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Abstract. Quality aspects become increasingly important when business process
modeling is used in a large-scale enterprise setting. In order to facilitate a storage
without redundancy and an efficient retrieval of relevant process models in model
databases it is required to develop a theoretical understanding of how a degree of
behavioral similarity can be defined. In this paper we address this challenge in a
novel way. We use causal footprints as an abstract representation of the behav-
ior captured by a process model, since they allow us to compare models defined
in both formal modeling languages like Petri nets and informal ones like EPCs.
Based on the causal footprint derived from two models we calculate their simi-
larity based on the established vector space model from information retrieval. We
validate this concept with an experiment using the SAP Reference Model and an
implementation in the ProM framework.
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1 Introduction

Many multi-national companies use tools such as ARIS Toolset for documenting their
business processes. Due to the operational diversity of such large enterprises, there are
often several thousands of processes modeled and stored in the database of the mod-
eling tool [26]. The sheer number causes serious problems for the management and
maintenance of these model: It is difficult to see the forest because there are too many
trees, as a German proverb puts it. While quality aspects of process models (e.g. [15])
and process modeling languages (e.g. [10]) are quite well understood, there is a notable
research gap on quality issues across models.

The similarity between business process models can be related to several of these
cross-model quality issues. Consider a large organization that wants to identify redun-
dancies in the operations of different divisions. Models are indeed helpful to discuss
the overlap of two processes and the potential for integration, yet it is difficult and
time-consuming to identify similarities in a process database with several thousands of
models. Clearly, there is a need for automatic detection of similarities between process
models to facilitate certain model management activities. There are several model man-
agement activities that would benefit from good tool support. Firstly, similar models
as well as the corresponding business operations can be integrated into one process.
This is interesting not only for refactoring the model database, but also to facilitate the
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integration of business operations in a merger scenario. Secondly, the reference mod-
els of an ERP system vendor could be automatically compared to company processes.
This way, organizations could more easily decide which packages match their current
operations best. Thirdly, multi-national enterprises can identify specialized processes
of some national branch which no longer comply with the procedures defined in the
company-wide reference model using a similarity measurement.

In this paper, we discuss the foundations of detecting and measuring similarity be-
tween business process models. In particular, our contribution is an approach considering
linguistic and behavioral aspects of process models to calculate a degree of similarity.
We validate the approach using the SAP reference model. The results highlight which
benefits organizations can have from tool support for similarity detection.

The remainder of the paper is organized as follows. Section 2 introduces Event-
driven Process Chains (EPCs), a popular process modeling language that we use to il-
lustrate our approach. Furthermore, we discuss one particular redundancy problem that
was identified in the SAP reference model in prior research. Section 3 then presents
our approach to calculate the degree of similarity between two processes based on their
causal footprint. A causal footprint covers extensive behavioral information about a
process without calculating its state space, but requires the identification of matching
functions in the EPCs being compared. Section 4 addresses the problem of matching
functions across different processes, with an emphasis on EPCs. We discuss an ap-
proach to identify matches between functions automatically. In Section 5, the presented
techniques are combined, applied to a large portion of the SAP reference model, and
empirically validated against human interpretations of similarity. Then, Section 6 dis-
cusses related work to our approach before Section 7 concludes the paper.

2 Background on EPCs

In this paper, we will illustrate our argument using Event-driven Process Chains (EPCs).
The EPC is a popular business process modeling language that was introduced in [13].
EPCs are used by most companies that manage their process models with ARIS Toolset.
This way, our results are directly applicable for these organizations.

EPCs capture the control flow of a process in terms of the temporal and logical
dependencies of activities [13]. EPCs offer function type elements to represent these
activities, event type elements describing pre- and post-conditions of functions, and
three kinds of connector types including AND, OR, and XOR. Control flow arcs are
used to link these elements. Connectors have either multiple incoming and one outgoing
arc (join connectors) or one incoming and multiple outgoing arcs (split connectors). As
a syntax rule, functions and events have to alternate on each path through the EPC,
either directly or indirectly when they are linked via one or more connectors.

