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Abstract. We propose in this paper an estimator of derivative and cur-
vature of discrete curves. Based on adaptive convolution that preserves
contour, we use local geometrical information as the heat kernel to con-
volve with a discrete curve and give estimation of its geometrical param-
eters. We recover on regular part of the curve the classical convolution
based on gaussian kernel. We study the bounded error of our approach
for first and second order derivative and we discuss about the multigrid
convergence.

1 Introduction

Curvature is a geometrical invariant of shapes or curves which characterizes the
object. It has a clear definition in the smooth setting but on discrete shapes, it
is an important problem to give an estimation of this invariant and there exists
many approaches.

A geometrical definition, based on digital segment decomposition of the shape,
estimating the first derivative of the curve is given in [6,10]. Digital circle arcs
decomposition is used in [3,16,15]. Decomposition into maximals segments has
been proved multigrid convergent, meaning that when the digital discretization
step tends to zero, the derivative estimation converges toward the underlying
continuous one. This approach has been generalized by using maximal digital
circle arcs in [15]. The authors studied the multigrid convergence according to
the length of the digital circle arcs when the discretization step tends to zero, and
conjectured the multigrid convergence of their approach. Segmentation with non-
primitive objects has been studied in [14] where the authors proved the multigrid
convergence. Others approaches have been proposed, based on convolution by a
Gaussian kernel in [12,9] or a kernel adapted to the contour in [7]. Gaussian kernel
has been widely studied in Image analysis to reduce noise effect [17]. Although
Gaussian kernel is optimal on flatten parts (Theorem of Gabor [11]), its has
a blurring on the contour. For this reason a large amount of works deals with
adaptive kernels to reduce the blurring effect whereas still reducing the intensity
of the noise. We have proposed in a previous work a digital and adaptive kernel
suited for curves and surfaces [7,8], but we were not able to prove the multigrid
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convergence of this approach. On the other hand, the gaussian kernel has been
proved multigrid convergent for C3 curves in [12] and for C2 curves in [5] for
derivative of order one.

We propose in this paper to study the multigrid convergence of derivatives of
order one and two on curves. We rely on convolution estimators (Section 2) with
Least square methods to give an estimation of the derivative (Section 3). With
the help of a previous work [2], we will use the link between the two approaches
to show that estimation based on adaptive kernel is multigrid convergent (Sec-
tion 4), and finally we will propose numerical examples of curvature estimation
on digital curves (Section 5).

2 Convolution Derivatives Estimator

2.1 Convolution with Gaussian Kernel

Definition 1. Convolution Product
Let F : Z −→ Z and K : Z −→ Z be two discrete functions. We call the
convolution product of F by K denoted F ∗ K the function:

F ∗ K : Z → Z (1)

a �→
∑

i∈Z

F (a − i)K(i) (2)

Definition 2. Derivative Estimation[12]
Let ϕ be a discrete function. An estimation of the first derivative of ϕ at point
x is given by:

(Δ2m−1 ∗ ϕ)(x) = 1
22m−1

m∑

i=−m+1

(
2m − 1

m − 1 + i

)
(ϕ(n + i + 1) − ϕ(n − 1 + i))(3)

Theorem 3. [5]
Let f : R → R be a C3 bounded function, let α ∈]0, 1], K ∈ R

∗
+ and h ∈ R

∗
+.

We suppose that Γ : Z → Z is such that |hΓ (i) − f(hi)|≤ Khα. Then for
m = h2(α−3)/3 we have |(D2m−1 ∗ u)(n) − f ′(nh)|∈ O(h2α/3)

We have proposed in [7,8] to study an adaptive kernel for derivative estimation.
Gaussian Kernel previously introduced has been widely used in image analysis
but its blurring effect destroy fine structures and boundaries. Nevertheless, Ga-
bor [11] shows that on flatten part of an image gaussian kernel are the most
efficient masks to reduce noise. Many works deal with an adaptive kernels that
preserve contours while reducing noise [13,1]. Along these lines, we propose this
discrete kernel which is gaussian on regular parts of a curve and adaptive on
high curvature points.
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2.2 Convolution with Adaptive Kernel

We recall the definition of our adaptive kernel. It is a weighted version of the
classical adjacency matrix.

Definition 4. Adaptive Kernel
Let Σ ⊂ Z

n be a sets of 0-connected voxels. We define on Σ the Markov chain in
discrete time whose states are E, the voxels of Σ, and whose transitions between
two neighbors are constrained by:

– Probability 1
2n to go from center of the voxel to one of its corner

– Equiprobable repartitions from the corner to every adjacent voxel.

