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Abstract. We propose a class of protocol transformations, which can be
used to (1) develop (families of) security protocols by refinement and (2)
abstract existing protocols to increase the efficiency of verification tools.
We prove the soundness of these transformations with respect to an
expressive security property specification language covering secrecy and
authentication properties. Our work clarifies and significantly extends
the scope of earlier work in this area. We illustrate the usefulness of our
approach on a family of key establishment protocols.

1 Introduction

It is well-known that security protocols are notoriously hard to get right. This
motivates the use of formal methods for their design and development. The last
decade has witnessed substantial progress in the formal verification of security
protocols’ properties such as secrecy and authentication. However, methods for
transforming protocols have received much less attention.

Protocol transformations are interesting for at least two applications: we can
use them (1) to develop (families of) protocols by refinement [17,9,16,7,6,4] and
(2) to abstract existing protocols for the more efficient tool-based verification
of their properties [11]. Abstraction and refinement correspond bottom-up and
top-down views on (the same) protocol transformations. To be useful, protocol
transformations must be sound with respect to a relevant class of security prop-
erties, i.e., refinement must be property-preserving, or equivalently, abstraction
must be attack-preserving.

In this work, we propose a class of syntactic protocol transformations cov-
ering a wide range of protocols and security properties. Following Hui and
Lowe [11], we support both message-based transformations, which we lift to pro-
tocol roles, and structural transformations, which directly operate on protocol
roles. Message-based transformations include the removal of hashes or encryp-
tions, pulling cleartext fields out of an encryption, and rearranging pair compo-
nents. To guarantee the uniform transformation (e.g., removal) of variables and
the messages they are supposed to receive, we work with typed messages. We
use the type system of Arapinis and Duflot [2], which enables a fine-grained con-
trol over the message transformations. We establish the soundness of our typed
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transformations with respect to an expressive property specification language
based on [14].

We make the following contributions. First, our work provides a sound formal
underpinning for protocol transformations, which can serve as a foundation for
rigorous security protocol development by refinement as well as for the abstrac-
tion of existing protocols. As an example of the latter, our approach helps to
improve the performance of security protocol verifiers that are sensitive to mes-
sage sizes such as SATMC [3]. Second, we extend existing work with respect to
the expressiveness of the protocol specifications, the protocol transformations,
and the preserved properties. In particular, we extend [11] in several ways: (1) we
clarify and formally justify the application of transformations to protocol specifi-
cations, which contain variables not only ground terms as in [11]; (2) we support
composed keys under a mild restriction; (3) we cover additional transformations
(e.g., splitting encryptions) including many of those in [5,7,6]; and (4) we extend
soundness to a more expressive property language based on predicates expressing
event occurrence and ordering, intruder knowledge, and including quantification
over thread identifiers.

The full version of this paper [15] includes the proofs of all our results and
the treatment of structural transformations.

A Motivating Example. We discuss the abstraction and refinement of key
establishment protocols. We first take the abstraction view and defer a brief
discussion of the refinement view to the end of this section. We start from a core
version of Kerberos IV, called K4, which we simplify in several steps with the
aim of optimizing the performance of verification tools. In Alice&Bob notation,
the protocol K4 reads as follows.

K4(1). A → S : A,B, nA

K4(2). S → A : {|B, tS , nA, kAB, {|A, tS , kAB|}sh(B,S)|}sh(A,S)

K4(3). A → B : {|A, tS , kAB|}sh(B,S), {|c, tA|}kAB

K4(4). B → A : {|tA|}kAB

The security properties we are interested in include: (P1) the secrecy of the ses-
sion key kAB, (P2) A authenticates S on kAB , nA, and tS , and (P3) A and B
authenticate each other on kAB and tA. To improve the performance of verifica-
tion tools, we remove protocol elements that we deem unnecessary for a given
property to hold and verify that property on the simplified protocol. If there is
no attack then the soundness of our abstractions allows us to conclude that the
original protocol also satisfies the property.

In the first abstraction step, we pull B’s ticket out of the encryption in message
K4(2). The result is the core of Kerberos V, called K5, which differs from K4 as
follows.

K5(2). S → A : {|B, tS , nA, kAB|}sh(A,S), {|A, tS , kAB|}sh(B,S)

In the second step, we eliminate the forwarding of B’s ticket by A by applying
structural transformations. This yields protocol K3, on which we verify mutual
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authentication of A and B (P3). We omit the message K3(1) which equals K5(1).

K3(2). S → A : {|B, tS , nA, kAB|}sh(A,S)

K3(3). S → B : {|A, tS , kAB|}sh(B,S)

K3(4). A → B : {|c, tA|}kAB

K3(5). B → A : {|tA|}kAB

In the third step, we remove the key confirmation phase, i.e., messages K3(4)
and K3(5). For the resulting protocol, K2, which we omit here, we verify the
authentication property (P2).

