvl, next) � vl ∧ ♦(Consvl) ≥ ♦(Consvres) + 1

♦(·) rich poor

List, Nil,Main 0 0

Cons 1 0

Consrich Conspoor

Aget(· , next) rich poor
Aset(· , next) rich poor

Fig. 2. RAJA types for the copy example

refined type Cr0 and may be called with arguments v1 :E
r1
1 , . . . , vj :E

rj
j , whose

associated potential will be consumed as well as an additional potential of n. The
return value will be of type Hrj+1 , carrying an according potential. In addition
to this, a potential of n′ units will be returned.

Polymorphic method types are like monomorphic RAJA method types, but
views and numbers replaced by variables and constraints upon them. A polymor-
phic method type consists of view variables for its arguments, a view variable for
its result and two number variables. Moreover, it contains a conjunction of sub-
typing and linear arithmetic constraints that capture the resource consumption
of the method. The subtyping constraints show how the views for the arguments
and result relate. For instance, the constraint Aget(Cv, a) � w means that given
a valuation π that maps view variables to views π = {v �→ r, w �→ s}, the get
view of the field a of class C under the view r must be a subtype of s.

One run-time object can have several refined types at once, since it can be
regarded through different views at the same time. The overall potential of a
run-time configuration is the (possibly infinite) sum over all access paths in
scope that lead to an actual object. Thus, if an object has several access paths
leading to it (aliasing), it may make several contributions to the total potential.
Our type system has an explicit contraction rule: If a variable is used more than
once, the associated potential is split by assigning different views to each use.

Analysis of List Copy. In the following, we wish to illustrate the system by
showing the details of the analysis of main copy from Fig. 1. We shall explain a
simplified form of the constraints obtained by analysing the program. We assume
that for each method, we assign the view variable vself to the variable this and
the view variable vres to the result of the function. When analysing the body of
Nil.copy, we obtain the constraint vself � vres (line 4). Further, in the method
Cons.copy, line 8 produces the constraint ♦(Consvself) ≥ ♦(Consvres) + 1, because
the current object needs to pay for the creation of the new Cons object and also
for its potential. Moreover, since the method is called recursively with the next
item in the list (line 10), the refined type of the next node must be a subtype
of the refined type of the current node, which is expressed in the constraint
Aget(Consvself, next) � vself . The method List.copy is abstract, so we obtain no
constraints. However, a virtual call to it may be resolved to a call to Nil.copy()
or to Cons.copy(). Thus, to ensure soundness, we need to add the constraints

Automatic Type Inference for Amortised Heap-Space Analysis 599

of Cons.copy() and Nil.copy() to List.copy(). Then, when we call the method
List.copy() in main copy, we obtain the appropriate constraints after variable
substitution (see Fig. 2).

The valuation π = ({vself �→ rich, vres �→ poor}, {q1 �→ 0, q2 �→ 0}) builds
the best possible solution for the constraints. Our algorithm infers the following

monomorphic method type for main copy: Mainrich; Listrich 0/0−→Listpoor. This type
says that the heap consumption of main copy is bounded by the potential of the
list l. The potential of l is calculated as the sum over all access paths starting
from l and not leading to null. Each of these has a dynamic type: Cons, or Nil
for the end of the list. Each also has a view that can be computed by chaining
the view of l along the get views, which is the view rich in each case. For each
access path, we look up the potential annotation of its dynamic type under its
view. Given ♦

(
Consrich

)
= 1 and ♦

(
Nilrich

)
= 0, this is 1 in every case except for

the path leading to Nil. The resulting sum is the length of the list |l|.
Now, imagine that the view rich was defined differently, as the first element

of the following family of views:

♦
(
Consrichi

)
= 2i,Aget

(
Consrichi, next

)
= richi+1,A

set
(
Consrichi, next

)
= richi+1, i ≥ 0

Then, the potential of the list l would be 2|l| − 1, thus we could obtain an
exponential bound for the heap requirements of the method. Also notice that
the view rich would not be regular. Therefore, we cannot compute such bounds
at the moment, because of the restrictions of our constraint solver.

To conclude this example, we wish to give an intuition for the need for refined
types. Imagine that we could give potential only to the class Cons. Line 8 would
then produce the constraint ♦(Cons) ≥ ♦(Cons) + 1, which is unsatisfiable. We
require more sophisticated types to achieve a more refined behaviour: a Cons
object with potential 1 can be copied, but the result is a Cons object with
potential 0, which cannot.

3 System RAJA

FJ with Update. Our formal model of Java, FJEU, is an extension of Feath-
erweight Java (FJ) [15] with attribute update, conditional and explicit deallo-
cation. An FJEU program P = (C ,main) consists of a partial finite map from
class names to class definitions C , and a distinguished method main to be exe-
cuted when running the program. We write S(C) to denote the super-class D of
C, provided that C has a super-class. We write A(C) to denote the ordered set
of fields of C, including inherited ones. We write C.a to denote the class type
of each field a of class C. Similarly we write Meth(C) to denote the set of all
defined method names of C, including inherited ones. For a method name m of
class C we write Mbody(C,m) to denote the term that comprises the method body
of method m and C.m to denote the method type of m in class C. If otherwise m
is not defined in C, then Mbody(C,m) = Mbody(D,m) and C.m = D.m, provided
that D is the super class of C. Each class has only one implicit constructor,
which sets all class attributes to a null value.