The informal (or intended) semantics of an EPC can be described as follows. The
AND-split activates all subsequent branches in a concurrent manner. The XOR-split
represents a choice between one of several alternative branches. The OR-split triggers
one, two or up to all of multiple branches based on conditions. For both XOR-splits and
OR-splits, the activation conditions are given in events subsequent to the connector.
The AND-join waits for all incoming branches to complete, then it propagates control
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to the subsequent EPC element. The XOR-join merges alternative branches. The OR-
join synchronizes all active incoming branches. This feature is called non-locality since
the state of all transitive predecessor nodes has to be considered. For a recent discussion
of formal semantics of EPCs refer to [18].

The following definition formalizes EPC. We need this definition in the section on
behavioral similarity. Furthermore, we define a notion of syntactical correctness that we
check before applying our approach to the SAP reference model.

Definition 2.1. (EPC)
An EPC = (E, F, C, l, A) consists of three pairwise disjoint and finite sets E, F, C, a
mapping l : C → {and, or, xor}, and a binary relation A ⊆ (E∪F ∪C) × (E∪F ∪C)
such that

– An element of E is called event. E �= ∅.
– An element of F is called function. F �= ∅.
– An element of C is called connector.
– The mapping l specifies the type of a connector c ∈ C as and, or, or xor.
– The relation A defines the control flow as a coherent, directed graph. An element

of A is called an arc. An element of the union N = E ∪ F ∪ C is called a node.

In order to be able to discuss the events surrounding a function, or the functions sur-
rounding an event, notations are introduced for paths and connector chains.

Definition 2.2. (Paths and Connector Chains)
Let N be a set of nodes and A ⊆ N × N a binary relation over N defining the arcs.
For each node n ∈ N , we define path a ↪→ b refers to the existence of a sequence of
EPC nodes n1, . . . , nk ∈ N with a = n1 and b = nk such that for all i ∈ 1, . . . , k
holds: (n1, n2), (n2, n3), . . . , (nk−1, nk) ∈ A. This includes the empty path of length
zero, i.e., for any node a : a ↪→ a. If a �= b ∈ N and n2, . . . , nk−1 ∈ C, the path

a
c

↪→ b is called connector chain. This includes the empty connector chain, i.e., a
c

↪→ b
if (a, b) ∈ A.

In this paper, we focus on syntactically correct EPCs, i.e. EPCs with at least one initial
and final events, at least one function and strict alternation of functions and events on
all paths. According to this definition, both example EPCs of Figure 1 are syntactically
correct. Therefore, we can apply the techniques for matching functions that are dis-
cussed later in Section 4. Out of the 604 EPCs in the SAP reference model mentioned
before, 556 are syntactically correct. Please note that we demand a strict alternation of
functions and events, which is not included in all EPC syntax definitions.

Figure 1 gives an example of two EPCs that captures similar processes (cf. [19]).
Both are taken from the aforementioned SAP Reference Model. The EPC on the left-
hand side of Figure 1 stems from the Sales and Distribution branch and its name is
Customer Inquiry. In essence, when a customer inquires about a product (denoted by
the event “Customer inquires about products”), this inquiry is processed and a quotation
is created which results in the fact that a customer project is needed. As an alternative,
the need for a customer project can arise based on plan data which triggers a resource
related quotation. The EPC on the right-hand side of Figure 1 is taken from the Project
Management branch and it is called Customer Inquiry and Quotation Processing. It
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Fig. 1. Customer Inquiry and Customer Inquiry and Quotation Processing EPCs

identifies a sales activity as alternative reason to process a customer inquiry. As a result
the inquiry is created and transmitted. Furthermore, either a quotation is created or the
inquiry is rejected. The processes share two equivalent events and one equivalent func-
tion as depicted in Figure 1 . Since the overlapping part of the models, i.e. the sequence
“customer inquiry”, “inquiry processing”, and “quotation to be created”, can be handled
by both processes, they could easily be integrated into one model, for instance using the
approach defined in [19].

In Section 3, we provide a metric for determining how similar two business processes
are, given that it is known which functions (or activities in the more general sense) in
one model correspond to functions in the other model. In Section 4, we show how to
automatically find the relations between functions of different models.