In a final transformation, we remove the server timestamp tS and the initiator
nonce nA. The result is protocol K1 for which we verify secrecy (P1).

K1(1). A → S : A,B
K1(2). S → A : {|B, kAB|}sh(A,S)

K1(3). S → B : {|A, kAB|}sh(B,S)

The protocols and transformations above will serve as running examples through-
out the paper. We will report on experiments with SATMC in Section 4.

We can also view these transformations in the other direction, as a devel-
opment of K4 by refinement. We start from the abstract protocol K1 satisfying
session key secrecy (P1) and add new properties or modify the protocol structure
with each refinement step. We verify properties (P2) and (P3) for K2 and K3,
respectively, knowing that they are preserved by further refinements. By refining
given protocols in different ways, we can develop entire protocol families, whose
members share structure and properties. For example, most server-based key
establishment protocols can be derived from K1.

2 Security Protocol Model

2.1 Term Algebra

We define a generic set of terms T (V, U, F, C) parametrized by four sets V , U , F ,
and C. We will instantiate these parameters to generate different sets of terms
including those in protocol descriptions, network messages, and types, i.e., V to
variables, U to roles or agents, F to fresh values, and C to constants, as well as
to their associated types.

T ::= V variables
| U | F | C atoms: agents/roles, fresh values, constants
| pk(U) | pri(U) | sh(U,U) atoms: long-term keys (public, private, shared)
| h(T ) | 〈T , T 〉 | {|T |}T composed terms: hashing, pairing, encryption

We use T as a shorthand for T (V, U, F, C) in the generic case where the concrete
parameters do not matter. We denote by |t| the size of a term t. The set St(t)
denotes the set of subterms of t. For T ⊆ T , vars(T ) and atoms(T ) denote the
sets of variables and atoms in St(T ). A term without variables is called ground.
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The terms pk(A), pri(A), and sh(A,B) for A,B ∈ U denote the public key of
A, the private key of A, and a symmetric key shared by A and B. We define the
function (·)−1 on ground terms t as follows: pk(A)−1 = pri(A), pri(A)−1 = pk(A),
and t−1 = t otherwise. Next, we define a number of functions on terms in T .

A multiset m over a set S is a function m : S → N, where m(x) denotes the
multiplicity of x in m. The relations �,�,	 denote multiset intersection, union,
and inclusion, respectively, and set(m) = {x ∈ S | m(x) > 0}.
Definition 1. We define the pair splitting function on terms as follows.

split(u) = {u} if u is not a pair
split(〈u1, u2〉) = split(u1) � split(u2)

We also define split(U) =
⊔

u∈U split(u) for a set U of terms.

Definition 2. We define the set acc(t) of accessible subterms of a term t by

acc(u) = {u} if u is a variable, atom, or hash
acc(〈u1, u2〉) = acc(u1) ∪ acc(u2)
acc({|u|}k) = acc(u)

2.2 Protocols

Let V , R, F , and C be infinite and pairwise disjoint sets of variables, role names,
fresh names, and constants. We define the set of messages by M = T (V ,R,F , C).

We specify protocols in terms of roles. A role is a sequence of send and receive
events of the form snd(t) or rcv(t) for a term t ∈ M. We denote the set of all
events by Event . We write term(e) for the term contained in the event e. Let
mgu(t, u) denote the most general unifier of the terms t and u.

Definition 3 (Protocol). A protocol role is a sequence of events. We define
Role = Event∗. A protocol P : R ⇀ Role is a partial function from role names
to roles such that
1. the sets of variables and fresh values in different roles are pairwise disjoint,
2. variables first occur in accessible positions of receive events, i.e., for all events

e in a role P (R) and all variables X ∈ vars(term(e)) there is an event rcv(t)
in P (R) such that rcv(t) equals or precedes e in P (R) and X ∈ acc(t).

3. the events in P ’s roles can be exhaustively enumerated in a list of pairs
of send and receive events [(s1, r1), . . . , (sm, rm)]. We require that, for each
i ∈ {1, . . . ,m}, there exist a substitution δi such that
– δ1 = mgu(term(s1), term(r1)), and, for 1 < k ≤ m,
– δk = mgu(term(sk)(δk−1 ◦ · · · ◦ δ1), term(rk)(δk−1 ◦ · · · ◦ δ1)).

We define δP = δm ◦ ... ◦ δ1 and call it the honest substitution of P .