We call As the adjacency matrix of the adaptive digital diffusion process. Many
properties of this digital diffusion process can be found in [7,8].

Definition 5. First derivative estimation
Let ϕ be a discrete function and Am

s the adaptive kernel computed on ϕ. Its first
derivative estimation at point n is given by:

(D1
(2m+1) ∗ ϕ)(n) =

m∑

i=−m

Am
s (n, i)(ϕ(n + i + 1) − ϕ(n − 1 + i)) (4)

Following Theorem. 3, we will show that the estimator error is bounded an
converges toward zero when the discretization step tends to zero. We use the
least square method to tackle the problem.

3 Least Square Approximation

3.1 Definitions

Let {y0, y1, . . . , yn} and {x0, x1, . . . , xn} be two matching sets of experimental
measures. We search a relation between xk and yk for k ∈ [1, n]. In the case
of derivative estimation, we are looking for the line fitting the set and passing
through a point (xi, yi) i ∈ [1, n]. Classical least square approximation is to
compute the minimum of the following sum S(a) with respect to a, the slope of
the target line, with

S(a) =
n∑

j=1
((yj − yi) − a(xj − xi))2

In our situation, the diffusion process defines a reliability weight between two
given points: Let Am

s (i, j) the weight at point j starting from point i:

S(a) =
n∑

j=1
((yj − yi) − a(xj − xi))2Am

s (i, j) (5)
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Then the optimal slope a is the solution of

∂S

∂a
=

n∑

j=1
2 ((yj − yi) − a(xj − xi)) × (xj − xi)Am

s (i, j) = 0

=
n∑

j=1
(yj − yi)(xj − xi)Am

s (i, j) − a

n∑

j=1
(xj − xi)2Am

s (i, j) = 0

a =
∑n

j=1(yj − yi)(xj − xi)Am
s (i, j)

∑n
j=1(xj − xi)2Am

s (i, j)

Definition 6. Let C = {c0, c1, . . . , cn} be a discrete curve and Am
s the adaptive

kernel associated with C. We call the least square estimation in ci = (xi, yi), the
line of slope a such that:

a =

n∑

j=1
(yj − yi)(xj − xi)Am

s (i, j)

n∑

j=1
(xj − xi)2Am

s (i, j)
(6)

b = yi − axi (7)

In the next section, we will study the link between the least square approach
and the one based on the associated weighted convolution.

3.2 Link with Gaussian Convolution

The classical least square derivative approach is proved to be multigrid conver-
gent for C2 curves [2]. The authors also generalize this results to second order
derivative functions. We will add geometrical informations of weights in the least
square approach and we will prove that the formula is related to the gaussian
convolution.

Theorem 7. Let C = {c0, c1, . . . , cn} be a discrete curve such that cj = (xj , yj)
and As the stochastic matrix associated with C. If Am

s (i, j) = 1
22m−1 Cm−j+1

2m+1 ,
then we have:

∑2m
j=0(yj − yi)(xj − xi)Am

s (i, j)
∑2m

j=0(xj − xi)2Am
s (i, j)

= D1
2m−1(ci)

Remark 8. This theorem allows us to connect the gaussian weighted least square
approach and the gaussian convolution. Note that the theorem only holds for
gaussian weights but we will see how to deal with adaptive weights.
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Proof. We rewrite the least square estimation formula to simplify the proof.
Without loss of generality, we suppose that the estimation tangent point is cen-
tered at 0. Let pj = Am

s (i, j)

a =
∑m

j=−m(yj − y0)jpj∑m
j=−m j2pj

If pj is given by binomial numbers, we have:

a =
∑m

j=−m(yj − y0)jCm+j
2m−1∑m

j=−m j2Cm+j
2m

We easily check that
∑m

j=−m j2Cm+j
2m = m22m−1.

We collect yj in:

(D1
(2m+1) ∗ ϕ)(x) =

2m+1∑

i=0
Cm+j

2m−1(yj+1 − yj−1)

Cm+j
2m−1(−yj)+Cm+j−1

2m−1 (yj) = yj

(
(2m − 1)!

(m + j − 1)!(m + j)!
− (2m − 1)!

(m + j)!(m − j − 1)!

)

= yj
(2m)!
2m

m + j − (m − j)
(m + j)!(m − j)!

= yj
1

2m

2j(2m)!
(m + j)!(m − j)!

= yj
j

m
Cm+j

2m

We will use this result to show the link with our adaptive kernel.

