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Abstract. The paper investigates an extension of LR parsing that al-
lows the delay of parsing decisions until a sufficient amount of context
has been processed. We provide two characterizations for the resulting
class of grammars, one based on grammar transformations, the other on
the direct construction of a parser. We also report on experiments with
a grammar collection.

1 Introduction

From a grammar engineer’s standpoint, LR parsing techniques, like the LALR(1)
parsers generated by yacc or GNU/bison, suffer from the troublesome existence
of conflicts, which appear sooner or later in any grammar development. Tracing
the source of such conflicts and refactoring the grammar to solve them is a
difficult task, for which we refer the reader to the accounts of Malloy et al. [15]
on the development of a C# grammar, and of Gosling et al. [10] on that of the
official Java grammar.

In the literature, different ways have been considered to solve conflicts
automatically while maintaining a deterministic parsing algorithm—which,
besides efficiency considerations, also has the considerable virtue of ruling
out ambiguities—, such as unbounded regular lookaheads [6], noncanonical
parsers [25], and delays before reductions [14]. Bertsch and Nederhof [4] have
made a rather counter-intuitive observation on the latter technique: increasing
delays uniformly throughout the grammar can in some cases introduce new con-
flicts.

In this paper we propose a parsing technique that selects how long a reduction
must be delayed depending on the context. More interestingly, and unlike many
techniques that extend LR parsing, we provide a characterization, using grammar
transformations, of the class of grammars that can be parsed in a LR fashion
with selective delays. More precisely,

– we motivate in Section 2 the interest of ML(k, m) parsing on an exerpt of
the C++ grammar, before stating the first main contribution of the paper:
we reformulate the technique of Bertsch and Nederhof [4] as a grammar
transformation, and show how selective delays can capture non-ML(k, m)
grammars,
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– we define the class selML(k, m) accordingly through a nondeterminis-
tic grammar transformation, which allows us to investigate its properties
(Section 3),

– in Section 4 we propose an algorithm to generate parsers with selective de-
lays, and prove that it defines the same class of grammars.

– We implemented a Java proof of concept for this algorithm (see
http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/), and report
in Section 5 on the empirical value of selective delays, by applying the parser
on a test suite of small unambiguous grammars [2, 22].

– We conclude with a discussion of related work, in Section 6.

Technical details can be found in the full version of this paper at
http://hal.archives-ouvertes.fr/hal-00769668.

Preliminaries. We assume the reader to be familiar with LR parsing, but
nonetheless recall some definitions and standard notation.

A context-free grammar (CFG) is a tuple G = 〈N,Σ, P, S〉 where N is a finite
set of nonterminal symbols, Σ a finite set of terminal symbols with N ∩Σ = ∅—
together they define the vocabulary V = N � Σ—, P ⊆ N × V ∗ is a finite set
of productions written as rewrite rules “A → α”, and S ∈ N the start symbol.
The associated derivation relation ⇒ over V ∗ is defined as ⇒ = {(δAγ, δαγ) |
A → α ∈ P}; a derivation is rightmost, denoted ⇒rm, if γ is restricted to be in
Σ∗ in the above definition. The language of a CFG is L(G) = {w ∈ Σ∗ | S ⇒∗

w} = {w ∈ Σ∗ | S ⇒∗
rm w}.

We employ the usual conventions for symbols: nonterminals in N are denoted
by the first few upper-case Latin letters A, B, . . . , terminals in Σ by the first
few lower-case Latin letters a, b, . . . , symbols in V by the last few upper-case
Latin letters X , Y , Z, sequences of terminals in Σ∗ by the last few lower-case
Latin letters u, v, w, . . . , and mixed sequences in V ∗ by Greek letters α, β, etc.
The empty string is denoted by ε.

Given G = 〈N,Σ, P, S〉, its k-extension is the grammar 〈N�{S†}, Σ�{#}, P∪
{S† → S#k}, S†〉 where # is a fresh symbol. A grammar is LR(m) [13, 23] if
it is reduced—i.e. every nonterminal is both accessible and productive—and the
following conflict situation does not arise in its m-extension:

S† ⇒∗
rm δAu ⇒rm δαu = γu δ �= δ′ or A �= B or α �= β

S† ⇒∗
rm δ′Bv ⇒rm δ′βv = γwv m : u = m : wv

where “m : u” denotes the prefix of length m of u, or the whole of u if |u| ≤ m.

2 Marcus-Leermakers Parsing

The starting point of this paper is the formalization proposed by Leermakers
[14] of a parsing technique due to Marcus [16], which tries to imitate the way
humans parse natural language sentences. Bertsch and Nederhof [4] have given
another, equivalent, formulation, and dubbed it “ML” for Marcus-Leermakers.

http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/
http://hal.archives-ouvertes.fr/hal-00769668
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The idea of uniform ML parsing is that all the reductions are delayed to take
place after the recognition of a fixed number k of right context symbols, which
can contain nonterminal symbols. Bertsch and Nederhof [4] expanded this class
by considering m further symbols of terminal lookahead, thereby defining ML(k,
m) grammars. In Section 2.2, we provide yet another view on uniform ML(k, m)
grammars, before motivating the use of selective delays in Section 2.3. Let us
start with a concrete example taken from the C++ grammar from the 1998
standard [11].

2.1 C++ Qualified Identifiers

First designed as a preprocessor for C, the C++ language has evolved into a
complex standard. Its rather high level of syntactic ambiguity calls for nonde-
terministic parsing methods, and therefore the published grammar makes no
attempt to fit in the LALR(1) class.