3 Similarity of Behavior

Comparing the behavior of processes using traditional notions such as bisimulation is
problematic for different reasons. Firstly, most of these notions are defined as a verifi-
cation property which yield as yes or no, but no degree of similarity. Secondly, process
models with concurrency suffer from a state explosion problem. For some process mod-
eling languages a formalization of the reachability graph as a transition system is even
missing. Thirdly, if there are deadlocks or dead transitions in the process model, these
parts are not captured in the behavioral comparison. Motivated by these problems, we
defined the concept of a causal footprint [7] which is a collection of the essential be-
havioral constraints imposed by a process model.1 We will use the causal footprints of
two processes as a basis to calculate their similarity. Section 3.1 describes the deriva-
tion of a causal footprint, then Section 3.2 defines the degree of similarity for causal
footprints.

1 Note that this paper adopts the concept of a causal footprint from [7] where we use it for
verification purposes. In contrast to [7] we use this concept for measuring similarity.
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3.1 Deriving the Causal Footprint of an EPC

Before defining a causal footprint of an EPC, we first need to introduce the notion of a
case as well as the semantics of look-back and look-ahead links.

A case basically captures the behavior of one particular execution sequence of func-
tions according to the rules of a process model. Consider N as the set of nodes of an
EPC. The behavior of the process ΦEPC is defined as the set W ⊆ N∗, where N∗ is
the set of all sequences that are composed of zero of more nodes from N . A σ ∈ W
is called a case, i.e. a possible execution of the EPC. To denote a function at a specific
index in σ, we use σ[i], where i is the index ranging from 1 to |σ|.

The causal footprint identifies two relationships between nodes in N that are called
look-back and look-ahead links. For each look-ahead link, we say that the execution
of the source of that link leads to the execution of at least one of the targets of that
link, i.e., if (a, B) ∈ Lla, then any execution of a is followed by the execution of some
b ∈ B. A look-ahead link is denoted as a bullet with one or more outgoing arrows.
Furthermore, for each look-back link, the execution of the target is preceded by at least
one of the sources of that link, i.e., if (A, b) ∈ Llb, then any execution of b is preceded
by the execution of some a ∈ A. The notation of a look-back link is a bullet with one
or more incoming arrows. Note that we do not give any information about when in the
future or past executions took place, but only that they are there. This way of describing
a process is related to work on dominance and control dependence in program analysis
(see e.g. [12]), and similar to the work presented in [8]. However, by splitting up the
semantics in the two different directions (i.e. forward and backward), causal footprints
are more expressive. With footprints you can for example express the fact that task A is
always succeeded by B, but that B can also occur before A, which is typically hard to
express in other languages.

Definition 3.1. (Causal Footprint)
We define a causal footprint G = (N, Llb, Lla) as a graph where, where:

- N is a finite set of nodes (activities),
- Llb ⊆ (P(N) × N) is a set of look-back links2

- Lla ⊆ (N × P(N)) is a set of look-ahead links.

For relating the definition of a causal footprint to the behavior of an EPC we define a
notion of consistency based on the cases implied by the EPC process model.

Definition 3.2. (Consistency of Causal Footprint with EPC)
Let N be a set of nodes and EPC = (E, F, C, l, A) be an EPC with behavior W . Fur-
thermore, let G = (N, Llb, Lla) be a causal footprint. We say that G = (N, Llb, Lla) is
consistent with the behavior of EPC, denoted by G ∈ FEPC , if and only if:

1. N = F , i.e. the nodes of the footprint represent the functions of the EPC,
2. For all (a, B) ∈ Lla holds that for each σ ∈ W with n = |σ|, such that there is a

0 ≤ i ≤ n − 1 with σ[i] = a, there is a j : i < j ≤ −1, such that σ[j] ∈ B,
3. For all (A, b) ∈ Llb holds that for each σ ∈ W with n = |σ|, such that there is a

0 ≤ i ≤ n − 1 with σ[i] = b, there is a j : 0 ≤ j < i, such that σ[j] ∈ A,

2 With P(N), we denote the powerset of N , where ∅ �∈ P(N).
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Fig. 2. Mapping of EPCs to causal footprints

While the different cases of an EPC can explicitly be generated using the seman-
tics formalization defined in [18], there is a more efficient way. The mapping defined
in [7] and depicted in Figure 2 yields a consistent causal footprint for an EPC under
the assumption that no AND-join or OR-join deadlocks. Furthermore, it is clear from
Definition 3.2 that a causal footprint is not unique, i.e., different processes can have
common footprints. For example, G = (N, ∅, ∅) is the causal footprint of any process
having activities F . Therefore, we aim at footprints that are more informative without
trying to capture detailed semantics. In [7] a set of rules for calculating the transitive
closure of a causal footprint are introduced such that the closure is still a causal footprint
that is consistent with the EPC. In Section 5, where we present the application to the
SAP reference model, we used the rules of Figure 2 in combination with the transitive
closure rules of [7] to obtain a causal footprint for all EPCs.