3.3 Link with Adaptive Kernel

First we need technical results about our adaptive kernel.

Theorem 9. [7] Let D(a, b, μ, ω) be a discrete line and let As be its adaptive
kernel. Then 1√

2m+1 Am
s (0) L−−−−→

m→∞ N (0, 1).

This theorem shows that on discrete lines, the adaptive kernel follows a normal
law; the adaptive kernel has, in the limit, the same statistic distribution as the
gaussian kernel.

Proposition 10. The discrete standard normal diffusion, on the sampling of a
curve of continuous curvature, converges in law toward the centered normalized
normal law.
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More precisely:

Lemma 11. Let f ∈ C2, Let x ∈ Df and σx be the standard deviation of diffu-
sion on a discrete line of slope f ′(x). Let iε be the discrete point associated to x
on ϕε : Z −→ Z discretization of f with a step ε, As the convolution kernel asso-
ciated to ϕε and pε the length of the maximal segment centered at iε. We choose
mε such that pε

2 > mε > pε

4 and we note Xε(y) = 1
mσx

Am
s (iε, iε + � ymσx

ε 	), the
standard normal diffusion process at iε. Then (Xε)ε∈R converges in law toward
the standard normal law:

Xε
L−−−→

ε→0
N (0, 1)

Remark 12. This proposition refers to the asymptotic distribution of the diffu-
sion process for large time being equivalent to a normal law for a given standard
deviation. Therefore, on a curve of continuous curvature, the adaptive kernel
converges toward the gaussian kernel.

Proof. The starting point of diffusion iε belong to S, maximal segment centered
at iε with length pε. Statistical distribution of weights starting from point iε

have a standard deviation σε. Because of the class of the function f ∈ C2, the
deviation σε actually converges, when ε → 0, toward a number σx, which is the
standard deviation of the discrete diffusion on the discrete line of slope f ′(x).

For j such that |iε − j| < pε, being on a maximal segment, the standard
deviation of the process between iε and j for a time m < pε is identical to the
process on the discrete line S.

According to theorem. 9, the standard normal diffusion process on the discrete
line S converges in law toward the normal law when m → ∞. And according
to [10], pε is not bounded when ε → 0. Then for pε

2 > mε > pε

4 ,

Xε
L−−−→

ε→0
N (0, 1)

4 Multigrid Convergence of Derivatives Estimator

In this section, we study the asymptotic convergence of the derivative estimator
of order one and two. In the last section, we study the link between convo-
lution and least square approach. We will use this link to prove the multigrid
convergence of our approach. In [2], the authors propose a proof of multigrid con-
vergence of least square approach without ponderation. We extend their work to
the gaussian approach and our adaptive approach. The need for this extension
has been already documented in image analysis: the constant averaging mask
is not efficient, the gaussian mask taking into account the distance from the
treated pixel is better, and to preserve contours, one needs an adaptive mask
that takes into account the geometry of the image. We propose a similar ap-
proach on discrete curves, and in a forthcoming paper we will apply it to gray
level images.
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4.1 Theorical Convergence

Theorem 13. Let yi = D1(f)(xi), xi ∈ {x1, x2, . . . , xn} be the discretisation of
a functiony = f(x) C2. Then ∀j, ∃ζj ∈ [x, xj ] such that:

∀k, |D1(f)(xk) − f ′(xk)|≤ max
xj∈Vk

{∣∣∣∣
f ′′(ζj)

2
(xj − xk)

∣∣∣∣

}

Proof. Under the hypothesis that f is C2, we have a Taylor expansion in xk:
∀x ∈ R, ∃ζ ∈ [x, xk]

f(x) = f(xk) + f ′(xk)(x − xk) + f ′′(ζ)
2

(x − xk)2

∀j, ∃ζj with a weight pj such that:

yj − yk = f(xj) − f(xk) = f ′(xk)(xj − xk) + f ′′(ζj)
2

(xj − xk)2 (8)

Bringing in Equation 8 into the definition of the derivative, we get:

D1(f)(xk) =
∑n

j=1(yj − yk)(xj − xk)pj∑n
j=1(xj − xk)2pj

=
∑n

j=1 f ′(xk)(xj − xk)2pj + f ′′(ζj)
2 (xj − xk)3pj∑n

j=1(xj − xk)2pj

= f ′(xk) +
∑n

j=1
f ′′(ζj )

2 (xj − xk)3pj∑n
j=1(xj − xk)2pj

.