600 M. Hofmann and D. Rodriguez

We now extend FJEU to an annotated version, Resource Aware JAva (RAJA).
We set D = R

+
0 ∪ {∞}, i.e., the set of non-negative real numbers together with

an element ∞. Ordering and addition on R
+
0 extend to D by ∞+x = x+∞ = ∞

and x ≤ ∞.

Definition 1. We define the set V of views coinductively by

– ♦(·) assigns to each view r ∈ V and class C ∈ C a number ♦(Cr).
– Aget(· , ·) assigns to each view r ∈ V and class C ∈ C and field a ∈ A(C) a

view s = Aget(Cr, a).
– Aset(· , ·) assigns to each view r ∈ V and class C ∈ C and field a ∈ A(C) a

view s′ = Aset(Cr, a).

The following inequality relation� is covariant in the get views and contravariant
in the set views.

Definition 2 (r � s). Let r, s ∈ V . We define r � s coinductively by

∀C ∈ C .♦(Cr) ≥ ♦(Cs)

∀C ∈ C ∀a ∈ A(C) .Aget(Cr, a) � Aget(Cs, a)

∀C ∈ C ∀a ∈ A(C) .Aset(Cs, a) � Aset(Cr, a)

We define the operations on views ⊕ : V × V → V and � : V × V → V
simultaneously as follows. Let s1, s2 ∈ V then, for each C ∈ C , a ∈ A(C) we set:

♦
(
Cs1⊕s2

)
= ♦(Cs1) + ♦(Cs2)

Aget
(
Cs1⊕s2, a

)
= Aget(Cs1, a)⊕ Aget(Cs2, a)

Aset
(
Cs1⊕s2, a

)
= Aset(Cs1, a)� Aset(Cs2, a)

♦
(
Cs1�s2

)
= min(♦(Cs1),♦(Cs2))

Aget
(
Cs1�s2, a

)
= Aget(Cs1, a)� Aget(Cs2, a)

Aset
(
Cs1�s2, a

)
= Aset(Cs1, a)⊕ Aset(Cs2, a)

Let
�− : D× D → D be defined by: n

�−m =

{
n−m if n−m ≥ 0
0 otherwise

.

We define an operation (s �− n)D : V × D × C → V that takes a view s and a
number n ∈ D and class D and returns another view that is just like s, except
for the potential of Ds, which is ♦(Ds)

�−n. We set for each C ∈ C and each
a ∈ A(C):

♦
(
C(s �− n)D

)
=

{
♦(Cs) �−n if C = D
♦(Cs) otherwise

Aget
(
C(s �− n)D, a

)
= Aget(Cs, a)

Aset
(
C(s �− n)D, a

)
= Aset(Cs, a)

A refined type consists of a class C and a view r and is written Cr. We extend
the subtyping of FJEU classes to refined types as follows. Since both � and <:
on FJEU are reflexive and transitive so is <: on RAJA.

Definition 3 (Cr <: Ds). We extend subtyping to refined types by Cr <: Ds

iff C <: D and r � s.

In the following grammar, we define subtyping and arithmetic constraints. tt is
the empty constraint, i.e. a constraint that is always satisfied. Moreover, n ∈ D,
v ranges over view variables and p over arithmetic variables.

Automatic Type Inference for Amortised Heap-Space Analysis 601

vexp ::= v | Aget(Cv, a) | Aset(Cv, a) | v ⊕ v
ae ::= n | p | ♦(Cv) | ae+ ae

T C ::= Cvexp <: Dvexp

AC ::= ae1 ≥ ae2 | ae1 ≤ ae2
C ::= AC | T C | C ∧ C | tt

Let π = (πv, πa) be a pair of maps: πv is map from view variables to views and
πa is a map from number variables to numbers. We then define the meaning
of arithmetic expressions π(ae) in the obvious way, e.g. π(♦(Cv)) = ♦

(
Cπv(v)

)
.

The meaning of view expressions π(vexp) is defined as one might expect, e.g.
π(Aget(Cv, a)) = Aget

(
Cπ(v), a

)
. We say that π satisfies a conjunction of constraints

C, written π |= C, if π satisfies each constraint in C.
If v = v0, . . . , vn+1 is a vector of length n + 2, with n ≥ 0, we write v for

meaning the (possibly empty) vector v1, . . . , vn.

Definition 4 (An n-ary monomorphic RAJA method type)
An n-ary monomorphic RAJA method type T consists of n+2 views s and two

numbers m1,m2 written T = s0; s
m1/m2−−−−→ sn+1.

We also write Cs0 ;Es m1/m2−−−−→Hsn+1 to denote an FJEU method type combined
with a corresponding monomorphic RAJA method type.

Definition 5 (An n-ary polymorphic RAJA method type)
An n-ary polymorphic RAJA method type φ consists of n + 2 view variables
v and two arithmetic variables q = q1, q2 and existentially quantified (view and
arithmetic) variables w, t and a conjunction of subtyping and arithmetic con-

straints on them written φ = ∀v, q ∃w, t . v0;v q1/q2−−−→vn+1 & C(v, q,w, t).

We often write ∀v, q ∃w, t . Cv0 ;Ev q1/q2−−−→Hvn+1 & C(v, q,w, t) to denote an
FJEU method type combined with a corresponding polymorphic RAJA method
type. A polymorphic method type stands for the set of all monomorphic types
that satisfy its constraints. Because this type does not depend on the method’s
callers, the type inference for the method can be performed modularly.

Definition 6 (Instance of a polymorphic method type).