3.2 Similarity of Causal Footprints

In information retrieval the degree of similarity between a document and a query plays a
very important role for ranking the returned documents according to their relevance. For
calculating similarity, we use the well-known vector model [2, 28] which is one of the
basic techniques used for information filtering, information retrieval, and the indexing
of web pages. Its classical application is to determine the similarity between a query and
a document. The original vector space model proposed by Salton, Wong, and Yang in
[28] attaches weights based on term frequency to the so-called “document vector”. We
use a more liberal interpretation, where other weights are possible. However, to explain
the basic mechanism we use terms originating from the domain of information retrieval,
i.e., terms like “document collection”, a set of “terms”, and a set of “weights” relating
to the terms. Later we will provide a mapping of these terms to causal footprints.

The document collection contains a set of documents. Each of these documents is
considered to be a list of terms which are basically the words of the document. The
union of all terms of all documents is then used to describe each document as a vector.
For one specific document an entry in the vector represents that the term associated
with the vector position of this entry is included in the document. In a simple case the
occurrence of a term can be indicated by a one and the non-occurrence with a zero,
however there is also the option to assign weights to terms in order to address the fact
that they differ in relevance. A common choice is to use one divided by the number of
occurrences of a term throughout all documents of the document collection as a weight
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which has the effect that scarcely used terms get a higher weight. A query can also be
considered as a document, i.e., a list of terms.

The similarity between a query and a document is then calculated based on their
vector representation as the cosine of the angle between the two vectors [2, 28]. Calcu-
lating this degree of similarity for each document provides a mechanism to rank them
according to their relevance for the query.

Our proposal for determining the similarity of two business process models builds on
the vector model and causal footprints. We consider causal footprints of two processes
G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) as input for the calculation. In
order to apply the vector model, we have to define (1) the document collection, (2) the
set of terms, and (3) the set of weights.

The document collection includes two entries, namely the two causal footprints that
need to be compared. We will refer to the first and the second causal footprint as
G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la)).

The set of terms is build from the union over nodes, look back, and look ahead links
of the two causal footprints. We define Θ = N1 ∪L1,lb ∪L1,la ∪N2 ∪L2,lb ∪L2,la

as the set of terms and λ : Θ → {1, 2, . . . |Θ|} as an indexing function that assigns
a running number to each term, i.e., the set of all elements appearing in the two
footprints are enumerated. (Note that we implicitly assume all sets of nodes and
links to be disjoint in a single model.)

The relevance of each term is closely related to the number of tasks from which it is
built. Consider for example two look ahead links xla = (a, {g}) ∈ Lla and yla =
(a, {b, c, d, e, f}) ∈ Lla. xla refers to only two tasks: a and g. yla refers to six tasks
(a through f ). It seems obvious that the look ahead links with fewer tasks are more
informative and therefore more important. To address this we use weights depending
on the number of tasks involved in a look-ahead/back link.

The weights are determined using the size of the relations. If θ ∈ Θ is a single node
(i.e. θ ∈ N1 ∪ N2), then we define the weight of θ as wθ = 1. Furthermore, since
the number of potential look ahead and look back links depends upon the powerset
of nodes, is seems natural to use exponentially decreasing weights. Therefore, for
all links θ ∈ Θ, we define the weight of a link wθ = 1/(2|θ|−1), where |θ| denotes
the number of tasks in the link.

For the two look ahead links xla = (a, {g}) and yla = (a, {b, c, d, e, f}), we get
wxla

= 1/(22−1) = 0.5 and wyla
= 1/(26−1) = 0.03125 as their weights.

Using the document collection, the set of terms and the weights presented above, we
define the document vectors, which we call footprint vectors.