Then,

|D1(f)(xk) − f ′(xk)| =

∣∣∣∣∣

∑n
j=1

f ′′(ζj )
2 (xj − xk)3pj∑n

j=1(xj − xk)2pj

∣∣∣∣∣

≤
∑n

j=1 maxj∈Vk

{∣∣∣ f ′′(ζj)
2 (xj − xk)

∣∣∣
}

(xj − xk)2pj
∑n

j=1(xj − xk)2pj

≤ max
j∈Vk

{∣∣∣∣
f ′′(ζj)

2
(xj − xk)

∣∣∣∣

}
.

With a similar approach, we have a bounded error for derivatives of order two:

Theorem 14. Let yi = D2(f)(xi), xi ∈ {x1, x2, . . . , xn} be the discretization
of a function y = f(x) defined on I C3. We note h the discretization step and
Δik = (xi−xk)3pi∑n

i=1
(xi−xk)2pi

. Then ∀i, j, k, ∃ζj ∈ [x, xj ], ∃εi ∈ [x, xi] et ∃ε′
i ∈ [x, x′

i]
such that:

|D2(f)(xk)−f ′′(xk)|≤ max
j∈Vk

{∣∣∣f ′′′(ζj)
2

(xj − xk)
∣∣∣
}

+ max
i,j∈Vk

{
n

(xj − xk)h
f ′′(εi)Δik − f ′′(ε′

i)Δij

}
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Proof. Let xk ∈ I, the second derivative at point k is given by:

D2(f)(xk) =
∑n

j=1(D1(f)(xj) − D1(f)(xk))(xj − xk)pj∑n
j=1(xj − xk)2pj

(9)

Identically to the last proof, ∃ζj ∈ [x, xj ] such that:

f ′(xj) − f ′(xk) = f ′′(xk)(xj − xk) + f ′′′(ζj)
2!

(xk − xj)2 (10)

Identically to Theorem 13, we have:

∃ζi ∈ [x, xi], D1(f)(xk) = f ′(xk) +
∑n

i=1
f ′′(ζi)

2 (xi − xk)3pi∑n
i=1(xi − xk)2pi

∃ζ′
i ∈ [x, x′

i], D1(f)(xj) = f ′(xj) +
∑n

i=1
f ′′(ζ′

i)
2 (xi − xj)3pi∑n

i=1(xi − xj)2pi

(11)

f ′(xj) − f ′(xk) = f ′′(xk)(xj − xk) + f ′′′(ζj)
2

(xj − xk)2

(f ′(xj) − f ′(xk))(xj − xk) = f ′′(xk)(xj − xk)2 + f ′′′(ζj)
2

(xj − xk)3

(D
1(f)(xj ) − D

1(f)(xk))(xj − xk) = f
′′(xk)(xj − xk)2 +

f ′′′(ζj )
2

(xj −xk)3 + (xj −xk) (12)
{∑

n

i=1
f ′′ (ζi )

2 (xi − xk)3pi∑
n

i=1
(xi − xk)2pi

−
∑

n

i=1
f ′′ (ζ′

i
)

2 (xi − xj)3pi∑
n

r=1
(xi − xj )2pi

}
(xj −xk)

Bringing Equation 12 into Equation 9,

D2(f)(xk) =
∑n

j=1(D1(f)(xj) − D1(f)(xk))(xj − xk)pj∑n
j=1(xj − xk)2pj

(13)

(14)

D2(f)(xk) =
∑n

j=1(f ′′(xk)(xj − xk)2pj + f ′′′(ζj)
2 (xj − xk)3pj∑n

j=1(xj − xk)2pj
+

∑n
j=1

{∑
n

i=1
f′′(ζi)

2 (xi−xk)3pi∑
n

i=1
(xi−xk)2pi

−
∑

n

i=1

f′′(ζ′
i

)
2 (xi−xj)3pi∑

n

i=1
(xi−xj)2pi

)

}
(xj − xk)pj

∑n
j=1(xj − xk)2pj



Multigrid Convergent Curvature Estimator 403

D2(f)(xk) − f ′′(xk) =

∑
n

j=1
f ′′′(ζj )

2 (xj − xk)3pj∑n

j=1(xj − xk)2pj

+

∑n

j=1

{∑n

i=1

f′′(ζj )
2

(xi−xk)3pi∑
n

i=1
(xi−xk)2pi

−
∑n

i=1

f′′(ζ′
j

)

2
(xi−xj )3pi∑

n

i=1
(xi−xj )2pi

)

}
(xj − xk)pj

∑
n

j=1(xj − xk)2pj

︸ ︷︷ ︸
S2

S2 =

∑n
j=1

{∑
n

i=1
f′′(ζj )

