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Abstract. Differentials estimation of discrete signals is almost manda-
tory in digital segmentation. In our previous work, we introduced the fast
level-wise convolution (LWC) and its complexity of O(2n.log2(m)). We
present convergence proofs of two LWC compatible kernel families. The
first one is the pseudo-binomial family, and the second one the pseudo-
Gaussian family. In the experimental part, we compare our method to
the Digital Straight Segment tangent estimator. Tests are done on dif-
ferent digitized objects at different discretization step using the DGtal
library.

Keywords: Differential estimator, discrete differential operator, fast con-
volution, sparse differential operator, FFT.

Introduction

Digital segmentation algorithms such as active contour models often use signal
parameters as energy. Estimation of differentials is almost mandatory for most of
them as they use regularization terms like the snake algorithm [7]. Previous works
are divided into two categories: the non convolutional and the convolutional
methods.

1. Non convolutional methods. The Digital Straight Segment (DSS) tangent
estimator [8,2] extracts maximal DSS and computes their tangents. One of the
advantages of this method is its ability to detect corners, its convergence rate
is O(13 ). The Taylor polynomial approximation [12] fits the values of a digital
function by a polynomial. It introduces a roughness parameter to relax the func-

tion values within an interval. It has a bounded maximal error of O(h
1

1+k ) for
the kth derivative and a resolution h, its convergence rate is O( 1

1+k ). The Global
min-curvature estimator (GMC) is a curvature estimator along digital contours.
It first estimates the uncertainty of tangents using a tangential cover, and then
minimizes the global curvature.

R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (Eds.): DGCI 2013, LNCS 7749, pp. 335–346, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



336 D. Gonzalez et al.

2. Convolutional methods. The binomial convolution Method (BC) [11,3] ap-
proximates differentials with finite differences after applying a digital version of
the scale space [9] function smoothing, using integer-only binomial coefficients

as a convolution mask. It is noise resistant, has a convergence rate of O(h( 2
3 )

k

)
and a complexity of O(n.m) with n the size of the image and m the one of the
convolution mask.

In our previous work [4] we defined a differential estimator based on a Level-
wise Convolution Kernel, thus obtaining a LWC method. Compared to BC, it
has a better complexity and speed and appears to provide similar error results in
experiments. In this paper, we use two techniques to generate level-wise kernels
from a given smoothing kernel. We then focus on theorems and proofs of con-
vergence for two kernel families and experimental convergence confirmation as
well. More precisely, under some relaxed assumptions of absence of noise and for
floating point methods, we prove that LWC converges in O(h2) with both a level-
wise pseudo-Gaussian kernel and a level-wise binomial kernel. In the presence
of a uniform noise in O(hα), we prove a result similar to [3] for the faster LWC
method. We have not been able to prove such a result for a pseudo-Gaussian
kernel or a level-wise pseudo-gaussian kernel. At last, to further improve com-
parison with other methods we also show results comparing the precision and
speed of our LWC with respect to DSS. The scope of this paper being limited to
first order derivative estimators we don’t compare here our method with GMC.

Section 1 gives definitions of the LWC and two compatible kernels. One based
on the Gaussian function and one based on the binomial coefficients. In the
following two sections we present mathematical proofs of convergence for the
LWC using the two kernels. First the level wise pseudo-binomial kernel (LWBn)
and then the level-wise pseudo-Gaussian kernel LWG. In the experimental results
section, we show comparisons with DSS in terms of precision and runtime.