We are interested in one particular issue with the syntax of identifier expres-
sions, which describe a full name specifier and identifier, possibly instantiating
template variables; for instance, “A::B<C::D>::E” denotes an identifier “E” with
name specifier “A::B<C::D>”, where the template argument of “B” is “D” with
specifier “C”.

The syntax of identifier expressions is given in the official C++ grammar by
the following (simplified) grammar rules:

I → U | Q, U → i | T, Q → N U, N → U ::N | U ::, T → i <I>.

An identifier expression I can derive either an unqualified identifier through
nonterminal U , or a qualified identifier through Q, which is qualified through
a nested name specifier derived from nonterminal N , i.e. through a sequence
of unqualified identifiers separated by double colons “::”, before the identifier i
itself. Moreover, each unqualified identifier can be a template identifier T , where
the template argument, between angle brackets “<” and “>”, can again be any
identifier expression.

Example 1. A shift/reduce conflict appears with this set of rules. A parser fed
with “A::”, and seeing an identifier “B” in its lookahead window, has a nonde-
terministic choice between

– reducing “A::” to a single N , in the hope that “B” will be the identifier
qualified by “A::”, as in “A::B<C::D>”, and

– shifting the identifier, in the hope that “B” will be a specifier of the identifier
actually qualified, for instance “E” in “A::B<C::D>::E”.

An informed decision requires an exploration of the specifier starting with “B”
in search of a double colon symbol. The need for unbounded lookahead occurs
if “B” is the start of an arbitrarily long template identifier: this grammar is not
LR(k) for any finite k.

Note that the double colon token might also appear inside a template ar-
gument. Considering that the conflict could also arise there, as after reading



On LR Parsing with Selective Delays 247

“A<B::” in “A<B::C<D::E>::F>::G”, we see that it can be arduous to know
whether a “::” symbol is significant for the resolution of the conflict or not.
In fact, this is an example of a conflict that cannot be solved by using regular
lookahead as proposed in [5, 3, 8], because keeping track of the nesting level of
well-balanced brackets is beyond the power of regular languages.1

2.2 Uniform ML

Observe that, in our extract of the C++ grammar, if we were to postpone the
choice between the two possible actions and attempt to parse an N in full,
then the issue would disappear. The mechanism Leermakers [14] employs for
delaying parsing decisions is to extend a nonterminal with additional terminal
and nonterminal symbols from its right context, thus delaying reduction to that
nonterminal until the moment when these additional symbols have been parsed
in full. This also involves introducing a new end-of-file terminal “#”.

We refer the reader to [14, 4] and the full version of this paper for the details
of the ML(k, m) parser construction. The automaton obtained by applying this
construction on the C++ grammar is too large to be rendered on a single page.
In what follows we present an alternative characterization of ML parsing on the
basis of a grammar transformation.

Uniform ML as a Transformation. Although Leermakers does not present his
technique in these terms, the intuition of extending nonterminals with right con-
text can be realized by a grammar transformation that introduces nonterminals
of the form [Aδ] in N ′ = N · V ≤k, which combine a nonterminal A with its
immediate right context δ.

This results for k = 1 and our C++ example into an LALR(1) grammar with
rules:

[I#] → [U#] | [Q#], [I>] → [U>] | [Q>],

[U#] → i# | [T#], [U>] → i > | [T>], [U::] → i :: | [T::], [U ] → i | [T ],
[Q#] → [NU ] #, [Q>] → [NU ] >,

[NU ] → [U::] [NU ] | [U::] [U ],

[T#] → i < [I>] #, [T>] → i < [I>] >, [T::] → i < [I>] ::, [T ] → i < [I>].

The new grammar demonstrates that our initial grammar for C++ identifier
expressions is ML(1, 1): it requires contexts of length k = 1, and lookahead of
length m = 1.

1 We can amend the rules of N to use left-recursion and solve the conflict:
N → N U :: | U :: . This correction was made by the Standards Committee in 2003
(see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#125).
The correction was not motivated by this conflict but by an ambiguity issue, and
the fact that the change eliminated the conflict seems to have been a fortunate
coincidence. The C++ grammar of the Elsa parser [17] employs right recursion.

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#125
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S† → • I##

I ## → • Q##

Q## → • NU ##

N U# → • U::N U#

U ::N → • i ::N

U ::N → i :: • N

N → • U::N

N → • U::

U ::N → • i ::N

U :: → • i ::

U ::N → i :: • N

U :: → i :: •
N → • U::

U :: → • i ::

i:: i::

Fig. 1. Parts of the uniform ML(2, 0) parser for C++ identifier expressions

Combing Function. Formally, the nonterminals in N ′ are used in the course of
the application of the uniform k-combing function combk from V ∗ to (N ′�Σ)∗,
defined recursively as:

combk(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[Aδ] · combk(α
′) if α = Aδα′, A ∈ N, and either |δ| = k,

or |δ| ≤ k and α′ = ε

a · combk(α
′) if α = aα′ and a ∈ Σ

ε otherwise, which is if α = ε .

For instance, comb1(ABcDeF ) = [AB]c[De][F ].
The right parts of the rules of [Aδ] are then of the form combk(αδ) if A → α

was a rule of the original grammar, effectively delaying the reduction of α to A
until after δ has been parsed.

Definition 1 (Uniform combing). Let G = 〈N,Σ, P, S〉 be a CFG. Its uni-
form k-combing is the CFG 〈N ·V ≤k, Σ, {[Aδ] → combk(αδ) | δ ∈ V ≤k and A →
α ∈ P}, [S]〉.