2 (xi−xk)3pi∑n

i=1
(xi−xk)2pi

−
∑

n

i=1

f′′(ζ′
j

)
2 (xi−xj)3pi∑n

i=1
(xi−xj)2pi

)

}
(xj − xk)pj

∑n
j=1(xj − xk)2pj

We note h the discretization step. We call (xi − xk) = δikh:

S2 =

∑n
j=1 δjkhpj

{∑
n

i=1
f′′(ζj )

2 δ3
ikh3pi∑

n

i=1
δ2

ik
h2pi

−
∑

n

i=1

f′′(ζ′
j

)
2 δ3

ijh3pi∑
n

i=1
δ2

ij
h2pi

)

}

∑n
j=1 δ2

jkh2pj
.

We lay Δik = δ3
ikpi∑

n

i=1
δ2

ik
pi

S2 =
∑n

j=1 δjkhpj {∑n
i=1 f ′′(ζi)Δik − f ′′(ζ′

i)Δij}
∑n

j=1 δ2
jkh2pj

By taking the maximum:

S2 ≤ max
i,j∈I

⎧
⎨

⎩

∑n
j=1

δ2
jkh2pj

δjkh {∑n
i=1 f ′′(ζi)Δik − f ′′(ζ′

i)Δij}
∑n

j=1 δ2
jkh2pj

⎫
⎬

⎭

≤ max
i,j∈Vk

{∣∣∣∣
n

δikh
(f ′′(ζi)Δik − f ′′(ζ′

i)Δij)
∣∣∣∣

}

We deduce the bounded error for second order derivative:

∣∣D2(f)(xk)−f ′′(xk)
∣∣ ≤ max

j∈Vk

{∣∣∣f ′′′(ζj)
2

(xj − xk)
∣∣∣
}

+ max
i,j∈Vk

{∣∣∣ n

δikh
f ′′(ζi)Δik − f ′′(ζ′

i)Δij

∣∣∣
}

Corollary 15. Let yi = D1(f)(xi), xi ∈ {x1, x2, . . . , xn} be the discretization
of a function y = f(x) with ∈ C3. Let h be the discretization step. Then, when
h → 0, we have |D1(f)(xk) − f ′(xk)|→ 0 and |D2(f)(xk) − f ′′(xk)|→ 0

Proof. The study of the convergence of the bounded error could be found in [2]
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4.2 Experimentation

In this section, we propose examples to support the convergence of this estimator.
We propose an estimation of the first derivative in Figure 1. We plot as well the
estimation of the second derivative with a mask of length 50 and a discretization
step of 1

100 (Figure 3). Then we study the convergence of this estimation when the
mask length is increased and the discretization step decreased. Whereas, in the first
approximation there are some artifacts, we can see for a larger mask and a better
digitalization step that we recover a good approximation (Figure 5 and Figure 6).

500 600 700 800 900 1000 1100 1200

-100

-50

0

50

100

Fig. 1. First order derivative estima-
tion for a mask of length 50 for x �→
sin(x)

500 600 700 800 900 1000 1100 1200

-100

-50

0

50

100

Fig. 2. First order derivative estima-
tion for a mask of length 150 for x �→
sin(x)
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Fig. 3. Second order derivative estima-
tion for a mask of length 50 for x �→
sin(x)
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Fig. 4. Second order derivative esti-
mation for a mask of length 600 for
x �→ sin(x)
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Fig. 5. Curvature estimation with a
mask of length 300 and discrete step
h = 1

100
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Fig. 6. Zoom on curvature estimation
details Figure. 5

Fig. 7. Examples of curvature estimation on the function x �→ sin(x). Even for quite
large discretization steps and small mask size, we have a reasonably good approximation
of the curvature (Figure 5). But when considering smaller discretization steps, the
estimation converges toward the exact values.
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5 Conclusion

In this article, we proposed a curvature estimator based on an adaptive kernel.
Our approach is similar to a gaussian convolution on regular parts of the curve.
First we have studied the link between the gaussian kernel and our approach.
We proved that the gaussian process converges toward our adaptive estimator
when the grid step converges toward zero and the mask length converges toward
infinity. Then we used a least square method to bound the error between the
estimation and the exact function with adaptive approach. This bounded error
converges toward zero when the grid step converges toward zero and the length
mask converges toward infinity. The issue of the length of the mask has not been
studied in this paper and we have few information about the minimal length to
have a satisfying estimation. In a forthcoming paper we will study the minimal
length mask for a target bound of the error.
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