1 Level-Wise Convolution

When dealing with derivatives estimation, one of the most classical methods is
to use the finite differences (f(x + h) − f(x))/h. Although effective in continu-
ous geometry, it cannot be applied as such to discrete images because derivative
values would be limited to integers. A solution is to average each pixel of the
image with its neighbour, a process called smoothing. This mathematical oper-
ation is known as the convolution product of a function in the integers interval
f : [0, n] → [0, n], the image to be convolved and a function H : [0, n] → [0, n],
the averaging kernel. Gaussian function as a kernel is the standard in this field
as described by Lindeberg in the scale space theory [9]. The resulting image can
then serve to compute differentials, using finite differences with a convolution
by a differential operator Δ as the kernel. Figure 1, is an example of the convo-
lution of a digital function 1, 2, 2, 4, 5 by a binomial coefficients kernel 1, 2, 1. To
preserve the image scale, each value has to be divided by the mass (or weight) of
the kernel (the sum of all its values) in this case W = 2n = 4. After we convolve
the smoothed image by a differential operator to obtain the derivatives (first
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order). There are three kinds of first order derivative operator, the centered one,
as in the example f(1)− f(−1), the backward difference (f(0)− f(−1)) and the
forward difference (f(1)− f(0)). The choice of the derivative operator depends
on symmetric properties of the smoothing kernel. For a centered kernel (odd
size) we use the centered operator. For an even size kernel we can convolve it
with left or right shift (we use the opposite smoothing kernel shift). Out of the
range of the discretization there is no information on the function values. The
convolution loses precision when those pixels are required. This is known as the
border problem and for the example of Figure 1, unknown values are set to 0.
In the experimental part we only use functions for which we know those values.
The major drawback of this method in the discrete paradigm is its complexity
of O(n.m), with n being the size of the image and m the size of the kernel.

Definition 1. The discrete convolution product (noted ∗) is a transform of two
discrete functions F : Z → Z and H : Z → Z. At least one is of finite support.

(F ∗H)(x) =
∑

i∈Z

f(x− i).H(i)

H is said to be a smoothing kernel when
∑

i∈Z
H(i) = 1.

Definition 1 shows the discrete convolution product of an image f with a
kernel H for the pixel x of f .

(F ∗H)(n) =

k∑

j=0

k−j∑

i=−k+j

f(n+ i).(H(−k + j)−H(−k + j − 1)) (1)

(F ∗H)(n+ 1) = (F ∗H)(n)−H(−k).F (n− k − 1) +H(k).F (n+ k) (2)

Looking at the right part of Figure 1 the kernel can be viewed in a multilevel
way. The values are the same for the whole level and by adding them all we
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Convolution kernel H with binomial
coefficients for n=2
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Differential operator delta with
centered finite differences
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First order derivative of the original
image without the weight 2^(-1)

(a) Derivative estimation example
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(b) Level view of the kernel

Fig. 1. (a). First the detailed process of convolving a digital image with a binomial
coefficients kernel, second the convolution of the smoothed image with the central
differential operator of central finite differences. (b). Level view of the binomial kernel
for

(
n
k

)
with n = 8 and k the line index.
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obtain the original kernel as shown in the upper right part. The discrete con-
volution product can be rewritten to apply one level of the kernel at a time, as
shown in Equation (1), the convolution of the function f with the kernel H only

for the pixel n. The first loop
∑k

j=0 iterates through all levels and the second

one
∑k−j

i=−k+j through the whole current level. The complexity has changed to

O(
∑�m/2�

i=0 2i + 1) since m = 2k + 1, but Equation (1) only concerns one pixel
and since each level of the kernel has the same value, we only need to convolve
for the first pixel as indicated in Equation (2) and Figure 2.

F

H

F

H
-k k0 -k k0

nn-k n+k - +n+1n

-k-1

x x

1 1 1 1 1

Fig. 2. Convolution of image f with kernel H of size m = 2k + 1 centered in 0

The left part is the convolution of the pixel n and the right part is the convo-
lution of pixel n+ 1 using the previous result. Since each level of the kernel has
the same value Figure 1, we only need to subtract the product of H(−k) and
F (n− k − 1) and to add the product H(k) and F (n + k) to the convolution of
pixel F (n) to get the result.