The second condition of this definition ensures that δP is a ground substitution.
Given a protocol P , let VP , RP , FP , and CP be the sets of variables, role

names, fresh values, and constants appearing in the roles of P (i.e., RP =
dom(P )). We assume a constant nil ∈ C \ CP and define Cnil

P = CP ∪{nil}. We de-
note by EventP the set of all events in the protocol P and RtP = term(EventP ).
Moreover, we define the set of protocol messages (over the atomic messages of
the protocol P ) by MP = T (VP ,RP ,FP , Cnil

P ).
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u ∈ T
T � u

Axiom
T � t T � u
T � 〈t, u〉 Pair

T � 〈t1, t2〉
T � ti

Proji

T � u
T � h(u)

Hash T � t T � u
T � {|t|}u Enc

T � {|t|}u T � u−1

T � t
Dec

Fig. 1. Intruder deduction rules

2.3 Attacker Model and Operational Semantics

Let A and TID be infinite sets of agents and thread identifiers. We partition A
into non-empty sets of honest and compromised agents: A = AH ∪ AC .

When we instantiate a role into a thread for execution, we mark variables, role
names, and fresh values of the respective role script with the thread identifier
to distinguish them from those of other threads. Given a thread identifier tid ∈
TID , we define the instantiation function insttid as the homomorphic extension
of the following definition to all messages:

inst tid(w) = wtid if w ∈ V ∪ F ∪R
inst tid(c) = c if c ∈ C
inst tid(k(R)) = k(Rtid) if R ∈ R, k ∈ {pk, pri}
inst tid(sh(R,S)) = sh(Rtid, Stid) if R,S ∈ R

We define by T � = {inst i(t) | t ∈ T ∧ i ∈ TID} the set of instantiations of
terms in a set T . Hence, the set of instantiated messages of protocol P is M�

P .
We lift this to sets of events by instantiating the terms they contain, e.g., to
define Event �P . We also define the set of network messages, i.e., the ground
messages transmitted over the network, by NP = T (∅,A,F �

P ∪ F•
P , Cnil

P ), where
F • = {f• | f ∈ F} for F ⊆ F are attacker-generated fresh values. Furthermore,
we abbreviate M�

P = MP ∪M�
P ∪ NP .

Attacker model. We use a standard Dolev-Yao attacker model. The intruder’s ca-
pabilities for network messages are described by the deduction rules in
Figure 1.

Operational semantics. We define a transition system with states (tr, th, σ),
where

– tr is a trace consisting of a sequence of pairs of thread identifiers and events,
– th : TID ⇀ R×Role is a thread pool denoting executing role instances, and
– σ : V� ∪R� → NP is a substitution with network messages as its range.

The trace tr as well as the executing role instance are symbolic (with terms
in M�

P ). The separate substitution σ instantiates these messages to (ground)
network messages. The ground trace associated with such a state is trσ.

We define the (symbolic) intruder knowledge IK (tr) derived from a trace tr
as the set of terms in the send events on tr, i.e., IK (tr) = {t | ∃i. (i, snd(t)) ∈ tr}.
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th(i) = (R, snd(t) · tl)
(tr, th, σ) → (tr · (i, snd(t)), th[i �→ (R, tl)], σ)

SEND

th(i) = (R, rcv(t) · tl) IK (tr)σ ∪ IK 0 � tσ

(tr, th, σ) → (tr · (i, rcv(t)), th[i �→ (R, tl)], σ)
RECV

Fig. 2. Operational semantics

We associate with each protocol P a fixed ground initial knowledge IK 0 and
assume that C ∪ A ∪ F• ⊆ IK 0. In particular, nil ∈ IK 0.

In our model, the substitution σ is chosen non-deterministically in the initial
state. The set of initial states InitP of protocol P contains all (ε, th, σ) satisfying

∀i ∈ dom(th). ∃R ∈ RP . th(i) = (R, inst i(P (R))) ∧ σ(R�) ⊆ A,

where inst i is applied to all terms in the respective protocol role.
The state transitions are defined by the rules in Figure 2. In both the SEND

and RECV rules, the first premise states that a send or receive event is in the
first position of the role script of thread i. The executed event is removed from
the role script and added together with the thread identifier to the trace tr.
Transitions do not change the substitution σ, which is fixed in the initial state.
The second premise of the RECV rule requires that the network message tσ
matching the term t in the receive event is derivable from IK (tr)σ ∪ IK 0, i.e.,
the intruder’s (ground) knowledge derived from tr and his initial knowledge IK 0.

2.4 Type System

We introduce a type system that extends Arapinis and Duflot’s [2] with type
variables, but is equivalent to theirs for ground types. In this type system, all
roles and agent names have the same type α and similarly with each kind of
long-term key (e.g., pk(α) is the type of public keys). Each fresh value f ∈ F
and constant c ∈ C has its own type: βf and γc. This enables a fine-grained
control in our message transformations. The types of composed terms follow the
structure of the terms.