Equivalence of the Two Views. Of course we should prove that the two views
on ML parsing are equivalent:

Theorem 1. A grammar is ML(k, m) if and only if the uniform k-combing of
its k-extension is LR(m).

Proof Idea. One can verify that the LR(m) construction on the k-combing of
the k-extension of G and the ML(k, m) construction of Bertsch and Nederhof
[4] for the same G are identical.

2.3 Selective ML

An issue spotted by Bertsch and Nederhof [4] is that the classes of ML(k, m)
grammars and ML(k+1,m) grammars are not comparable: adding further delays
can introduce new LR(m) conflicts in the ML(k + 1, m)-transformed grammar.

For instance, the uniform 2-combing of our grammar for C++ identifier ex-
pressions is not LR(m) for any m: Fig. 1 shows the path to a conflict similar to
that of the original grammar, which is therefore not uniform ML(2, m). Selec-
tive ML aims to find the appropriate delay, i.e. the appropriate amount of right
context, for each item in the parser, in order to avoid such situations.
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Oscillating Behaviour. Bertsch and Nederhof also show that an oscillating be-
haviour can occur, for instance with the grammar

S → SdA | c, A → a | ab (Godd)

being ML(k, 0) only for odd values of k, and the grammar

S → SAd | c, A → a | ab (Geven)

being ML(k, 0) only for even values of k > 0, from which we can build a union
grammar

S → SdA | SAd | c, A → a | ab (G2)

which is not ML(k, 0) for any k.
Observe however that, if we use different context lengths for the different

rules of S in G2, i.e. if we select the different delays, we can still obtain an LR(0)
grammar G′

2 with rules

[S†] → [S#]#,

[S#] → [Sd][A#] | [SAd ]# | c#,

[Sd] → [Sd][Ad] | [SAd ]d | cd,
[SAd ] → [Sd][AAd ] | [SAd ][Ad] | c[Ad], (G′

2)

[A#] → a# | ab#,

[Ad] → ad | abd,
[AAd ] → a[Ad] | ab[Ad]

As we will see, this means that G2 is selective ML with a delay of at most
2, denoted selML(2, 0). This example shows that selective ML(k, m) is not
just about finding a minimal global k′ ≤ k such that the grammar is uniform
ML(k′, m). Because the amount of delay is optimized depending on the context,
selective ML captures a larger class of grammars.

3 Selective Delays through Grammar Transformation

We define selML(k, m) through a grammar transformation akin to that of Defi-
nition 1, but which employs a combing relation instead of the uniform k-combing
function. We first introduce these relations (Section 3.1) before defining the
selML(k,m) grammar class and establishing its relationships with various classes
of grammars in Section 3.2 (more comparisons with related work can be found
in Section 6).

3.1 Combing Relations

In the following definitions, we let G = 〈N,Σ, P, S〉 be a context-free grammar.
Combing relations are defined through the application of a particular inverse
homomorphism throughout the rules of the grammar.
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Definition 2 (Selective Combing). Grammar G′ = 〈N ′, Σ, P ′, S′〉 is a selec-
tive combing of G, denoted G comb G′, if there exists a homomorphism μ from
V ′∗ to V ∗ such that

1. μ(S′) = S,
2. ∀a ∈ Σ,μ(a) = a,
3. μ(N ′) ⊆ N · V ∗, and
4. {A′ → μ(α′) | A′ → α′ ∈ P ′} = {A′ → αδ | A′ ∈ N ′, μ(A′) = Aδ, and A →

α ∈ P}.
It is a selective k-combing if furthermore μ(N ′) ⊆ N · V ≤k.

We denote the elements of N ′ by [Aδ]i, such that μ([Aδ]i) = Aδ, with an i
subscript in N to differentiate nonterminals that share the same image by μ.

Note that, if G comb G′, then there exists some k such that G′ is a selective
k-combing of G, because μ(N ′) is a finite subset of N ·V ∗. Another observation is
that comb is transitive, and thus we can bypass any intermediate transformation
by using the composition of the μ’s. In fact, comb is also reflexive (using the
identity on N for μ), and is thus a quasi order.

Grammar Cover. It is easy to see that a grammar and all its μ-combings are
language equivalent. In fact, we can be more specific, and show that any μ-
combing G′ = 〈N ′, Σ, P ′, [S]0〉 of G = 〈N,Σ, P, S〉 defines a right-to-x cover of G
(see Nijholt [19]), i.e. there exists a homomorphism h from P ′∗ to P ∗ such that

1. for all w in L(G′) and right parses π′ of w in G′, h(π′) is a parse of w in G,
and

2. for all w in L(G) there is a parse π of w in G, such that there exists a right
parse π′ of w in G′ with h(π′) = π.

Indeed, defining h by

h([Aδ]i → α) = A → μ(α) · δ−1 (1)

fits the requirements of a right-to-x cover.

Tree Mapping. Nevertheless, the right-to-x cover characterization is still some-
what unsatisfying, precisely because the exact derivation order x remains un-
known. We solve this issue by providing a tree transformation that maps any
derivation tree of G′ to a derivation tree of G. Besides allowing us to prove the
language equivalence of G and G′ (see Corollary 1), this transformation also al-
lows us to map any parse tree of G′—the grammar we use for parsing—to its
corresponding parse tree of G—the grammar we were interested in in the first
place.