Let T = Cs0 ;Es m1/m2−−−−→Hsn+1 be a monomorphic RAJA method type and

φ = ∀v, q ∃w, t . Cv0 ;Ev q1/q2−−−→Hvn+1 & C(v, q,w, t) a polymorphic RAJA method
type. We say that T is an instance of φ, written: “T instanceof φ” iff there ex-
ists a valuation π with π |= C such that π(vi) = si for i ∈ {0, . . . , n + 1} and
π(qj) = mj for j ∈ {1, 2}.

We define trivial polymorphic RAJA method types with no constraints for a

given class C and method m, by: �(C,m) = ∀v, q . v0;v q1/q2−−−→vn+1 & tt.

Definition 7 (Subtyping of monomorphic method types)

If T = r n1/n2−−−→rn+1 and T ′ = sm1/m2−−−−→sn+1 then T <: T ′ is defined as n1 ≤ m1

and n2 ≥ m2 and r0 = s0 and si � ri for i = 1, . . . , n and rn+1 � sn+1.

602 M. Hofmann and D. Rodriguez

Definition 8 (Subtyping of polymorphic method types)
Let C |= C <: D and let φ and ψ be polymorphic RAJA method types refining
a FJEU method type of method m in class C and D, respectively. Then φ <: ψ
iff: ∀T ′ with T ′ instanceof ψ . ∃T with T instanceof φ such that T <: T ′.

We call a polymorphic RAJA method type empty if its constraints are unsatis-
fiable and nonempty if they can be satisfied.

Definition 9 (RAJA program)
A RAJA program is an annotation of an FJEU program P = (C ,main) in
the form of a tuple R = (C ,main,M) where M assigns to each class C and
method m ∈ Meth(C) with n arguments an n-ary polymorphic RAJA method
type M(C,m).

3.1 Typing RAJA

The RAJA-typing judgement is formally defined by the rules in Figure 3. The
type system allows us to derive assertions of the form M;Ξ;Γ

n
n′ e : Cr where

e is an expression or program phrase, C is an FJEU class, r is a view (so Cr is a
refined type). Moreover, Ξ is a map from classes and methods to monomorphic
RAJA method types. Finally n, n′ are non-negative numbers. The meaning of
such a judgement is as follows. If e terminates successfully in some environment
η and heap σ with unbounded memory resources available then it will also ter-
minate successfully with a bounded freelist of size at least n plus the potential
ascribed to η, σ with respect to the typing in Γ .

We present here a syntax-directed version of the original typing system from [7],
which contains the following rule (♦Share) to ensure that a variable can be used
more than once without duplication of potential.

�(s |s1, . . . , sj) Γ,y :Ds n
n′ e : Cr

Γ, x :Ds n
n′ e[x/y1, . . . , x/yj] : Cr

(♦Share)

Here we integrate the rule (♦Share) into the rule (♦Let) using the fact that
�(r |s1, s2) is equivalent to r � s1 ⊕ s2. This result has been omitted in this
paper for lack of space; details can be found in [16]. We do not integrate (♦Share)
in other rules such as (♦Invocation) or (♦Update) because, for simplicity, we
require that in those expressions a variable appears only once.

Monomorphic vs. Polymorphic Recursion. In type systems with polymor-
phic types and recursion, polymorphic recursion is possible. Polymorphic recur-
sion means that, in recursive calls, any instance of the polymorphic type can
be used, whereas in monomorphic recursion only one instance can be used: the
same instance that the polymorphic type is being type-checked with.

Here we allow only monomorphic recursion. The reason for not treating poly-
morphic recursion is that type inference in the presence of polymorphic recursion
is difficult, in particular we would need to compute a fixpoint when generat-
ing constraints for recursive functions. We decided to develop a simpler type

Automatic Type Inference for Amortised Heap-Space Analysis 603

RAJA Typing M;Ξ;Γ
n
n′ e : Cr

∀a ∈ A(D) .Aset(Dr, a) � Aget(Dr, a) D <: C n ≥ ♦(Dr) + 1 n′ ≤ n− ♦(Dr)− 1

M;Ξ;Γ
n
n′ new D : Cr

n′ ≤ n+min{♦(Dr) | D <: C}+ 1

M;Ξ;Γ, x :Cr
n
n′ free (x) : Es

(♦Free)
D <: E Dr <: Cs n′ ≤ n

M;Γ, x :Er
n
n′ (D)x : Cs

(♦Cast)

n′ ≤ n

M;Ξ;Γ
n
n′ null : Cs

(♦Null)
Er <: Cs n′ ≤ n

M;Ξ;Γ, x :Er
n
n′ x : Cs

(♦V ar)

∀F <: C .Aget(F r, a) � s C.a <: D n′ ≤ n

M;Ξ;Γ, x :Cr
n
n′ x.a : Ds

(♦Access)

∀G <: E . s � Aset(Gr, a) F <: E.a Er <: Cq n′ ≤ n

M;Ξ;Γ, x :Er, y :F s
n
n′ x.a ← y : Cq

(♦Upd.)

x ∈ Γ M;Ξ;Γ
n
n′ e1 : Cr M;Ξ;Γ

n
n′ e2 : Cr

M;Ξ;Γ
n
n′ if x instanceof E then e1 else e2 : Cr

(♦Cond.)

M;Ξ;y :F p n
n′ e1 : Ds M;Ξ;y :F q, x :Ds n′

n′′ e2 : Cr ri � pi ⊕ qi

M;Ξ;y :F r
n
n′′ let Dx = e1 in e2 : Cr

(♦Let)

(
Gs0 ;Es t/t′−−→Hs′) instanceof M(G ,m)

Gr0 <: Gs0 F ri
i <: Esi

i Hs′ <: Cr′ n ≥ t n′ ≤ t′ + n− t
(♦PInv.)