1.1 Complexity

The resulting complexity depends on the number of levels of the kernel and we
only use kernels with log2 bounded number of levels. We have a O(2n.log2(m))
complexity which is smaller than the binomials convolution of O(n.m) in [11,3]
and theoretically slightly better to the latest complexity of the FTT of

O(394 N.log2(N)) in [5,10,6]. This complexity is only for the FFT, and in order
to compute a convolution using Fourier transform, several steps are required.
The first step, is to apply the transform to the image to be in Fourier space. The
second is to multiply the image by the Gaussian kernel. The third is to apply
an inverse transform to the result of the previous multiplication to return to the
original space. Using other bounds for the number of levels than the logarithm
can increase or decrease the complexity and it could be interesting to have a
kernel with a fixed number of levels. In higher dimension the complexity will be
O(ndim.log2(m)) with dim being the dimension.

1.2 Kernel Compatibility and Extension to Higher Dimensions

For a kernel to be compatible with this method (central difference), it must have
an even size to avoid data shift. It has a log2 bounded number of levels in order
to have the complexity described in Subsection 1.1. The convolution should work
in higher dimensions using the tensor product of one dimension kernels. The use
of n dimension kernels is possible if they are separable in 1 dimension elements.
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2 Kernels Presentation

We introduce two discrete kernels of low complexity. They are level-wise versions
of two known kernels, the binomial kernel and the Gaussian kernel. There are
two methods to generate level-wise kernels. The first one consists in averaging
kernel’s coefficients per level (pseudo-binomial). The second uses a logarithmic
function (pseudo-Gaussian). The fastest discrete converging method for the first
three order derivative is the binomial coefficient kernel. And the fastest in terms
of computational times is the Gaussian kernel. Kernels are symmetrical: H(x) =
H(−x) and they decrease from center to periphery: H(x) >= H(y)for|x| < |y|.
First let us introduce classical binomial and Gaussian kernels.

Definition 2. The binomial kernel is a discrete approximation of the Gaussian
function. Its coefficients are obtained using the binomials

(
n
k

)
, with n the width

of the kernel and k its index. Bn : Z → Z.

Bn(k) =

(
2n

n− k

)

Let us recall that the classical Gaussian kernel used in scale space is g(x) =
1

σ
√
2π

e−
x2

2σ2 . We introduce now the smoothing kernel obtained by discretizing

this one.

Definition 3. The Gaussian kernel’s coefficients are the ones of the centered
Gaussian function. GλZ → R.

Gλ(i) = α2−λi2 where α =
∑

i∈Z

2−λi2

The parameter α is chosen to get 1 as total weight. The parameter λ determines
the length of the mask.

2.1 Pseudo-gaussian Kernel

To create this kernel, we start from the continuous Gauss formula. We create
a rough kernel with its level number bounded by the log2 function LWGλγ

Definition 4. It is always centered in 0 with α representing the weight such as
the integral of the kernel is equal to 1 in order not to scale the image after
convolution. Parameter γ controls the number and length of levels.

Definition 4. The level-wise pseudo-Gaussian (LWG). LWGλ,γ : Z → R.

LWGλ,γ(i) = α2−λγ
2.� log2(|i|)

log2γ
�
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2.2 Building Complexity

Since we can not predict at which value of i the level change will occur, we have
to compute the values for the whole kernel size O(m) with m being the size of
the kernel. The building process can be speeded up by using the left arithmetic
shift to compute powers of 2.

2.3 Pseudo-binomial Kernel

We used the binomial coefficients as a basis for this kernel since it is a good
discretization of the Gaussian function G. It is a level-wise kernel and the values
of the levels are the sum of the binomial coefficients between two boundaries
controlled by the floor function. In Definition 5, we have the pseudo-binomial
kernel LWBn. The integers parameters are: m is the size of the kernel and n the
number of levels. Let us denote s(i) is the signature of the i. Figure 3 illustrates
the relation between the binomial kernel and BLW . On top Bn is represented by
the different levels which size are increasing by power of two. BLW level values
are the average of the values in the corresponding level.

Definition 5. The level-wise pseudo-binomial (LWBn). LWBn : Z → Z.