We express this transformation as a rewrite system over the set of unranked
forests F(N∪N ′∪Σ) over the set of symbols N∪N ′∪Σ, defined by the abstract
syntax

t ::= X(f) (trees)

f ::= ε | f · t (forests)
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where “X” ranges overN∪N ′∪Σ and “·” denotes concatenation. Using unranked
forests, our tree transformation has a very simple definition, using a rewrite
system →R with one rule per nonterminal [AX1 · · ·Xr]i in N ′:

[AX1 · · ·Xr]i(x0 ·X1(x1) · · ·Xr(xr)) →R A(x0) ·X1(x1) · · ·Xr(xr) (2)

with variables x0, x1, . . . , xr ranging over F(N ∪N ′∪Σ). Clearly, →R is noethe-
rian and confluent, and we can consider the mapping that associates to a deriva-
tion tree t in G′ its normal form t↓R (see full paper for details):

Proposition 1. Let G be a CFG and G′ a combing of G.
1. If t′ is a derivation tree of G′, then t′ ↓R is a derivation tree of G.
2. If t is a derivation tree of G, then there exists a derivation tree t′ of G′ such

that t = t′ ↓R.
Since →R preserves tree yields, we obtain the language equivalence of G and G′

as a direct corollary of Proposition 1:

Corollary 1 (Combings Preserve Languages). Let G be a k-extended CFG
and G′ a combing of G. Then L(G) = L(G′).

3.2 Selective ML Grammars

We define selML(k, m) grammars by analogy with the characterization proved
in Thm. 1:

Definition 3 (Selective ML). A grammar is selML(k, m) if there exists a
selective k-combing of its k-extension that is LR(m).

Basic Properties. We now investigate the class of selML(k, m) grammars. As
a first comparison, we observe that the uniform k-combing of a grammar is by
definition a selective k-combing (by setting μ as the identity on N ·V ≤k), hence
the following lemma:

Lemma 1. If a grammar is ML(k, m) for some k and m, then it is selML(k,
m).

As shown by G2, this grammar class inclusion is strict.
A second, more interesting comparison holds between selML(0, m) and

LR(m). That a LR(m) grammar is selML(0, m) is immediate since comb is
reflexive; the converse is not obvious at all, because a 0-combing can involve
“duplicated” nonterminals, but holds nevertheless (see full paper for details).

Lemma 2. A reduced grammar is selML(0, m) if and only if it is LR(m).

Recall that a context-free language can be generated by some LR(1) grammar
if and only if it is deterministic [13], thus selML languages also characterize
deterministic languages:
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Corollary 2 (Selective ML Languages). A context-free language has a
selML grammar if and only if it is deterministic.

Proof. Given a selML(k, m) grammar G, we obtain an LR(m) grammar G′ with
a deterministic language, and equivalent to G by Corollary 1. Conversely, given
a deterministic language, there exists an LR(1) grammar for it, which is also
selML(0,1) by Lemma 2.

Monotonicity. We should also mention that, unlike uniform ML, increasing k
allows strictly more grammars to be captured by selML(k, m). Indeed, if a
grammar is a selective k-combing of some grammar G, then it is also a k + 1-
combing using the same μ (with an extra # endmarker), and remains LR(m).

Proposition 2. If a grammar is selML(k, m) for some k and m, then it is
selML(k′, m′) for all k′ ≥ k and m′ ≥ m.

Strictness can be witnessed thanks to the grammar family (Gk
3 )k≥0 defined by

S → AckA′ | BckB′, A → cA | d, B → cB | d, A′ → cA′ | a, B′ → cB′ | b (Gk
3 )

where each Gk
3 is selML(k + 1, 0), but not selML(k, m) for any m.

Ambiguity. As a further consequence of Proposition 1, we see that no ambiguous
grammar can be selML(k, m) for any k and m.

Proposition 3. If a grammar is selML(k, m) for some k and m, then it is
unambiguous.

Proof. Assume the opposite: an ambiguous grammar G has a selective k-combing
G′ that is LR(m). Being ambiguous, G has two different derivation trees t1 and
t2 with the same yield w. As t1 and t2 are in normal form for →R, the sets of
derivation trees of G′ that rewrite into t1 and t2 are disjoint, and using Propo-
sition 1 we can pick two different derivation trees t′1 and t′2 with t1 = t′1 ↓R and
t2 = t′2 ↓R. As →R preserves tree yields, both t′1 and t′2 share the same yield w,
which shows that G′ is also ambiguous, in contradiction with G′ being LR(m)
and thus unambiguous.

Again, this grammar class inclusion is strict, because the following unambiguous
grammar for even palindromes is not selML(k, m) for any k or m, since its
language is not deterministic:

S → aSa | bSb | ε (G4)

Undecidability. Let us first refine the connection between selML and LR in the
case of linear grammars: recall that a CFG is linear if the right-hand side of each
one of its productions contains at most one nonterminal symbol. A consequence is
that right contexts in linear CFGs are exclusively composed of terminal symbols.
In such a case, the selML(k,m) and LR(k+m) conditions coincide (see full paper
for details):
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Lemma 3. Let G be a reduced linear grammar, and k and m two natural inte-
gers. Then G is selML(k, m) if and only if it is LR(k +m).

Note that in the non-linear case, the classes of selML(k, m) and LR(k+m) gram-
mars are incomparable. Nevertheless, we obtain as a consequence of Lemma 3:

Theorem 2. It is undecidable whether an arbitrary (linear) context-free gram-
mar is selML(k, m) for some k and m, even if we fix either k or m.