Let Vty be an infinite set of type variables disjoint from V . We define the set
of types by Y = T (Vty, {α}, {βf | f ∈ F}, {γc | c ∈ C}). A typing environment
is a partial function Γ : V ⇀ Y assigning types to (message) variables. Typing
judgements are of the form Γ � t : τ , where Γ is a typing environment, t is
a term, and τ is a type. The derivable typing judgements are determined by
the inference rules in Figure 3. The first row displays the rules for variables,
fresh values, and constants. The first two rules assign the types given by the
typing environment to plain and instantiated variables. The last three rules in
the first row give a type to each fresh value or constant. In the second row, the
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(X, τ ) ∈ Γ

Γ � X : τ

(X, τ ) ∈ Γ i ∈ TID

Γ � Xi : τ

f ∈ F
Γ � f : βf

f � ∈ F� ∪ F•

Γ � f � : βf

c ∈ C
Γ � c : γc

U ∈ R ∪R� ∪A
Γ � U : α

U ∈ R ∪R� ∪A
Γ � pk(U) : pk(α)

U ∈ R ∪R� ∪A
Γ � pri(U) : pri(α)

U, V ∈ R ∪R� ∪ A
Γ � sh(U, V ) : sh(α, α)

Γ � t : τ
Γ � h(t) : h(τ )

Γ � t1 : τ1 Γ � t2 : τ2
Γ � 〈t1, t2〉 : 〈τ1, τ2〉

Γ � t1 : τ1 Γ � t2 : τ2
Γ � {|t1|}t2 : {|τ1|}τ2

Fig. 3. Type system

first rule assigns the agent type α to role names and agents and the remaining
rules assign types to long-term keys. The third row shows the typing rules for
composed terms, i.e., hashes, pairs, and encryptions.

The abbreviation YP = T (Vty, {α}, {βf | f ∈ FP }, {γc | c ∈ Cnil
P }), defines

the set of types of a protocol P . We derive the canonical typing environment
ΓP : VP ⇀ YP for the protocol P from the honest substitution δP as ΓP =
{(X, τ) | X ∈ dom(δP ) ∧ ∅ � XδP : τ}. Note that ΓP ranges over ground types.

Proposition 1 (Type inference). Let P be a protocol and t ∈ M�
P . Then

there is unique ground type τ ∈ YP such that ΓP � t : τ .

By this proposition, we can extend ΓP to all terms t ∈ M�
P , i.e., we have

ΓP (t) = τ if and only if ΓP � t : τ . We say that a substitution is well-typed if
the terms in its range respect the types of the variables in its domain.

Definition 4 (Well-typed substitutions). A substitution θ is well-typed
with respect to a typing environment Γ iff Γ � X : τ implies that Γ � Xθ : τ
for all X ∈ dom(θ).

In this paper, we assume that it is sufficient to consider attacks with well-typed
substitutions. There are multiple ways to achieve this. For example, tagging
can be used in protocols that can fully decrypt all messages, in which case tag
checking is sufficient to prevent all ill-typed attacks. Alternatively, we can use
a result along the lines of [10,12,2,1] stating that there is a well-typed attack
for any ill-typed one under certain conditions (e.g., sufficient tagging or well-
formedness, which prevents the confusion of ciphertexts with different types).

3 Protocol Transformations

Following Hui and Lowe [11], we distinguish two kinds of protocol transforma-
tions: message-based and structural transformations. Message-based transforma-
tions are functions on protocol messages, which we lift to events and protocol
roles. In contrast, structural transformations apply directly to protocol roles.
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We cover essentially the same structural transformations for splitting and relay-
ing as [11]. The splitting transformation splits selected events with pairs into
two events and the relaying transformation removes a rcv(X) and a subsequent
snd(X) event from a protocol role. In Section 1, they together justify the step
from protocol K5 to K3. The other abstractions, from K4 to K5, from K3 to K2,
and from K2 to K1 are obtained by message-based transformations. Here, we
mainly focus on message-based protocol transformations. However, structural
transformations are discussed in the full version of this paper [15].

In Section 3.1, we introduce a class of message transformations, which includes
the following operations on messages: (1) remove encryptions and hashes, (2)
remove fields from an encrypted message, (3) pull fields outside of an encryption,
(4) split encryption into several ones, and (5) project and reorder pairs.

Consider a logical language L to express security properties.We will define
such a language in Section 4. We want to achieve three main properties for our
transformations f (both message-based and structural) and formulas φ.

Well-definedness. If P is a protocol then so is f(P ), i.e., the three conditions
of Definition 3 are preserved by f .

Simulation. f preserves reachability, i.e., if the state (tr, th, σ) is reachable in
P then the transformed state (f(tr), f(th), f(σ)) is reachable in f(P ).1

Attack preservation. For a state (tr, th, σ) reachable inP such that (tr, th, σ) �
φ we have (f(tr), f(th), f(σ)) � f(φ).