M;Ξ;Γ, x :Gr0 ,y :F r n
n′ x.m (y1, . . . , yj) : C

r′

(
Gs0 ;Es t/t′−−→Hs′) ∈ Ξ(G ,m)

Gr0 <: Gs0 F ri
i <: Esi

i Hs′ <: Cr′ n ≥ t n′ ≤ t′ + n− t
(♦MInv.)

M;Ξ; x :Gr0 ,y :F r n
n′ x.m (y1, . . . , yj) : C

r′

RAJA Method Typing �m M ok

�m M′ ok dom(Ξ) = dom(M′′) ∀ (C,m) ∈ M′′ Ξ(C,m) = T

∀T = (Cr0 ;Er n/n′
−−→Hrn+1) instanceof M′′(C,m) (r0

�− p)C � s0

M′;Ξ; this :Cs0 , x1 :E
s1
1 , . . . , xj :E

sj
j

n + p
n′ e : Hrj+1 ri � si ♦(Cr0) ≥ p

�m M′ �M′′ ok

Fig. 3. RAJA Typing

604 M. Hofmann and D. Rodriguez

inference algorithm, that does not require a fixpoint computation, because we
did not find useful examples where the polymorphic recursion is required.

We need to distinguish between recursive and non-recursive method calls.
With non-recursive methods calls, we can use any instance of the polymorphic
type of the called method. That is why there are two rules for method invocation:
(♦PInv.) for polymorphic method invocation and (♦MInv.) for monomorphic
method invocation. In the rule (♦PInv.) we assume that the called method
is not mutually recursive with the method we are currently analysing, and
consequently, we can use any instance of its polymorphic type. On the other
hand, we apply the rule (♦MInv.) when the called method appears in the map
Ξ : ∀C ∈ C .Meth(C) → MonoType which means that this method and the
method whose body we are analysing are mutually recursive.

The judgement for typing the body of a method (�m M ok of Fig. 3) shall
mean that all the methods in the domain of the map M are well-typed.

Also notice in the judgement �m M ok the number p. It represents the amount
of items of potential that we take from the potential of the refined type of this
in the type T for using in the method’s body. Thus, we need to check that the
potential of the refined type of this is at least p.

Definition 10 (Well-typed RAJA-program)
A RAJA-program R = (C ,main,M) is well-typed if the following conditions are
satisfied:

1. �m M ok
2. ∀C ∈ C ,m ∈ Meth(C) .M(C,m) is nonempty.
3. ∀C,D ∈ C withS(C) = D ⇒ M(C,m) <: M(D,m).

A full soundness proof for this system is given in [16]. It consists of a small
modification of the soundness proof for the original RAJA system [7].

4 Type Inference for RAJA

4.1 Constraint Generation

In the following we present rules for generating subtyping and arithmetic con-
straints from FJEU programs. The rules (Fig. 4) describe a constraint generation
judgement M;Ξ;Γ

p
p′ e : Cv & C where e is an expression, Γ maps variables to

FJEU types refined with view variables, Cv is an FJEU type refined with a view
variable, p and p′ are arithmetic variables and C is a conjunction of subtyping
and arithmetic constraints. Further, Ξ is a map from classes and methods with
n arguments to n+ 2 view variables and two arithmetic variables.

We write π(Ξ) to mean the map from classes and methods to monomorphic
RAJA method types that is obtained after substituting every view and arith-
metic variable in Ξ with its value in the valuation π. Similarly, π(Γ) means
the context that we obtain after substituting the view variables in Γ with their
values in π. In addition, we use the notations |Ξ| and |Γ | for meaning the follow-
ing. If Ξ is a map from classes and method names to monomorphic RAJA types,

Automatic Type Inference for Amortised Heap-Space Analysis 605

M;Ξ;Γ
p
p′ e : Cv & C

C = (Ev <: Cu ∧ p′ ≤ p)

M;Ξ;Γ, x :Ev
p
p′ x : Cu & C

C = (p′ ≤ p)

M;Ξ;Γ
p
p′ null : Cv & C

C =
∧

D<:C p′ ≤ p + ♦(Dv) + 1

M;Ξ;Γ, x :Cv
p
p′ free (x) : Eu & C

E = Dv <: Cv AC = p ≥ ♦(Dv) + 1 ∧ p′ ≤ p − ♦(Dv) − 1

M;Ξ;Γ
p
p′ new D : Cv & E ∧ AC ∧

∧
a∈A(D) A

set(Dv, a) � Aget(Dv, a)
(�New)

C = (Dv <: Ev ∧ Dv <: Cu ∧ p′ ≤ p)

M;Ξ;Γ, x :Ev
p
p′ (D) x : Cu & C

(�Cast)
C =

∧
E<:C(C.a)A

get(Ev,a) <: Du ∧ p′ ≤ p)

M;Ξ;Γ, x :Cv
p
p′ x.a : Du & C

C = (
∧

E<:C Fw <: (C.a)A
set(Ev,a) ∧ Cv <: Du)

M;Ξ;Γ, x :Cv, y :Fw
p
p′ x.a ← y : Du & C ∧ p′ ≤ p

(�Update)

M;Ξ;Γ
p
p′ e1 : Cv & C1 M;Ξ;Γ

p
p′ e2 : Cv & C2 C = (C1 ∧ C2)

M;Ξ;Γ
p
p′ if x instanceof E then e1 else e2 : Cv & C

(�Cond.)