Definition 3.3. (Footprint vectors)
Let G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) be two causal footprints, with
Θ the set of terms and λ : Θ → IN an indexing function. We define two footprint
vectors, −→g1 = (g1,1, g1,2, . . . g1,|Θ|) and −→g2 = (g2,1, g2,2, . . . g2,|Θ|) for the two models
as follows. For each element θ ∈ Θ, we say that for each i ∈ {1, 2} holds that
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gi,λ(θ) =

⎧⎪⎨
⎪⎩

0 if θ �∈ (Ni ∪ Li,lb ∪ Li,la)

wθ =
1

2|θ|−1 if θ ∈ (Li,lb ∪ Li,la)

wθ = 1 if θ ∈ Ni

Using the two footprint vectors, we can define the similarity between two footprints as
the cosine of the angle between these two vectors.

Definition 3.4. (Footprint similarity)
Let G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) be two causal footprints, with
Θ the set of terms and λ : Θ → IN an indexing function. Furthermore, let −→g1 and −→g2
be the corresponding footprint vectors. We say that the similarity between G1 and G2,
denoted by sim(G1, G2) is the cosine of the angle between those vectors, i.e.

sim(G1, G2) =
−→g1 × −→g2

|−→g1 | · |−→g2 |
=

∑|Θ|
j=1 g1,j · g2,j√∑|Θ|

j=1 g2
1,j ·

√∑|Θ|
j=1 g2

2,j

The value of sim(G1, G2) ranges from 0 (no similarity) to 1 (equivalence). In this
paper, we do not elaborate on this formula. If one accepts the weights that we associate
to the “terms” in a causal footprint, then the cosine of the angle between these two
vectors provides a generally accepted way to quantify similarity [2, 28].

The similarity sim(G1, G2) between footprints can be calculated for any two foot-
prints G1 and G2. However, for the similarity to exceed 0, there should be at least one
node n ∈ N1 ∩ N2.

Property 3.5. (Disjoint footprints have similarity 0)
Let G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) be two causal footprints, with
Θ the set of terms and λ : Θ → IN an indexing function. Furthermore, let −→g1 and −→g2 be
the corresponding footprint vectors. If N1 ∩ N2 = ∅ then sim(G1, G2) = 0.

Proof. It is sufficient to show that −→g1 × −→g2 = 0, i.e. that
∑|Θ|

j=1 g1,j · g2,j = 0. Assume
that for some 1 ≤ j ≤ |Θ| holds that g1,j > 0. Then, from Definition 3.3, we know that
λ(θ) = j with either θ ∈ N1, or θ ∈ (L1,lb ∪ L1,la). Assume θ ∈ N1. Then we know
that g2,j = 0, since θ �∈ Ni. Hence g1,j · g2,j = 0. Assume θ ∈ (L1,lb ∪ L1,la). Since
Definition 3.1 shows that L1,lb ⊆ (P(N1)×N1) and L1,la ⊆ (N1 ×P(N1)), we know

that θ �∈ (L2,lb ∪ L2,la) and hence that g1,j · g2,j = 0. Therefore,
∑|Θ|

j=1 g1,j · g2,j = 0
and hence sim(G1, G2) = 0. �
Property 3.5 shows that for two footprints to be considered similar, we need to iden-
tify nodes that appear in both footprints. For this, we use the notion of an equivalence
mapping defined in Section 4.

4 Matching Functions

When comparing EPCs it is not realistic to assume that equivalent functions and events
have labels that are the same to the letter. Figure 1 illustrates this: the functions “Cus-
tomer inquiry processing” and “Client inquiry query processing” are similar from a
human perspective, but they have different labels.
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To determine the match between functions from different EPCs, we:

1. determine how similar pairs of functions are on a 0 to 1 scale, based on the equiva-
lence of words in their labels (we call this the semantic similarity score);

2. determine whether a function matches another function on a true/false scale, based
on the semantic similarity score;

3. determine what the best mapping is between all functions from one EPC and all
functions from another, based on the semantic similarity score; and

4. extend this technique by determining the best match by not only looking at the
semantic similarity score of the functions themselves, but also at the semantic sim-
ilarity scores of the events that surround these functions (we call this the contextual
similarity score).