LWBn(0) =
1

22α+1−2

(
2α+1 − 2

2α − 1

)
for n �= 0

LWBn(i) =
1

22α+1−2+�log2(|i|)�

⎛

⎝
k=21+�log2(|i|)�−1∑

k=2�log2(|i|)�

(
2α+1 − 2

2α − 1 + s(i)k

)⎞

⎠

where

{
s(i) = +1 if n > 0

s(i) = −1 if n < 0
and m = 2α+1 − 2

2.4 Building Complexity

To minimize the complexity we use the Pascal triangle building method to com-
pute the binomial coefficients. For the memory management, we use the upper
bound 4n

8n
√
πn

to allocate our triangle’s line.

3 Convergence

In this section, we prove convergence results for discretization of functions f :
R → R having a bounded third continuous derivative f (3). At the end, we
compare the convergence rate of our method to the ones in literature.
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Odd length binomial coefficient kernel Bn

Pseudo-binomial level averaged kernel

Fig. 3. Top. Odd length binomial kernel Bn with the center marked by the black
square. Bottom. Pseudo-binomial kernel LWBn. The lower line represent power of 2
coefficients determining the level size.

3.1 Convergence and Error Estimation for Unnoisy Images

We prove here a convergence result for discretization by real numbers of func-
tions having a bounded third continuous derivative. Such a result is convenient
for implementations using floating numbers. It is valid for all the kernels we
mentioned in the previous section.

For a discretization step h, let Γ : Z → R be a real discretization of f : R → R

and f ′ the first order derivative of f .

hΓ (i) = f(ih)

It is convenient for implementations using floating numbers. The following the-
orem is worthwhile for all the kernels we mentioned in the previous section.

Theorem 1. Let H be any non negative symmetric smoothing kernel and Δ∗H
be the associated derivating kernel, where Δ is the central difference operator
defined by Δ(−1) = 1

2 and Δ(+1) = − 1
2 and Δ(i) = 0 for other values of i. Let

x0 = i0h with i0 ∈ Z. Suppose that
∑

j≥1

j2H(j) exists. Suppose moreover that

H(i) is decreasing for non negative i.

(1) (local convergence): lim
h→0

((Δ ∗H) ∗ Γ )(x0) = f ′(x0)

(2) (rate of local convergence):

((Δ ∗H) ∗ Γ )(x0)− f ′(x0) ∼h→0

1 + 3
∑

j≥1 j
2H(j)

6
f (3)(x0)h

2
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(3) (uniform convergence):

Sup {|(Δ ∗H) ∗ Γ )(x)− f ′(x)| ;x ∈ hZ} ≤ 1 + 3
∑

j≥1 j
2H(j)

6
‖f (3)‖∞ |h|2

Proof. Let ai = (Δ ∗H)(i). We have to evaluate
1

h

(
∑

i∈Z

aif(x+ ih)

)
− f ′(x)

For each i in Z, there are x′
i between Min{x, x+ (i − 1)h} and Max{x, x +

(i− 1)h} such that

f(x+ ih) = f(x) + ihf ′(x) +
(ih)2

2
f (2)(x) +

(ih)3

6
f (3)(x′

i)

Now it is easy to check that
∑

i∈Z

ai = 0 and
∑

i∈Z

iai = 1 and
∑

i∈Z

i2ai = 0 and

∑

i∈Z

i3ai exists ; hence we have:

1

h

(
∑

k∈Z

aif(x+ ih)

)
− f ′(x) =

h2

6

(
∑

i∈Z

i3aif
(3)(xi)

)

But now, as the i3ai are non negative, we have
∑

i∈Z

|i3ai| =
∑

i∈Z

i3ai = 2
∑

i≥1

i3ai =

∑

i≥1

i3(H(i−1)−H(i+1)) = 1+3
∑

j≥1

j2H(j) and the two first results are coming

immediately when h tends to 0.

Noticing that

(
∑

i∈Z

i3aif
(3)(xi)

)
≤ ‖f (3)‖∞

∑

i∈Z

|i3ai|, the reader would im-

mediately consider that the proof is complete.

3.2 Error Estimation for Noisy Images

We consider here the following model for noisy images: let f : R −→ R be the
real image; suppose that the sequence Γ : Z −→ Z is a noisy discretization with
a uniformly bounded error |hΓ (i)− f(hi)| ≤ Khα, where α ∈] 12 , 1], K ∈ R∗

+ and
h ∈ R∗

+.