M;Ξ;y : F v p
p′ e1 : Du & C1 M;Ξ;y : Fw, x :Du p′

p′′ e2 : Cv & C2

M;Ξ;y : Fu
p
p′′ let Dx = e1 in e2 : Cv & (C1 ∧ C2 ∧

∧
i ui � vi ⊕ wi)

(�Let)

Ξ(G,m) = Gv0 ;Ev q1/q2−−−→Hvn+1

T C = Gu <: Gv0 ∧ F
ui
i <: E

vi
i ∧ Hvn+1 <: Cu′ ∧ p ≥ q1 ∧ p′ ≤ q2 + p − q1

(�MInv)
M;Ξ;Γ, x :Gu,y :Fu p

p′ x.m (y1, . . . , yj) : Cu′
& T C

M(G,m) = ∀v, q ∃v′ , q′ . Gv0 ;Ev q1/q2−−−→Hvn+1 & D D′ = D[w/v,w′/v′, t/q, t′/q′]

T C = Gu <: Gw0 ∧ F
ui
i <: E

wi
i ∧ Hwn+1 <: Cu′ ∧ p ≥ t1 ∧ p′ ≤ t2 + p − t1

(�PInv)
M;Ξ;Γ, x :Gu,y :Fu p

p′ x.m (y1, . . . , yj) : Cu′
& T C ∧ D′

�mc M ok

�mc M′ ok ∀i = 1 .. k (Ci,mi) ∈ dom(M′′) Ξ(Ci,mi) = C
v0
i ;Ev p1/p2−−−→Hvn+1

M′;Ξ; this :C
v̄0
i , x :Ev p̄1

p2
Mbody(C,m) : Hvn+1 & C(i)

ψ(i) = ∀v,p . Cv0 ;Ev p1/p2−−−→Hvn+1 & (C(i) ∧ v0 � v̄0 ∧ ♦(Cv0
i

)
+ p1 ≥ ♦

(
C

v̄0
i

)
+ p̄1)

S(Dj) = Ci λj =

{
M′(Dj ,mi) if (Dj ,mi) ∈ dom(M′)
�(Dj,mi) if (Dj ,mi) ∈ dom(M′′)

φ(i) = ψ(i) ∨
∨

j λj

M′′(Ci,mi) = ∀v,p . C
v0
i ;Ev p1/p2−−−→Hvn+1 & D(i) D(i) =

∧
l∈{1,...,k} constr(φ(l))

�mc M′ � M′′ ok

Fig. 4. Generation of RAJA polymorphic types

606 M. Hofmann and D. Rodriguez

then |Ξ| denotes a map from classes and method names to view and arithmetic
variables with dom(|Ξ |) = dom(Ξ). Similarly, if Γ is an FJEU context, then |Γ |
is a context from program variables to FJEU types refined with view variables
with the same domain as Γ . The judgement reads: expression e has type Cv in
the context Γ , subject to the constraints C. Moreover, the judgement defines a
total function generateConstraints that generates constraints for an expression:

generateConstraints(M, Ξ, Γ, p, p′, e, Cv) = C if M;Ξ;Γ
p

p′ e : Cv & C

The subtyping constraints are of the form Cv <: Du where C and D are classes
and v and u are view variables. We also create constraints of the form u � v ⊕ w
in the rule (�Let), where v ⊕ w is a view expression.

There are two rules for method invocation: (�PInv) for polymorphic method
invocation and (�MInv) for monomorphic method invocation. In (�PInv) we
assume that the called method has already been analysed and so its polymorphic
RAJA method type is available. The constraints generated by this rule consist
of the method’s constraints, where we substitute the view and arithmetic vari-
ables with fresh ones, in conjunction with standard subtyping and arithmetic
constraints. We apply the rule (♦MInv.) when the called method appears in
the map Ξ, which means, as we discussed earlier, that the method and the
method whose body we are analysing are mutually recursive. In that case the
constraints for the method are not yet available. Thus, we only generate the
standard subtyping and arithmetic constraints.

The judgement �mc M ok returns RAJA polymorphic method types for the
methods in M by generating the constraints for the methods’ bodies. We per-
form the analysis on the basis of the call graph of the program, which we modify
slightly by adding the inheritance relations to it. For example, the graph corre-
sponding to the program for copying lists defined in Fig. 1, can be represented
as follows:

(List, copy)(Cons, copy)

(Nil, copy)(Main, main)

After we have built the graph, we decompose it in its strongly connected com-
ponents to obtain the acyclic component graph GSCC. Afterwards, we sort the
obtained dag GSCC topologically and call the constraint generation algorithm
in that order, with the strongly connected components being analysed together.
When applied to the graph above, we obtain the following order where
(Cons, copy) and (List, copy) are analysed together.

(Nil, copy), [(Cons, copy), (List, copy)], (Main,main)

Now, why do we need to extend the call graph with inheritance relations? The
reason for this is that, before we analyse a method m in a class C, we would like

Automatic Type Inference for Amortised Heap-Space Analysis 607

to analyse the same methodm in each subclass D of C. For proving soundness of
the constraint generation algorithm we need to show M(D,m) <: M(C,m), and
this follows trivially when we add the constraints of D.m to the polymorphic
type of C.m. For example, the method List.copy should contain the constraints
of the methods Cons.copy and Nil.copy, as explained earlier.