These techniques are explained successively in the following subsections.
We experimented with other techniques for determining function mappings, inspired

by the work of Ehrig, Koschmider and Oberweis [9]. We also experimented with dif-
ferent parameters for these techniques. However, we obtained the best results for the
techniques and parameters explained below. A comparison is presented in the technical
report that accompanies this paper [6].

4.1 Determine the Semantic Similarity Score between Two Functions

Given two functions, their semantic similarity score is the degree of similarity, based
on equivalence between words in their labels. Words that are identical are given an
equivalence score of 1, while words that are synonymous are given an equivalence
score of 0.75, a value that was determined experimentally. We assume an exact match
is preferred over a match on synonyms. Hence, the semantic similarity score is defined
as follows.

Definition 4.1. (Semantic similarity)
Let (E1, F1, C1, l1, A1) and (E2, F2, C2, l2, A2) be two disjoint EPCs. Let f1 ∈ F1 and
f2 ∈ F2 be two functions (and assume that f1 and f2 are sets of words, i.e. we denote
the number of words by |f1|). We define the semantic similarity as follows:

sem(f1, f2) =
1.0 · |f1 ∩ f2| + 0.75 ·

∑
(s,l)∈f1\f2×f2\f1

synonym(s, l)

max(|f1|, |f2|)

Where synonym is a function that returns 1 if the given words are synonyms and 0 if
they aren’t.

For example, consider the functions “Customer inquiry processing” and “Client in-
quiry query processing” from figure 1, which consist of the collections of words f1 =
[“Customer”,“inquiry”,“processing”] and f2 =[“Client”, “inquiry”, “query”, “process-
ing”], respectively. We only need to consider a synonym mapping between f1 \ f2 and
f2 \f1, i.e. between [“Customer”] and [“Client”,“query”]. Therefore, the semantic sim-
ilarity between f1 and f2 equals
sem(f1, f2) = 1.0·2+0.75·(1+0)

4 ≈ 0.69.
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When determining equivalence between words, we disregard special symbols, and
we change all characters to lower-case. Furthermore, we skip frequently occurring
words, such as “a”, “an” and “for”. Also we stem words using Porter’s stemming al-
gorithm [23]. Stemming reduces words to their stem form. For example, “stemming”,
“stemmed” and “stemmer” are stemmed into “stem”.

4.2 Determine a Semantic Match between Two Functions

The semantic similarity score of two functions is a value between 0 and 1. However,
when determining equivalence, we require a boolean result stating whether or not two
functions are equivalent, i.e. we need cut-off values that state when the similarity score
exceeds this value then the functions are equivalent. The optimal cut-off value is the cut-
off value for which the syntactic similarity degree most accurately reflects the equiva-
lence judgements of a human.

We conducted experiments to optimize these cut-off values for use in the context of
the SAP Reference Models. In particular, we compared the semantic similarity scores
with human judgement for 210 function pairs from the SAP Reference Model. Their
similarity degrees were evenly distributed over the 0 to 1 range and they were com-
pared against human judgement as to whether these function pairs are equivalent of not.
Based on this experiment, we determined an optimal cut-off for the similarity scores to
decide whether functions match or not. We expect that these cut-off values and correct-
ness score are typical for the SAP reference model, since other data-sets yield different
values [9].

Our experiments determined that for semantic similarity, a cut-off value of 0.89 while
giving synonyms a similarity score higher than 0.75 is optimal. It leads to a prediction
of whether functions are a match according to humans, with a 90% accuracy.

4.3 Determine a Semantic Mapping between All Functions

So far, we only considered the similarity between two functions. However, the behav-
ioral comparison presented in Section 3 requires a symmetric mapping between func-
tions of two process models, i.e. we have to select pairs of functions that we consider a
match, where each pair consists of a function from one model and a function from the
other model.

Definition 4.2. (Equivalence mapping)
Let F1, F2 be two disjoint sets. Furthermore, let s : F1 × F2 → {0..1} be a symmetric
similarity function and let c ∈ {0..1} be a cut-off value. A function m : F1 → F2 is an
equivalence mapping, if and only if:

– m is invertible (m(f1) = f2 implies that m(f2) = f1), and
– m(f1) = f2 implies that s(f1, f2) ≥ c.