Proof. Knuth [13] has proven that it is undecidable whether an arbitrary linear
context-free grammar is LR(n) for some n.

4 Parser Construction

This section discusses how to directly construct an LR-type parser for a given
grammar and fixed k and m values. The algorithm is incremental, in that it
attempts to use as little right context as possible: this is interesting for efficiency
reasons (much as incremental lookaheads in [1, 20]), and actually needed since
more context does not necessarily lead to determinism (recall Section 2.3). The
class of grammars for which the algorithm terminates successfully (i.e. results in
a deterministic parser, without ever reaching a failure state) coincides with the
class of selML(k, m) grammars (see Propositions 4 and 5). An extended example
of the construction will be given in Section 4.2.

4.1 Algorithm

Algorithm 1 presents the construction of an automaton from the k-extension of a
grammar. We will call this the selML(k, m) automaton. In the final stages of the
construction, the automaton will resemble an LR(m) automaton for a selective
k-combing. Before that, states are initially constructed without right context.
Right contexts are extended only where required to solve conflicts.

Items and States. The items manipulated by the algorithm are of form ([Aδ] →
α • α′, L), where L ⊆ Σ≤m is a set of terminal lookahead strings, and where α
and α′ might contain nonterminals of the form [Bβ], where B ∈ N and β ∈ V ≤k.
Such nonterminals may later become nonterminals in the selective k-combing of
the input grammar. To avoid notational clutter, we assume in what follows that
B and [B] are represented in the same way, or equivalently, that an occurrence
of B in a right-hand side is implicitly converted to [B] wherever necessary.

States are represented as sets of items. Each such set q is associated with three
more sets of items. The first is its closure close(q). The second is conflict(q),
which is the set of closure items that lead to a shift/reduce or reduce/reduce
conflict with another item, either immediately in q or in a state reachable from
q by a sequence of transitions. A conflict item signals that the closure step that
predicted the corresponding rule, in the form of a non-kernel item, must be
reapplied, but now from a nonterminal [Bβ] with longer right context β. Lastly,
the set deprecate(q) contains items that are to be ignored for the purpose of
computing the Goto function.
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([Aδ]→ α • [Bβ1]β2, L) ∈ close(q)

([Bβ1]→ • γβ1, L
′) ∈ close(q)

{
B → γ ∈ P,
L′ = Firstm(β2L)

(closure)

([A1δ1]→ α1 • β1, L1) ∈ close(q)
([A2δ2]→ α2 •, L2) ∈ close(q)

([A2δ2]→ α2 •, L2) ∈ conflict(q)

{
(A1δ1, α1, β1) �= (A2δ2, α2, ε),
Firstm(μ(β1)L1) ∩ L2 �= ∅ (conflict detection)

([Aδ]→ α • [Bβ], L) ∈ close(q)
([Bβ]→ • γ, L) ∈ conflict(q)

([Aδ]→ α • [Bβ], L) ∈ conflict(q)
(conflict propagation)

([Aδ]→ α • [Bβ1]Xβ2, L) ∈ close(q)
([Bβ1]→ • γ, L′) ∈ conflict(q)

([Aδ]→ α • [Bβ1X]β2, L) ∈ close(q)

{|β1| < k,
L′ = Firstm(Xβ2L),

(extension)

([Bβ]→ • γ, L) ∈ conflict(q)

⊥
{|β| = k (failure)

([Aδ]→ α • [Bβ1X]β2, L) ∈ close(q)

([Aδ]→ α • [Bβ1]Xβ2, L) ∈ deprecate(q)
(deprecation)

([Aδ]→ α • [Bβ1X]β2, L) ∈ close(q)

([Bβ1]→ • γ′, L′) ∈ deprecate(q)

{
B → γ ∈ P, μ(γ′) = γβ1,
L′ = Firstm(Xβ2L),

(deprecate closure)

Fig. 2. Closure of set q with local resolution of conflicts

Item Closure. The sets close(q), conflict(q) and deprecate(q) are initially com-
puted from the kernel q alone. However, subsequent visits to states reachable
from q may lead to new items being added to conflict(q) and then to close(q)
and deprecate(q). How items in these three sets are derived from one another for
given q is presented as the deduction system in Figure 2.

The closure step is performed as in conventional LR parsing, except that
right context is copied to the right-hand side of a predicted rule. The conflict
detection step introduces a conflict item, after a shift/reduce or reduce/reduce
conflict appears among the derived items in the closure. Conflict items solicit
additional right context, which

– may be available locally in the current state, as in step extension, where
nonterminal [Bβ1] is extended to incorporate the following symbol X—we
assume μ here is a generic “uncombing” homomorphism, turning a single
nonterminal [Bβ1] into a string Bβ1 ∈ N · V ≤k—, or

– if no more right context is available at the closure item from which a conflict
item was derived, then the closure item itself becomes a conflict item, by
step conflict propagation—propagation of conflicts across states is realized
by Algorithm 1 and will be discussed further below—, or

– if there is ever a need for right context exceeding length k, then the grammar
cannot be selML(k, m) and the algorithm terminates reporting failure by
step failure.
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Algorithm 1. Construction of the selML(k, m) automaton for the k-extension of
G = 〈N,Σ, P, S〉, followed by construction of a selective k-combing
1: States← ∅
2: Transitions← ∅
3: Agenda← ∅
4: qinit = {(S† → • S#k, {ε})}
5: NewState(qinit)
6: while Agenda �= ∅ do
7: q ← pop(Agenda)
8: remove (q,X, q′) from Transitions for any X and q′