In the following we prove that, if the constraints generated for the expression
e are satisfiable, then the expression is typeable in the RAJA system with the
result type, context and effect given by the solution to the constraints.

Lemma 1 (Soundness of constraint generation)

If E :: M;Ξ;Γ
q1
q2 e : Cv & C and π |= C then M;π(Ξ);π(Γ)

π(q1)
π(q2) e : Cπ(v).

Proof. By induction on E .

Lemma 2 (Soundness of constraint generation for methods)
Let P = (C ,main) be an FJEU program and let E ::�mc M ok and let M(C,m)
be non-empty for each (C,m) ∈ dom(M). Then:

1. �m M ok.
2. S(D) = C implies M(D,m) <: M(C,m).

Proof. 1. By induction on E .
2. Follows by the design of the judgement �mc M ok, as discussed earlier.

Next, we show that, when applied to a typeable expression, the constraint gen-
eration rules emit a satisfiable constraint set.

Lemma 3 (Completeness of constraint generation)
If E :: M;Ξ;Γ

n1

n2
e : Cr and M; |Ξ|; |Γ | p1

p2
e : Cv & C then there exists π with

π(pi) = ni, π(v) = r, π(|Γ |) = Γ , π(|Ξ|) = Ξ such that π |= C.

Proof. By induction on E .

Lemma 4 (Completeness of constraint generation for methods)
Let R = (C ,main,M) be a well-typed RAJA program and let N be a map
with dom(N) = dom(M) and E ::�mc N ok. Then for all (C,m) ∈ M holds
N (C,m) <: M(C,m).

Proof. By induction on E .

4.2 Constraint Solving

In this section we shall see how to apply RAJA types to the analysis of the heap-
space requirements of methods. Currently, our tool is not capable of computing
bounds for arbitrary methods, but only for the method main. This is because
translating refined types to closed-form upper bounds is challenging and requires
further research. We wish to compute an upper bound on the number of heap
cells needed for executing main as a function of main’s arguments, which follows
from the potential given to its arguments by its RAJA type. We have seen in

608 M. Hofmann and D. Rodriguez

the previous section how to obtain a polymorphic RAJA type for main, but, for
being able to read off the potential from that type, we need a concrete instance
of the type, which we can obtain by solving the type’s constraints.

Whereas solving linear arithmetic constraints is easily achieved by an LP-
Solver, solving subtyping constraints is more challenging. The task of solving a
constraint Cu <: Dv can be reduced to the tasks of solving C <: D and u � v,
by the definition of subtyping. C <: D can be checked easily by analysing the
inheritance relations in the program. Thus, the real challenge is solving u � v.
Solving these kind of constraints is difficult for various reasons.

First, views are infinite objects, and the inequality relation over views is de-
fined coinductively. Thus, unfolding the definition of inequality; that is, trying to
solve the constraints ♦(Cu) ≥ ♦(Cv) for each C ∈ C and Aget(Cu, a) � Aget(Cv, a)
and Aset(Cv, a) � Aset(Cu, a) for each a ∈ A(C) would lead to more unfolding
steps and this process would not terminate.

Second, subtyping over views is covariant in the get views and contravariant
in the set views. The contravariance also brings difficulties. For this reason, we
studied in previous work [14] a simpler type of infinite trees than views. We
fix a finite set L = {l1, . . . , ln} of labels to address the children of a node, e.g.
L = {L,R} for infinite binary trees and L = {tl} for infinite lists. Such trees
can be added, scaled, and compared componentwise; furthermore, we have an
operation ♦(.) that extracts the root label of a tree, thus if t is a tree then ♦(t)
is an element of D. Finally, if t is a tree and l ∈ L then l(t) is the l-labelled
immediate subtree of t. We define a preorder � between trees as follows:

Definition 11. Let t, t′ ∈ TL
D
. We define t � t′ coinductively by t � t′ ⇐⇒

♦(t) ≤ ♦(t′) and li(t) � li(t
′) for all li ∈ L.

This inequality relation is covariant in all cases. Because these trees are simpler
objects, solving constraints over them is simpler than solving constraints over
views. Thus, we solve the inequalities over views by reducing them to inequal-
ities over infinite trees. For solving constraints over infinite trees, we still have
the problem that unfolding the inequality relation would not terminate. This is
why, to ensure termination of unfolding, we developed a heuristic algorithm for
solving these constraints that assumes that the solutions to the constraints are
regular infinite trees. This implies, however, that the algorithm is not able to
solve all the constraints but only a subset of them that admit regular solutions.
Therefore, when using this algorithm, we can solve only subtyping constraints
that admit regular views as a solution, which correspond to programs whose
heap-space consumption is a linear function of its input. Hence, the algorithm
that we present in this paper can compute only linear bounds on the heap-space
requirements of programs. However, we remark that this is because no better
algorithm for solving the constraints over infinite trees is known at the moment.

We present here a reduction from views to infinite trees. The idea of the
reduction is to separate the “positive parts” and “negative parts” of a view, to
build infinite trees. To reduce a view r ∈ V , we define, for each class Ci ∈ C ,
the infinite trees r+i , r

−
i ∈ TL

D
, where L = L+ ∪ L− and L+ = {l+kj | Ck ∈

Automatic Type Inference for Amortised Heap-Space Analysis 609

rich =⇒ rich+ rich−
1

1

1

...
...

1

...
...

g s

1

1

...
...

1

...
...

g s

g s
1

1

1

...
...

0

...
...

g s

0

0

...
...