In the following section, we evaluate the degree of similarity calculation for the SAP
Reference Model with different approaches to matching functions.
An optimal equivalence mapping mopt : F1 → F2 is an equivalence mapping, such
that for all other equivalence mappings m holds that
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∑
(f1,f2)∈mopt s(f1, f2) ≥

∑
(f1,f2)∈m s(f1, f2).

When determining an equivalence mapping between the functions of two EPCs, each
mapping satisfying Definition 4.2 is a good mapping, i.e. each element of the mapping
satisfies the criterium that the similarity between the two functions exceeds the cut-off
value. However, many equivalence mappings are possible. Therefore, we define the con-
cept of an optimal equivalence mapping mopt, i.e. the sum of the similarities expressed
by mopt is greater than the sum of the similarities of all other possible equivalence
mappings3. An optimal equivalence mapping can be calculated in a straightforward
way using integer linear programming techniques with binary variables.

4.4 Contextual Similarity

The techniques that we provided so far can be applied when comparing any two business
process models. However, we are specifically considering EPCs, where each function
has a preset and a postset of events. We define a second similarity metric based on this
pre- and postset, which we call the contextual similarity metric. This metric produces
better results than the semantic similarity metric.

Given two functions the contextual similarity technique returns the degree of simi-
larity, based on the similarity of the events that precede and succeed them. We call these
input and output events the input and output context of a function, respectively.

Definition 4.3. (Input and output context)
Let (E, F, C, l, A) be an EPC. For a function f ∈ F , we define the input context f in =
{e ∈ E | e

c
↪→ f} and the output context fout = {e ∈ E | f

c
↪→ e}

Now, we use the concept of equivalence mappings to determine the contextual similarity
between functions.

Definition 4.4. (Contextual similarity)
Let (E1, F1, C1, l1, A1) and (E2, F2, C2, l2, A2) be two disjoint EPCs. Let f1 ∈ F1 and
f2 ∈ F2 be two functions. Furthermore, let mopt

in : f in
1 → f in

2 and mopt
out : fout

1 → fout
2

be equivalence mappings between the input and output contexts of f1 and f2 respec-
tively. We define the contextual similarity as follows:

con(f1, f2) =
|{mopt

in }|
2 ·

√
|f in

1 | ·
√

|f in
2 |

+
|{mopt

out}|
2 ·

√
|fout

1 | ·
√

|fout
2 |

A full implementation of the function matching and the similarity degree calculation
is available in the Process Mining framework ProM, which can freely be downloaded
from www.processmining.org. In the following section we evaluate our approach using
the data generated by this tool.

3 Note that there might be more optimal equivalence mappings, however they all express a good
mapping and we have no way of distinguishing between them, so any optimal equivalence
mapping will suffice.
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Fig. 3. Correlation between Similarity Score and Human Judgement.

5 Empirical Validation

We validated our approach to calculate the degree of similarity by computing its corre-
lation with a similarity assessment of process modelers.

We obtained the similarity assessment using an online questionnaire that was dis-
tributed among academic process modelers. This questionnaire consisted of 48 pairs of
process models from the SAP reference model database. For each pair of models, we
asked the participants whether they agreed or disagreed (on a 1 to 7 Likert scale) with
the proposition: ‘These processes are similar.’ To obtain a representative collection of
model pairs, we selected the model pairs to be evenly distributed over the 0 to 1 sim-
ilarity degree range. More details on how a representative collection of processes was
obtained is described in the technical report that accompanies this paper [6].

We computed the correlation of the human assessment with various similarity degree
metrics, which we obtained by varying cut-off values and relative importance of the
syntactic, semantic and contextual similarity. We observed the best correlation for a
similarity score metric that:

– does not consider syntactic similarity,
– uses a cut-off value of 0.89 for semantic similarity of events,
– uses a relative importance of semantic:contextual similarity of 1:2 and a cut-off

value of 0.90 for similarity of functions.