The proofs of these three properties hinge on two more basic properties: the
preservation of unifiers and of message deducibility. Unifier preservation is needed
for well-definedness (the existence of an honest substitution) and attack preser-
vation (for message equalities). Formally, this is expressed as follows.

tθ = uθ ⇒ f(t)f(θ) = f(u)f(θ) (1)

Deducibility preservation is required for the simulation of receive events (see
second premise of RECV rule) and attack preservation (for formulas expressing
the intruder’s knowledge). Formally, this property is stated as follows.

Tθ ∪ IK 0 � uθ ⇒ f(T )f(θ) ∪ f(IK 0) � f(u)f(θ) (2)

We further reduce the properties (1) and (2) to two simpler properties. First,
we show in Section 3.2 deducibility preservation for ground terms: T � u implies
f(T ) � f(u) if all terms in T∪{u} are ground and the set T satisfies an additional
mild condition. Second, we establish the substitution property:

f(tθ) = f(t)f(θ). (3)

This property (as well as (1) and (2)) does not hold for all transformations. The
problem stems from the application of f to terms with variables: a term t and
its instantiation tθ may be transformed in different ways (see Example 1 below).
1 For now, you can read f(θ) as the composed substitution f ◦ θ.
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We solve this problem by typing variables and restricting θ to well-typed
substitutions. In Section 3.3, we thus introduce a restricted class of type-based
message transformations, where a message’s type uniquely determines how it is
transformed. We use the type system from Section 2.4, which enables a fine-
grained control over the transformations. In Section 3.4, we show that the sub-
stitution property (3) holds for type-based transformations f and well-typed
substitutions. Then we lift these transformations to protocols and establish well-
definedness and the simulation property. Section 4 treats attack preservation.

3.1 Message Transformations

We now introduce a class of message-based transformations. In these transfor-
mations, the constant nil plays a special role for the removal of (sub)terms. We
remove variables and atoms by mapping them to nil and we rely on the following
normalization function to remove the resulting nil-subterms and eliminate trivial
encryptions (with key nil).

Definition 5 (Normalization).

nf (t) = t if t is a variable or an atom
nf (h(t)) = if nf (t) = nil then nil else h(nf (t))

nf (〈t1, t2〉) = if nf (t1) = nil then nf (t2)
else if nf (t2) = nil then nf (t1)
else 〈nf (t1), nf (t2)〉

nf ({|t|}u) = if nf (t) = nil then nil
else if nf (u) = nil then nf (t)
else {|nf (t)|}nf (u)

We say that a term t is in normal form iff nf (t) = t.

Note that nil can only occur in a normal-form term t if t equals nil. We now
formally define message transformations.

Definition 6 (Message transformation). A function f : T → T is a mes-
sage transformation on T if the following conditions hold:

1. for all non-normal form terms t ∈ T , f(t) = f(nf (t)),
2. if t ∈ nf (T ) is a variable or an atom, then f(t) = t or f(t) = nil. Moreover,

if t is an asymmetric key then f(t) = nil if and only if f(t−1) = nil,
3. if h(u) ∈ nf (T ), then f(h(u)) ∈ {nf (ha(f(u))) | a ≥ 0} ∪ {nil}.
4. if 〈u1, u2〉 ∈ nf (T ), then f(〈u1, u2〉) = nf (〈f(t1), . . . , f(tn)〉) for some terms

ti, 1 ≤ i ≤ n, such that P(〈u1, u2〉, 〈t1, . . . , tn〉) and |ti| < |〈u1, u2〉|.
5. if {|u|}k ∈ nf (T ), then for some ti, 1 ≤ i ≤ n s.t. P(u, 〈t1, . . . , tn〉), |ti| ≤ |u|,

ai ≥ 0, and b ≥ 0, f({|u|}k) = nf ({|〈{|f(t1)|}f(k)a1 , . . . , {|f(tn)|}f(k)an 〉|}f(k)b ).

where P(u, t) = split(t) 	 split(u) ∧ set(split(t)) = set(split(u)) and {|m|}ka

denotes the a-fold encryption of message m with the key k.
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Condition 1 ensures that we only transform normal-form terms. Conditions 2-
5 put restrictions on the transformation of the different kinds of messages. Note
that we normalize the result of each transformation step. By Condition 2 we
can either remove variables and atoms or keep them unchanged. Moreover, an
asymmetric key and its inverse must be both removed or kept. This is necessary
to achieve that f respects key inversion, i.e., f(t−1) = f(t)−1 for all terms t.
We need this property to prove deducibility preservation. Condition 3 enables
two types of transformations for hashes: we can (a) add or remove hash function
applications or (b) map it to nil (i.e., remove it completely).