9: apply Figure 2 to add new elements to the three sets associated with q
10: for all ([Aδ]→ αX • β, L) ∈ conflict(q) do
11: for all q′ such that (q′, X, q) ∈ Transitions do
12: AddConflict(([Aδ]→ α • Xμ(β), L), q′)
13: end for
14: end for
15: if there are no ([Aδ]→ αX • β, L) ∈ conflict(q) then
16: qmax ← close(q) \ deprecate(q)
17: for all X such that there is ([Aδ]→ α • Xβ,L) ∈ qmax do
18: q′ ← Goto(qmax, X)
19: if q′ /∈ States then
20: NewState(q′)
21: else
22: for all ([A′δ′]→ α′X • β′, L) ∈ conflict(q′) do
23: AddConflict(([A′δ′]→ α′ • Xμ(β′), L), q)
24: end for
25: end if
26: Transitions← Transitions∪{(q,X, q′)}
27: end for
28: end if
29: end while
30: construct a selective k-combing as explained in the running text
31:
32: function NewState(q)
33: close(q)← q
34: conflict(q)← ∅
35: deprecate(q)← ∅
36: States← States∪{q}
37: Agenda← Agenda∪{q}
38: end function
39:
40: function AddConflict(([Aδ]→ α • Xβ, L), q)
41: if ([Aδ]→ α • Xβ, L) /∈ conflict(q) then
42: conflict(q)← conflict(q) ∪ {([Aδ]→ α • Xβ, L)}
43: Agenda← Agenda∪{q}
44: end if
45: end function
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Step deprecation expresses that an item with shorter right context is to be ig-
nored for the purpose of computing the Goto function. The Goto function will
be discussed further below. Similarly, step deprecate closure expresses that all
items predicted from the item with shorter right context are to be ignored.

Main Algorithm. Initially, the agenda contains only the initial state, which is
added in line 5. Line 7 of the algorithm removes an arbitrary element from
the agenda and assigns it to variable q. At that point, either close(q) = q and
conflict(q) = deprecate(q) = ∅ if q was not considered by line 7 before, or elements
may have been added to conflict(q) since the last such consideration, which
also requires updating of close(q) and deprecate(q), by Figure 2. By a change
of the latter two sets, also the outgoing transitions may change. To keep the
presentation simple, we assume that all outgoing transitions are first removed
(on line 8) and then recomputed. From line 10, conflicting items are propagated
to states immediately preceding the current state, by one transition. Such a
preceding state is then put on the agenda so that it will be revisited later.

Outgoing transitions are (re-)computed from line 15 onward. This is only done
if no conflicting items had to be propagated to preceding states. Such conflict
items would imply that q itself will not be reachable from the initial state in
the final automaton, and in that case there would be no benefit in constructing
outgoing transitions from q.

For the purpose of applying the Goto function, we are only interested in the
closure items that have maximal right context, as all items with shorter context
were found to lead to conflicts. This is the reason why we take the set difference
qmax = close(q) \ deprecate(q). The Goto function is defined much as usual:

Goto(qmax, X) = {([Aδ] → αX • β, L) | ([Aδ] → α • Xβ,L) ∈ qmax} . (3)

The loop from line 22 is very similar to that from line 10. In both cases, conflicting
items are propagated from a state q2 to a state q1 along a transition (q1, X, q2).
The difference lies in whether q1 or q2 is the currently popped element q in
line 7. The propagation must be allowed to happen in both ways, as it cannot be
guaranteed that no new transitions are found leading to states at which conflicts
have previously been processed.

Combing Construction. After the agenda in Algorithm 1 becomes empty, only
those states reachable from the initial state qinit via transitions in Transitions are
relevant, and the remaining ones can be removed from States. From the reachable
states, we can then construct a selective k-combing, with start symbol S†, as
follows.

For each qn ∈ States and ([Aδ] → X1 · · ·Xn •, L) ∈ close(qn) \ deprecate(qn),
some n ≥ 0, find each choice of:

– q0, . . . , qn−1,
– β0, . . . , βn, with βn = ε,

such that for 0 ≤ j < n,
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– (qj , Xj+1, qj+1) ∈ Transitions,
– ([Aδ] → X1 · · ·Xj • Xj+1βj+1, L) ∈ close(qj) \ deprecate(qj), and
– βj = μ(Xj+1)βj+1.

It can be easily seen that β0 must be of the form αδ, for some rule A → α. For
each choice of the above, now create a rule Y0 → Y1 · · ·Yn, where Y0 stands for
the triple (q0, Aδ, L), and for 1 ≤ j ≤ n:

– if Xj is a terminal then Yj = Xj, and
– if Xj is of the form [Bjγj ] then Yj stands for the triple (qj−1, Bjγj , Lj),

where Lj = Firstm(βjL).

We assume here that μ(Y0) = Aδ and μ(Yj) = Bjγj for 1 ≤ j ≤ n.