Theorem 2. Suppose that f is a C3 function and f (3) is bounded. If m =⌊
h2(α−3)/5

⌋
, then we have |(LWB2m ∗ Γ )(n)− f ′(nh)| ∈ O(h(4α−2)/5) for suffi-

ciently large h.

Proof. We prove the following inequality in a standard way:

|LWB2m ∗ Γ (n)− f ′(nh)| ≤ 2 + 3m2

6
h2‖φ(3)‖∞ +

2Khα−1

4m

(
2m
m

)

From the well known Stirling’s formula, n ∼ √
2πn

(
n
e

)n
we get for m → +∞
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1

4m

(
2m
m

)
∼ 1

4m

√
4πm

(
2m
e

)2m
(√

2πm
(
m
e

)m)2 =

√
4πm

2πm
=

1√
πm

Hence choosing m = �h 2(α−3)
3 � provides the result.

Notice that this result is significantly worse than the corresponding result for
Binomial smoothing kernel (non level-wise) which has a convergence proof for C2
functions. However this is a preliminary result that could probably be strengthen.
It seems possible to generalize the results to C2 functions in the case of the
pseudo-binomial kernel. Otherwise, we fail to prove such a result for pseudo-
Gaussian (even non level-wise) smoothing kernel. Ulterior work may show counter
examples for the pseudo-Gaussian kernel in terms of convergence or convergence
rate for C2 functions.

3.3 State of the Art

Maximal error of differential estimation mainly depends on the image. This is
the reason why we include the image in our convergence rate in Figure 4. We can
not bound the error for an arbitrary family of functions since our upper bound
depends on the norm of the derivatives, but we can bound the error for a set of
functions. Trigonometrical functions have the following bound ||f ′′′(x)||∞ = 1.
For polynomial functions, the bound will depend on the degree of the function.

BC DSS Taylor P. LWC

1/3 2/3 1/2 |f ′′′(x)|.h2

6

∑
(i3ai)

Fig. 4. Convergence rates of different estimators for the first order derivative. Datas
were taken from [12].

4 Experiments

We have created level-wise version of two kernel families. The Gaussian kernel
used in the scale space theory (SCT), and the binomial kernel used in discrete ge-
ometry. With level-wise convolution we have reduced the convolution complexity.
Figure 9 and Figure 6 show experiment results of computational time verifying
theoretical complexity. Figure 7 and Figure 8 show experimental convergence
rates for the two families of kernel on a ball and on an ellipsis.

The tests of the two kernels have been done on 2D digitized images gener-
ated by the DGtal library [1]. The convolution is a 1D kernel applied on the
contour of the images, so computational time does not suffer from the 1D tests
presented in [4]. Since our convergence proofs implies that objects are C3, we
choose the ones that have this property. The y axis is the Euclidian norm of the
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Discretization step 0.1 0.01 0.001

Pseudo-Gaussian γ 5 20 80

Pseudo-Gaussian λ 1 1 1

Pseudo-binomial α 4 8 12

Fig. 5. Parameters of kernels families used in the experimental part

difference between the expected value and the estimators value. The x axis is
the logarithm of the inverse of the discretization step. The LWG used in this
experiments LWG exp Definition 6 is a derivated form of the one presented in
Definition 4.

Definition 6. Experiments version of the LWG kernel, LWG expλ,γ : Z → R.
log2 e is a result from the change of e in 2.

LWG expλ,γ = α2−λlog2e.γ
2.� log2(|i|)

log2γ
�

Kernels parameters were chosen empirically, but they are the same for each
function as shown in Figure 5.
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Fig. 6. Computational time comparison of convolution of an image of size 1000 by
kernels of the same size. (a). Binomial kernel using regular convolution and pseudo-
binomial using LWC. (b). Gaussian kernel using FFT and pseudo-Gaussian kernel using
LWC.