1

...
...

g s

g s
0

0

0

...
...

1

...
...

g s

1

1

...
...

0

...
...

g s

g s

Fig. 5. View rich reduced to rich+ and rich−, assuming that C = {Cons}

C , aj ∈ A(Ck)} and L− = {l−kj | Ck ∈ C , aj ∈ A(Ck)} such that we can reduce
inequalities between views to inequalities between infinite trees. More exactly,
we want to prove: r � s ⇒

∧
Ci∈C s

+
i � r+i ∧ r−i � s−i . Fig. 5 shows a

representation of the reduction applied to the view rich.

Definition 12. Let r ∈ V . We define expand(r) = (r+, r−), where r+i and r−i
are defined coinductively as follows. Let Ci ∈ C and Ck ∈ C and aj ∈ A(Ck).

♦
(
r+i

)
= ♦(Cr

i)

l+kj(r
+
i) = Aget(Cr

k, aj)
+

i

l−kj(r
+
i) = Aset(Cr

k, aj)
−
i

♦
(
r−i

)
= 0

l+kj(r
−
i) = Aget(Cr

k, aj)
−
i

l−kj(r
−
i) = Aset(Cr

k, aj)
+

i
Lemma 5. Let r � s and let (r+, r−) = expand(r) and (s+, s−) = expand(s).

1. s+i � r+i for all i.
2. r−i � s−i for all i.

Proof. Simultaneously by coinduction.

Next, we build a view from two vectors of trees t and t′, with |t| = |t′| = |C |.
Definition 13. We define the function reduce(t, t′) = r, where r ∈ V , coinduc-
tively as follows.

♦(Cr
i) = ♦(ti) �−♦(t′i)

Aget(Cr
k, aj) = reduce(

−−−→
l+kj(ti),

−−−→
l+kj(t

′
i))

Aset(Cr
k, aj) = reduce(

−−−→
l−kj(t

′
i),

−−−→
l−kj(ti))

First, we notice that reduce is the left inverse of expand.

Lemma 6. Let r ∈ V . Then reduce(expand(r)) = r.

Proof. By coinduction.

Lemma 7. Let t, t′, p, p′ be vectors of infinite trees. Then, if t′i � p′i and
pi � ti for each i, then reduce(t, t′) � reduce(p,p′).

Proof. By coinduction.

Now we can reduce inequalities over views to inequalities of infinite trees, based
on the reduction from views to infinite trees. When we obtain a solution for the
set of constraints over infinite trees, we can build a solution for the original set
of inequalities over views, based on the reduction from infinite trees to views.
The details are omitted for lack of space, and can be found in [16].

610 M. Hofmann and D. Rodriguez

Table 1. Experimental results. The column Heap space shows the prediction of the
required size of the free-list which in each case was equal to the actual heap-space
requirements of the program and Run time represents the run time of the analysis.

Program LoC Heap space Run time

Copy 37 n 0.2s
CircList 56 1 + n 1.6s
InsSort 66 2 + n 1.9s
DList 70 3 + n 1.2s
Append 80 2 + n 3s

Program LoC Heap space Run time

CAppend 60 2 + 2n 0.7s

MergeSort 127 1 10.3s

BankAcc 200 2 + 8n 6.3s

Bank 908 11 + 6n 9.8 min

5 Experimental Results

We have implemented a tool in OCaml for type checking, evaluating and analysing
the heap-space requirements of FJEU programs, based on the algorithm pre-
sented in this paper. The tool uses the result of the analysis for building an
optimised heap for evaluating the programs; that is, it creates a heap with a size
equal to the size predicted by the analysis. The tool assumes that each FJEU
program contains a main method which has one parameter of type List. Further,
the tool assumes that it is given an input file for the program execution. The
interpreter then creates a singly linked list (one node for each row of the input
file) and saves it in the heap before it starts executing the program.

The analyser component of the tool can analyse methods whose heap-space
consumption is a linear function on the size of its arguments. When it analyses
the main method of a program, it delivers two non-negative real numbers a and
b, which shall mean that the program can be evaluated with no memory errors
with a heap of size at least a · |input file|+ b.

Table 1 shows some programs that we could analyse with our tool. For each
example, we could solve the constraints and resultantly provide a (linear) upper
bound for its heap-space requirements. The experiments were performed on a
2.20GHz Intel(R) Core(TM)2 Duo CPU laptop with 2GB RAM. The run-time
of the analysis varied from 0.2s to about 10 minutes on a program of 908 LoC.
Being able to analyse 908 LoC may seem rather modest, but one should note
that nearly all these LoC contribute to the analysis. A typical real program will
contain large portions that look like white space to the analysis, e.g. numerical
computations, I/O, etc. and resource-wise independent parts of a larger program
could be analysed separately.

All bounds are exact in the above experiments, although our soundness result
only ensures an upper bound. There is a demo website where the examples can
be analysed and downloaded, and the user can perform the analysis on their own
programs1.

1 http://raja.tcs.ifi.lmu.de

http://raja.tcs.ifi.lmu.de

Automatic Type Inference for Amortised Heap-Space Analysis 611

6 Conclusions and Related Work

We have presented a type-based analysis of the heap-space requirements of
object-oriented programs. The soundness of each step of the analysis has been
rigorously proved. Moreover, the analysis was modular, enabled by the use of
polymorphic types. Thus, in principle, the analysis is capable of scaling to large
programs, although there is plenty of room for improvement. Polymorphic types
also enable an incremental analysis because they can be saved after the analysis,
and in most cases they do not need to be re-generated when more classes and
methods are added to the programs.