4.2 Example

Example 2. Let us apply Algorithm 1 to the construction of a selML(2, 0) parser
for Godd. The initial state is qinit = {S† → •S##} (there is no lookahead set
since we set m = 0) and produces through the rules of Fig. 2

close(qinit) = {S† → •S##, S → •SdA, S → •c} . (4)

Fast-forwarding a little, the construction eventually reaches state qSd = {S →
Sd •A} with

close(qSd) = {S → Sd •A,A → •a,A → •ab} , (5)

which in turn reaches state qSda = {A → a•, A → a • b} with

close(qSda ) = qSda , (6)

conflict(qSda ) = {A → a•} . (7)

As this item is marked as a conflict item, line 10 of Algorithm 1 sets

conflict(qSd) = {A → •a} , (8)

and puts qSd back in the agenda. Then, the conflict propagation rule is fired to
set

conflict(qSd) = {A → •a, S → Sd •A} , (9)

and by successive backward propagation steps we get

conflict(qinit) = {S → •SdA} . (10)
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The extension rule then yields

close(qinit) = {S† → •S##, S → •SdA, S → •c, S† → •[S#]#, S → •[Sd]A} ,
(11)

which is closed to obtain

close(qinit) = {S† → •S##, S → •SdA, S → •c, S† → •[S#]#, S → •[Sd]A,
[S#] → •SdA#, [S#] → •c#, [Sd] → •SdAd , [Sd] → •cd} ,

(12)

and we can apply again the extension rule with the conflicting item S → •SdA:

close(qinit) = {S† → •S##, S → •SdA, S → •c, S† → •[S#]#, S → •[Sd]A,
[S#] → •SdA#, [S#] → •c#, [Sd] → •SdAd , [Sd] → •cd,
[S#] → •[Sd]A#, [Sd] → •[Sd]Ad} . (13)

The deprecate and deprecate closure rules then yield

deprecate(q) = {S† → •S##, S → •SdA, S → •c, [S#] → •SdA#,

[Sd] → •SdAd , . . .} . (14)

We leave the following steps to the reader; the resulting parser is displayed in
Fig. 3 (showing only items in close(q) \ deprecate(q) in states).

4.3 Correctness

First observe that Algorithm 1 always terminates: the number of possible sets
q, along with the growing sets close(q), conflict(q) and deprecate(q), is bounded.

Termination by the failure step of Fig. 2 occurs only when we know that
the resulting parser cannot be deterministic; conversely, successful termination
means that a deterministic parser has been constructed. One could easily modify
the construction to keep running in case of failure and output a nondeterministic
parser instead, for instance to use a generalized LR parsing algorithm on the
obtained parser.

The correctness of the construction follows from Propositions 4 and 5 (see full
paper for details).

Proposition 4. If Algorithm 1 terminates successfully, then the constructed
grammar is a selective k-combing. Furthermore, this combing is LR(m).

Proof Idea. The structure of the selML(k, m) automaton and the item sets en-
sure that the constructed grammar satisfies all the requirements of a selective
k-combing. Had this been non-LR(m), then there would have been further steps
or failure.
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S† → • [S#]#

[S#] → • [Sd]A#

[S#] → • c#

[S d] → • [Sd]Ad

[S d] → • c d

S† → [S#] • # S† → [S#]# •

[S#] → [Sd] • [A#]

[S d] → [Sd] • [Ad]

[A#] → • a#

[A#] → • ab#

[Ad] → • a d

[Ad] → • ab d

[S d] → [Sd][Ad] •

[S#] → [Sd][A#] •

[A#] → a • #

[A#] → a • b#

[Ad] → a • d

[Ad] → a • b d

[A#] → a# •

[Ad] → a d •

[A#] → ab • #

[Ad] → ab • d

[A#] → ab# • [Ad] → ab d •

[S#] → c • #

[S d] → c • d

[S#] → c# • [S d] → c d •

[S#]

c

#

[Sd]

a

[A#]

[Ad]

#

d

b

# d

# d

Fig. 3. The selML(2, 0) parser for Godd

Proposition 5. If the grammar is selML(k, m), then the algorithm terminates
successfully.

Proof Idea. The selML(k, m) automaton under construction reflects minimum
right context for nonterminal occurrences in any selective k-combing with the
LR(m) property. Furthermore, failure would imply that right context of length
exceeding k is needed.

As a consequence, we can refine the statement of Theorem 2 with

Corollary 3. It is decidable whether an arbitrary context-free grammar is
selML(k, m), for given k and m.

5 Experimental Results

We have implemented a proof of concept of Algorithm 1, which can be down-
loaded from http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/. Its
purpose is not to build actual parsers for programming languages, but merely to
check the feasibility of the approach and compare selML with uniform ML and
more classical parsers.

http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/
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Table 2. Results on example grammars

|N | |P | LR classes: #states ML classes: #states

Example 3 2 6 non-LR(m) ML(3,1): 357, selML(3,1): 41, ML(2,2): 351,
selML(2,2): 77

Example 4 5 8 LR(2): 16 (sel)ML(1,0): 17
Example 5 3 5 LALR(1): 11 ML(1,0): 17, selML(1,0): 15

Grammar Collection. We investigated a set of small grammars that exhibit
well-identified syntactic difficulties, to see whether they are treated correctly
by a given parsing technique, or lie beyond its grasp. This set of grammars was
compiled by Basten [2] and extended in [22], containing mostly grammars for pro-
gramming languages from the parsing literature and the comp.compilers archive,
but also a few RNA grammars used by the bioinformatics community [21].

Conflicts. As expected, we identified a few grammars that were not LALR(1)
but were selML(k, m) for small values of k and m. Results are summarized in
Table 2.

Example 3 (Tiger). One such example is an excerpt from the Tiger syntax
found at http://compilers.iecc.com/comparch/article/98-05-030. The
grammar describes assignment expressions E, which are typically of the form
“L := E” for L an lvalue.