The computational time results of Figure 6 were obtained with a digitized
ball of radius 1. Both methods are not optimized for computational time result.
DSS is implemented using integers and our method uses floating-point numbers.
The difference is significant enough, and this regardless of implementations to
conclude that our method is faster.
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Fig. 7. Experimental convergence rates on a digitized ball of radius 1. (a). Comparison
results for the pseudo-binomial kernel family. (b). Comparison results for the pseudo-
Gaussian kernel family
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Fig. 8. Experimental convergence rates on a digitized ellipsis of large radius 1. (a).
Comparison results for the pseudo-binomial kernel family. (b). Comparison results for
the pseudo-Gaussian kernel family.
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5 Conclusion

We have presented a uniform convergence proof for LWC for two compatible
kernel families. We have experimentally confirmed convergence as well. The ex-
perimental part shows the precision even with empiric parameters on selected
differentiable objects. Also LWC is significantly faster than DSS (as implemented
in the DGtal library). It is important to note that both implementations of DSS
and LWC that we used may not be optimized. In our future work we will focus
on parameters selection and the adaptivity of our kernel using multi-pass convo-
lutions for higher order differentials. Noise resistance proof for pseudo-Gaussian
kernels will be further investigated. We will also do some tests in higher dimen-
sion and higher derivative order. The last goal will be the GPU implementation
allowing the multi-pass approach to improve the runtime.

Acknowledgement. The research leading to these results has received funding
from the KIDICO project of the French Agence Nationale de la Recherche (Grant
Agreement ANR-2010-BLAN-0205-02).

References

1. DGtal: Digital geometry tools and algorithms library,
http://liris.cnrs.fr/dgtal

2. De Vieilleville, F., Lachaud, J.O.: Comparison and improvement of tangent esti-
mators on digital curves. Pattern Recognition 42(8), 1693–1707 (2009)

3. Esbelin, H., Malgouyres, R., Cartade, C.: Convergence of binomial-based derivative
estimation for 2 noisy discretized curves. Theoretical Computer Science 412(36),
4805 (2011)

4. Gonzalez, D., Malgouyres, R., Esbelin, H.A., Samir, C.: Fast Level-Wise Convolu-
tion. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS,
vol. 7655, pp. 223–233. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-34732-0_17

5. Heideman, M., Johnson, D., Burrus, C.: Gauss and the history of the fast fourier
transform. IEEE ASSP Magazine 1(4), 14–21 (1984)

6. Johnson, S., Frigo, M.: A modified split-radix fft with fewer arithmetic operations.
IEEE Transactions on Signal Processing 55(1), 111–119 (2007)

7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional Journal of Computer Vision 1(4), 321–331 (1988)

8. Lachaud, J., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent es-
timation on digital contours. Image and Vision Computing 25(10), 1572–1587 (2007)

9. Lindeberg, T.: Scale-space theory in computer vision. Springer (1994)
10. Lundy, T., Van Buskirk, J.: A new matrix approach to real ffts and convolutions

of length 2 k. Computing 80(1), 23–45 (2007)
11. Malgouyres, R., Brunet, F., Fourey, S.: Binomial Convolutions and Derivatives Es-

timation from Noisy Discretizations. In: Coeurjolly, D., Sivignon, I., Tougne, L.,
Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 370–379. Springer, Heidelberg
(2008)

12. Provot, L., Gérard, Y.: Estimation of the Derivatives of a Digital Function with a
Convergent Bounded Error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret,
B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 284–295. Springer, Heidelberg
(2011)

http://liris.cnrs.fr/dgtal
http://dx.doi.org/10.1007/978-3-642-34732-0_17

	Convergence of Level-Wise Convolution Differential Estimators
	Level-Wise Convolution
	Complexity
	Kernel Compatibility and Extension to Higher Dimensions

	Kernels Presentation
	Pseudo-gaussian Kernel
	Building Complexity
	Pseudo-binomial Kernel
	Building Complexity

	Convergence 
	Convergence and Error Estimation for Unnoisy Images
	Error Estimation for Noisy Images
	State of the Art

	Experiments
	Conclusion
	References