Condition 4 allows us to arbitrarily rearrange the components of a pair pro-
vided that (a) every component of 〈t1, . . . , tn〉 is also in 〈u1, u2〉 but possibly
with a smaller number of occurrences (expressed using P) and (b) each term ti
is smaller than the pair 〈u1, u2〉. This ensures the well-foundedness of our defini-
tion and enables inductive proofs on term sizes. Similarly, Condition 5 describes
the transformation of encryptions by splitting its plaintext into an arbitrary
number of smaller terms ti (compared to the size of the plaintext). The terms
f(ti) may be encrypted zero or more times with f(k). This enables splitting and
selective removal of encryptions.

3.2 Deducibility Preservation

As mentioned above, our proof of deducibility preservation requires that f re-
spects key inversion. However, the conditions discussed above are not sufficient.
For instance, we may have f(h(pk(a))) = pk(a) and therefore f(h(pk(a))−1) =
pk(a) �= pri(a) = f(h(pk(a)))−1. This shows that we must restrict the transfor-
mation of arbitrary terms into asymmetric keys. Therefore, we now introduce
the notion of simple terms and we show that message transformations respect
key inversion on simple ground terms.

Definition 7 (Simple terms and simple-keyed term sets). A ground term
t ∈ T is simple if it is an atom or it contains asymmetric keys only in key
positions of encryptions. A set of ground terms T is simple-keyed if k is simple
for all {|u|}k ∈ St(T ).

Lemma 1. Let f : T → T be a message transformation and t ∈ T be a simple
ground term. Then f respects key inversion, i.e., f(t−1) = f(t)−1.

Using this lemma, we establish deducibility preservation for simple-keyed sets of
network messages.

Theorem 1 (Deducibility preservation). Let f be a message transforma-
tion on NP , T ⊆ NP be a simple-keyed set of network messages and let u ∈ NP .
Then T � u implies f(T ) ∪ {nil} � f(u).

We next present a more syntactic, type-based definition of message transforma-
tions for which the substitution property holds.
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3.3 Type-Based Protocol Transformations

We want to extend our message transformations to protocols. However, a simple
lifting from messages to events, roles, and protocols will not work, since pro-
tocol roles contain variables and we cannot guarantee that a pair of matching
send and receive events still matches after the transformation. Technically, this
problem manifests itself as a failure of the substitution property (3) and unifier
preservation (1) for some message transformations. Before giving an example,
we extend message transformations to substitutions.
Definition 8. f : T → T be a message transformation on T and θ : V ⇀ T .
Then we define the substitution f(θ) = {(x, f(θ(x))) | x ∈ dom(θ) ∧ f(x) = x}.
Note that dom(f(θ)) ⊆ dom(θ) as f may map some variables in dom(θ) to nil.
Example 1. Let X be a variable and θ a ground substitution such that f(X) =
nil. For the substitution property to hold for X and θ, i.e., f(X)f(θ) = f(Xθ),
we need f(Xθ) = nil. Since θ is arbitrary so is θ(X). Hence, f would have to map
all terms to nil, thus reducing f to a trivial transformation. Similarly, f(X) and
f(Xθ) are unifiable only if f(Xθ) = nil. Hence, unifier preservation also fails.
In order to solve this problem we introduce type-based message transformations
and restrict our attention to well-typed substitutions. Intuitively, in the typed
setting, we can ensure that (1) a term and its (well-typed) instances have the
same type and (2) all terms with the same type are transformed in a uniform
way. We will guarantee this by having the type of a term alone determine how the
term is transformed. This excludes situations like in Example 1 and enables us
to establish the substitution property for well-typed substitutions (Section 3.4).
Moreover, since the terms in matching send and receive events will have the same
type, the typing ensures that the transformed events also match. This enables
the lifting of type-based transformations to protocols.

The type system from Section 2.4 is well-suited for our purposes because it
gives us a fine-grained control over the transformation of messages. More pre-
cisely, since each fresh value and constant has a different type, we can transform
messages of similar shapes, but with different types in different ways. For exam-
ple, we can remove the nonce nA from 〈A, nA〉, while 〈A, nB〉 remains unchanged.

Specifying Type-Based Transformations In order to guarantee the uniform
transformation of messages with the same type, our definition of type-based
message transformations consists of two parts. The first part determines which
terms are mapped to nil and therefore removed. It is specified as a set of types.
The second part determines how composed messages are transformed and is
specified using pattern matching on terms and types. In both cases, we have to
ensure that it is only the type of a term, which determines how it is transformed.
We define the semantics of these transformations as a functional program.

To avoid the need to introduce fresh variables in transformations, we now
restrict our attention to protocols without variables of pair types. This is not a
limitation, since we assume that protocol roles can always decompose pairs.
Definition 9. A protocol P is splitting iff, for all X ∈ VP , XδP is not a pair.
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Function specifications. Let Vpt be an infinite set of pattern variables distinct
from V and Vty. We construct term patterns from pattern variables using hash-
ing, pairing and, encryption. Type patterns are types which contain (type) vari-
ables.