E → L | L := E | i[E] of E L → i | L[E] | L.i

The grammar is not LR(m) for any m, but is ML(3, 1) and ML(2, 2): a conflict
arises between inputs of the form “i[E] of E” and “i[E] := E”, where the initial
i should be kept as such and the parser should shift in the first case, and reduce
to L in the second case. An ML(3, 1) or ML(2, 2) parser scans up to the “of” or
“:=” token that resolves this conflict, across the infinite language generated by
E.

Example 4 (Typed Pascal Declarations). Another example is a version of Pascal
identifier declarations with type checking performed at the syntax level, which
was proposed by Tai [26]. The grammar is LR(2) and ML(1,0):

D → var IL IT ; | varRLRT ;

IL → i , IL | i IT → : integer

RL → i , RL | i RT → : real

On an input like “var i , i , i : real ;”, a conflict arises between the reductions
of the last identifier i to either an integer list IL or a real list RL with “:” as
terminal lookahead. By delaying these reductions, one can identify either an
integer type IT or a real type RT .

http://compilers.iecc.com
http://compilers.iecc.com/comparch/article/98-05-030
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Non-Monotonicity. We found that non-monotonic behaviour with uniform ML
parsers occurs more often than expected. Here is one example in addition to the
C++ example given in Section 2.1; more could be found in particular with the
RNA grammars of Reeder et al. [21].

Example 5 (Pascal Compound Statements). The following is an excerpt from
ISO Pascal and defines compound statements C in terms of “;”-separated lists
of statements S:

C → begin L end L → L ; S | S S → ε | C

This is an LALR(1) and ML(1, 0) grammar, but it is not ML(2, 0): the nonter-
minal [L;S] has a rule [L;S] → [L;S]; [S], giving rise to a nonterminal [S] with
rules [S] → ε | [C] and a shift/reduce conflict—in fact, this argument shows
more generally that the grammar is not ML(k, 0) for even k.

Parser Size. Because selML parsers introduce new context symbols only when
required, they can be smaller than the corresponding LR or uniform ML parsers,
which carry full lookahead lengths in their items—this issue has been investi-
gated for instance by Ancona et al. [1] and Parr and Quong [20] for LR and LL
parsers. Our results are inconclusive as to the difference of parser size (in terms
of numbers of states) between selML and LR. However, selML parsers tend to
be considerably smaller than uniform ML parsers. Compare, for example, the
numbers of states in the case of ML and selML for Example 3, in Table 2.

In fact, we can make the argument more formal: consider the family of gram-
mars (Gj

4)j>0, each with rules:

S → A | D, A → a | Ab | Ac, D → EF j−1F | E′F j−1F ′,
F → a | bF, F ′ → f | bF ′, E → e, E′ → e .

(Gj
4)

The uniform ML(j, 0) parser for Gj
4 has exponentially many states in j, caused

by the rules [Aw] → aw for all w in {b, c}j, while the selective ML(j, 0) parser
has only a linear number of states, as there is no need for delays in that part of
the grammar.

6 Related Work

Grammar Transformations and Coverings. The idea of using grammar trans-
formations to obtain LR(1) or even simpler grammars has been thoroughly in-
vestigated in the framework of grammar covers [19]. Among the most notable
applications, Mickunas et al. [18] provide transformations from LR(k) grammars
into much simpler classes such as simple LR(1) or (1,1)-bounded right context ;
Soisalon-Soininen and Ukkonen [24] transform predictive LR(k) grammars into
LL(k) ones by generalizing the notion of left-corner parsing. Such techniques
were often limited however to right-to-right or left-to-right covers, whereas our
transformation is not confined to such a strict framework.
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Parsing with Delays. A different notion of delayed reductions was already sug-
gested by Knuth [13] and later formalized by Szymanski and Williams [25] as
LR(k, t) parsing, where one of the t leftmost phrases in any rightmost derivation
can be reduced using a lookahead of k symbols. The difference between the two
notions of delay can be witnessed with linear grammars, which are LR(k, t) if
and only if they are LR(k)—because there is always at most one phrase in a
derivation—but selML(k, m) if and only if they are LR(k + m)—as shown in
Lemma 3.

Like selML languages, and unlike more powerful noncanonical classes, the
class of LR(k, t) grammars characterizes deterministic context-free languages.
The associated parsing algorithm is quite different however from that of selML
parsing: it uses the two-stacks model of noncanonical parsing, where reduced
nonterminals are pushed back at the beginning of the input to serve as looka-
head in reductions deeper in the stack. Comparatively, selML parsing uses the
conventional LR parsing tables with a single stack.

Selectivity. Several parser construction methods attempt to use as little “infor-
mation” as possible before committing to a parsing action: Ancona et al. [1] and
Parr and Quong [20] try to use as little lookahead as possible in LR(k) or LL(k)
parsing, Demers [7] generalizes left-corner parsing to delay decisions possibly as
late as an LR parser, and Fortes Gálvez et al. [9] propose a noncanonical parsing
algorithm that explores as little right context as possible.

7 Concluding Remarks

Selective ML parsing offers an original balance between

– enlarging the class of admissible grammars, compared to LR parsing, while
– remaining a deterministic parsing technique, with linear-time parsing and

exclusion of ambiguities,
– having a simple description as a grammar transformation, and
– allowing the concrete construction of LR parse tables.

This last point is also of interest to practitioners who have embraced gen-
eral, nondeterministic parsing techniques [12]: unlike noncanonical or regular-
lookahead extensions, selML parsers can be used for nondeterministic parsing
exactly like LR parsers. Having fewer conflicts than conventional LR parsers,
they will resort less often to nondeterminism, and might be more efficient.
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