Figure 3 shows the correlation between the similarity degree (computed using the
settings described above) and the similarity assessment as obtained from the question-
naire. Each point in the graph represent a pair of processes, with a similarity degree as
indicated by its x-value and a human similarity assessment as indicated by its y-value.
The confidence intervals are also plotted (with a 90% confidence). For this metric we

B. van Dongen, R. Dijkman and J. Mendling416



got a high (Pearson) correlation coefficient of 0.84 with the human judgement. The
correlation is represented as a straight line in the graph. The correlation for two other
metrics that we investigated was lower, i.e. the metric presented here was the best one.
Details on all similarity degree metrics are given in the technical report that accompa-
nies this paper [6].

An important observation is that, within the ‘sales and distribution’ branch of the
SAP reference model (which contains 74 models), there are 124 process pairs with a
similarity score of 1 (this is 50 more than the expected 74 pairs that represent com-
parison of a process with itself). In addition to that there are 52 process pairs with a
similarity score s, such that 0.5 ≤ s < 1.0. These figures show the overlap between
processes in ‘sales and distribution’ branch. This information can be used by people that
are searching the SAP reference model for a suitable process; they can find overlapping
processes based on this information. It can also be used to maintain consistency when
updating a process for which there exists an overlapping process.

6 Related Work

This paper mainly relates to two streams of research, namely (1) similarity of business
process models and (2) quality of business process models.

Existing work in the context of determining similarity between process models can
be assigned to three categories: verification, behavioral similarity, and textual similarity.
There are different notions of equivalence of process models that are subject to verifi-
cation such as trace equivalence and bisimulation. While trace equivalence is based
on a comparison of the sets of completed execution traces, bisimulation also considers
at which point of time which decisions are taken, i.e., bisimulation is a stricter notion
of equivalence. Details on different equivalence notions are given e.g. in [1]. A gen-
eral problem of such verification approaches is that it provides a true-false answer to
the question whether two models are similar. While some work has been done on de-
termining a degree of behavioral similarity that measures the fitness of a set of event
logs relative to a process model [1], we compare causal footprints [7] of two process
models. Since causal footprints capture constraints instead of the state space, this ap-
proach relates to declarative approaches to process modeling and verification [8,17,22].
Beyond that, there are some works on textual or metadata similarity of process models
(e.g. [9,14,20]). In this paper we adapt some concepts from this area for matching func-
tion labels, and we combine this approach with the calculation of behavioral similarity.

While there has been intensive research into quality aspects of process models and
process modeling languages [3, 10, 15], there is little work on quality issues across
models. The guidelines of modeling [3] touch this area by stressing the importance of
a systematic design. The novelty of our approach is that systematic design in terms of
non-overlapping models can now be checked automatically. This might prove valuable
for providing tool support for process model normalization as defined in [21]. Beyond
that, the quantification of a degree of behavioral similarity between process models
could be a useful contribution for the area of process model integration. While there are
several approaches reported on integration issues [5] and regarding how two models are
integrated (e.g. [11,19,24]) the similarity degree gives an answer to the question which
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two process models might be good candidates for integration, e.g. in a merger situation.
The redundancies that we identified in the SAP reference model underline the need
for techniques and tools to manage process model variants such as defined in [25, 27].
Furthermore, there is clearly a need for a view concept on business process models in
order to avoid anomalies [4] as they were identified in database research before.

7 Conclusion

In this paper, we presented a novel approach for measuring the degree of similarity
of business process models. This approach builds on the vector model from informa-
tion retrieval, an abstract representation of process behavior as causal footprints, and
an automatic matching of functions across process models. While quality aspects of
single process models and process modeling languages are well understood, this work
contributes to a better foundation of those quality aspects across models that relate to
similarity. Our approach has been validated using the SAP Reference Model, and a
respective implementation is available as part of the ProM framework.

The results that we obtained for the SAP Reference Model clearly highlight the need
for an automatic detection of similarity for supporting refactoring activities of a pro-
cess model database. In future research we will investigate the benefits of our approach
in various case studies. In particular, we aim to use the degree of similarity to detect
operational overlap between companies that engage in a merger. While the application
for the SAP Reference Model could build on a presumably homogeneous vocabulary
of function labels, we assume that synonyms in function labels might play a more im-
portant role in a merger. Furthermore, there are some practical issues with reading the
similarity matrix for a large set of models that need to be addressed. Once there is com-
mercial tool support available, companies will find it easier to maintain large databases
of process models.
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