Definition 10. The set of term patterns is defined by P = T (Vpt, ∅, ∅, ∅). A
term pattern p ∈ P is linear if each pattern variable occurs at most once in p.

We introduce a simple generic form of recursive function specifications. Based
on these we will then define type-based transformations. Below, we use typing
environments of the form Γ : Vpt ⇀ YP with pattern variables rather than
message variables in the domain. Otherwise, the type system remains the same.

Definition 11. Let f be an unary function symbol. A function specification for
f with respect to a typing environment Γ : Vpt ⇀ YP is a list of equations

Ef = [f(p1 : π1) = u1, . . . , f(pn : πn) = un],

where each pi ∈ P is a linear term pattern and πi ∈ YP is a type pattern such that
Γ � pi : πi. The ui are terms, built from the pattern variables in pi, cryptographic
operations, and the function symbol f .

We introduce the notion of a complete set of type patterns to ensure that each
term’s type matches some type pattern of a function specification. The use of
type variables is essential to achieve this.

Definition 12. A set of type patterns S ⊆ YP is complete w.r.t. a set of ground
types T if, for all τ ∈ T , there is π ∈ S such that τ = πθ for some θ : Vty ⇀ YP .

Example 2. We define E0(f), the “homomorphic” function specification for f
with respect to Γ0(f) = {(X,X ), (X ′,X ′)} below. Clearly, any set of patterns
including the set {h(X ), {|X |}X ′ , 〈X ,X ′〉} is complete with respect to composed
ground types in YP .

E0(f) = [f(h(X) : h(X )) = h(f(X)), f({|X |}X′ : {|X |}X ′) = {|f(X)|}f(X′),
f(〈X,X ′〉 : 〈X ,X ′〉) = 〈f(X), f(X ′)〉]

Transformation specifications. We can now make the two parts of the specifica-
tion of a type-based transformation for a function symbol f more precise. The
first part is given by a set Tf of atomic and ground hash types. The intention
is that all terms composed from terms of these types by hashing, pairing, and
encryption map to nil and are therefore removed. The second part handles com-
posed terms and is given as a function specification Ef for f with respect to
a Γf . By posing conditions on the term and type patterns, we ensure that the
matching clause only depends on the term’s type and that the restrictions on
message shapes required for protocol transformations are satisfied.

Definition 13 (Type-based message transformation). A type-based mes-
sage transformation for a splitting protocol P and function symbol f is a triple
Sf = (Tf , Γf , Ef ) satisfying the following conditions:



Sound Security Protocol Transformations 95

1. Tf ⊆ YP \{α} is a set of atomic and ground hash types such that pk(α) ∈ Tf

if and only if pri(α) ∈ Tf ,
2. Ef = [f(p1 : π1) = u1, . . . , f(pn : πn) = un] is a function specification for f

with respect to Γf : Vpt ⇀ YP such that
(a) {π1, . . . , πn} is a complete set of patterns with respect to composed ground

types, i.e., the ground types in the set YP \ atoms(YP ), and
(b) pi is not deeper than πi for each 1 ≤ i ≤ n, i.e., each term position in

pi is also a position in πi.
Moreover, for all (f(p : π) = u) ∈ Ef one of the following holds:
– p = h(q) and u = ha(f(q)), where q ∈ Vpt and a ≥ 0,
– p = 〈q, r〉 and u = 〈f(t1), . . . , f(tm)〉, where set(split(〈q, r〉)) ⊆ Vpt,

split(〈t1, . . . , tm〉) = split(〈q, r〉) and |ti| < |〈q, r〉| for 1 ≤ i ≤ m, or
– p = {|q|}r and u = {|〈{|f(t1)|}f(r)a1 , . . . , {|f(tm)|}f(r)am 〉|}f(r)b , where

set(split(q)) ∪ {r} ⊆ Vpt, ai, b ≥ 0, split(〈t1, . . . , tm〉) = split(q), and
|ti| ≤ |q| for 1 ≤ i ≤ m.

We forbid α ∈ Tf , since this would result in the removal of all role names from a
protocol, which does not make much sense. The type of public and private keys
can only be included together in Tf . For the case of pairs and encryptions, the
linearity of the patterns pi implies that the subsumption relation P between two
term tuples from Definition 6 reduces to an equality here.

Transformation semantics. Before defining the semantics of type-based trans-
formations, we formalize the set of types of those terms that we want to remove.

Definition 14. For a set of ground types G, we define the removable types
rem(G) as the least set closed under the following rules.