Related Work. Constraint-based type reconstruction for numerically refine-
ment types has been introduced in [17] and been further developed in [18] under
the name “liquid types” which further introduces techniques from predicate ab-
straction and model checking.

Our method for the generation of view constraints is directly inspired by
those works, in particular [17]; however, the view constraints thus gleaned are
not directly amenable to algorithmic solution. The main conceptual contribution
of the present work is thus not so much the RAJA type system which has already
been presented elsewhere, albeit in slightly different and less general form, but
rather the solution of the generated typing or view constraints by translation to
tree constraints and iterated elimination.

Looking at the black-box front end of our contribution—the fully automatic
inference of symbolic resource bounds for object-oriented programs, we can place
our contribution in the following perspective. The topic has been researched
intensively in the past years and many different approaches to it have been
proposed.

In a series of papers [2, 13, 19] Chin and his collaborators have used sized types
and separation logic for the generation of symbolic resource bounds for object-
oriented programs. Presently, the method is not fully automatic because the user
must provide aliasing and shape information. Furthermore, in the functional
realm, the amortised approach has proved superior to related methods in the
case of algorithms that heavily use intermediate data structures whose size is
difficult to describe [10]. However, it might very well be possible to combine our
approach with the generic system “HIP and SLEEK” [19] that maintains and
propagates separation logic assertions for an object-oriented language.

In the recurrence-based approach COSTA [4, 1], one introduces an unknown
resource bounding function for each method and then derives recurrence con-
straints for those by going over the control-flow graph. The main methodological
innovation lies not so much in the analysis which uses mainly standard tech-
niques, but in the development of improved solvers for these recurrences. As
discussed above the amortised approach is superior when resource usage is in-
tertwined with size and layout of intermediate data structures. The path-length
analysis performed by COSTA to infer size-relations is sound with the condi-
tion that there is no aliasing and cyclic data, whereas the analysis performed
by RAJA is sound for all programs and we do not require an extra cyclicity

612 M. Hofmann and D. Rodriguez

analysis. Nevertheless, we hope that the advanced recurrence-solving technology
developed by the COSTA team could allow us to go beyond linear arithmetic
constraints and bounds.

For imperative non-object-oriented programs several other fully- or semi-
automatic analyses have been developed, notably SPEED [3] which is based on
the inference of linear arithmetic relationships between manually added counter
variables. Here, the performance in the presence of dynamically allocated data
structures strongly depends on the instrumentation. SPEED also uses user-
defined quantitative functions that are associated with abstract data-structures.
In contrary, RAJA is fully automatic and does not require any user-input.

Atkey [20] combined amortised analysis and separation logic to analyse im-
perative programs. Like RAJA, Atkey’s system can compute only linear bounds.
On the other hand, the user needs to provide complex annotations.

Acknowledgements. We acknowledge support by the DFG Graduiertenkolleg
1480 Programm- und Modell-Analyse (PUMA).

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning (2010)

2. Chin, W.-N., Nguyen, H.H., Qin, S.C., Rinard, M.: Memory Usage Verification for
OO Programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp.
70–86. Springer, Heidelberg (2005)

3. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static
estimation of program computational complexity. In: POPL. ACM (2009)

4. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007.
LNCS, vol. 5382, pp. 113–132. Springer, Heidelberg (2008)

5. Grobauer, B.: Topics in Semantics-based Program Manipulation. PhD thesis,
BRICS Aarhus (2001)

6. Gomez, G., Liu, Y.A.: Automatic time-bound analysis for a higher-order language.
In: PEPM (2002)

7. Hofmann, M., Jost, S.: Type-Based Amortised Heap-Space Analysis. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006)

8. Hofmann, M., Rodriguez, D.: Efficient Type-Checking for Amortised Heap-Space
Analysis. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 317–331.
Springer, Heidelberg (2009)

9. Jost, S., Loid, H.W., Hammond, K., Hofmann, M.: Static determination of quan-
titative resource usage for higher-order programs. In: POPL (January 2010)

10. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
In: POPL (2011)

11. Tarjan, R.E.: Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods 6(2), 306–318 (1985)

12. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1998)

Automatic Type Inference for Amortised Heap-Space Analysis 613

13. He, G., Qin, S., Luo, C., Chin, W.-N.: Memory Usage Verification Using Hip/Sleek.
In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 166–181. Springer,
Heidelberg (2009)

14. Hofmann, M., Rodriguez, D.: Linear Constraints over Infinite Trees. In: Bjørner,
N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 343–358. Springer,
Heidelberg (2012)

15. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. In: OOPSLA (1999)

16. Rodriguez, D.: Amortised Resource Analysis for Object Oriented Programs. PhD
thesis, Ludwig-Maximilians-Universität München (2012)

17. Knowles, K., Flanagan, C.: Type Reconstruction for General Refinement Types. In:
De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 505–519. Springer, Heidelberg
(2007)

18. Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. ACM SIGPLAN No-
tices 43(6), 159–169 (2008)

19. Chin, W.N., David, C., Gherghina, C.: A hip and sleek verification system. In:
OOPSLA Companion (2011)

20. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods in
Computer Science 7(2) (2011)

	Automatic Type Inference for Amortised Heap-Space Analysis
	Introduction
	Informal Presentation and Examples
	System RAJA
	Typing RAJA

	Type Inference for RAJA
	Constraint Generation
	Constraint Solving

	Experimental Results
	Conclusions and Related Work
	References