– if τ ∈ G then τ ∈ rem(G),
– if τ ∈ rem(G) then h(τ) ∈ rem(G),
– if τ1, τ2 ∈ rem(G) then 〈τ1, τ2〉 ∈ rem(G), and
– if τ ∈ rem(G) then {|τ |}τ ′ ∈ rem(G) for all ground types τ ′.

Definition 15 (Semantics of typed-based transformations). The seman-
tics of a type-based transformation Sf for a splitting protocol P and function
symbol f is given by Program 1.

As said earlier, the main motivation for type-based setting is to achieve uniform
transformations based on types, i.e., the type τ = ΓP (t) of a term t uniquely
determines how t is transformed (τ is well-defined by Proposition 1). We achieve
this by ensuring that both (1) term removal and (2) pattern matching for com-
posed types only depend on the type τ . The program ensures point (1) by re-
moving terms with types in rem(Tf ) (line 3). The lemma below guarantees that
rem(Tf ) describes precisely these terms.

Lemma 2. Let P be a splitting protocol and Sf = (Tf , Γf , Ef ) be a type-based
message transformation. Suppose t ∈ nf (M�

P ) \ {nil} and ΓP � t : τ . Then
τ ∈ rem(Tf ) iff f(t) = nil.
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1 fun frec(t) =
2 let τ = ΓP (t) in
3 if τ ∈ rem(Tf ) then nil
4 else if t ∈ vars(M�

P ) ∪ atoms(M�

P ) then t
5 else case (t, τ ) of
6 (p1, π1) ⇒ nf (u1[f

rec/f ])
7 | · · ·
8 | (pn, πn) ⇒ nf (un[f

rec/f ])
9

10 fun f(t) = frec(nf (t))

Program 1. Functional program resulting from specification Sf = (Tf , Γf , Ef )

Point (2) is guaranteed by Conditions (2a) and (2b) of Definition 13. A composed
term’s type uniquely determines a non-empty set of matching term-type patterns
of Ef . This is expressed in the following lemma, which together with Lemma 2
will allow us to establish the substitution property.

Lemma 3. Let P be a splitting protocol and Sf = (Tf , Γf , Ef ) be a type-based
message transformation for P , where Ef = [f(p1 : π1) = u1, . . . , f(pn : πn) =
un], and let S(t, τ) = {i | ∃θ. (pi, πi)θ = (t, τ)}. Then S(t1, τ) = S(t2, τ) �= ∅
for all composed terms t1, t2 ∈ M�

P of ground type τ in environment ΓP .

As expected, type-based message transformations are indeed message transfor-
mation, as stated in the following proposition.

Proposition 2. Let P be a splitting protocol and Sf be a type-based message
transformation. Then f is a message transformation on M�

P and also on NP .

Transforming protocols We extend type-based transformations to events, roles
and protocols. Transformed events with nil arguments are removed from roles.

Definition 16 (Protocol transformations). Let Sf be a type-based message
transformation. We define f(s(m)) = s(f(m)) for events s(m) ∈ Event and, for
event sequences,

f(ε) = ε f(e · tl) = if term(f(e)) = nil then f(tl) else f(e) · f(tl)

For protocols P , f(P )(R) = f(P (R)) for R ∈ dom(P ) and undefined otherwise.

Next, we present two examples of type-based message transformations formal-
izing some transformations from Section 1. The first one pulls a message out of
an encryption and the second one removes some atoms from messages.

Example 3 (K4 to K5). We formalize the protocol K4 as follows (where c ∈ C).

K4(A) = snd(A,B, nA) · rcv({|B, TS, nA,KAB, X |}sh(A,S))·
snd(X, {|c, tA|}KAB ) · rcv({|tA|}KAB )

K4(S) = rcv(A,B,NA) · snd({|B, tS , NA, kAB , {|A, tS, kAB |}sh(B,S)|}sh(A,S))
K4(B) = rcv({|A, T ′

S ,K
′
AB|}sh(B,S), {|c, TA|}K′

AB
) · snd({|TA|}K′

AB
)
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The type-based message transformation Sf4 = (Tf4 , Γf4 , Ef4), where Tf4 = ∅ and
Ef4 is defined using list concatenation @ and E0(f) from Example 2 as follows.

Ef4 = [f4({|X1, X2, X3, X4, X5|}K : {|X1,X2,X3,X4,X5|}sh(α,α))
= 〈{|f4(X1, X2, X3, X4)|}K , f4(X5)〉] @ E0(f4)

Applying f4 to K4 yields K5 = f4(K4) as follows. In this and the next example,
we omit roles that are unchanged by the respective transformations.

K5(A) = snd(A,B, nA) · rcv({|B, TS , nA,KAB|}sh(A,S), X)·
snd(X, {|c, tA|}KAB ) · rcv({|tA|}KAB )

K5(S) = rcv(A,B,NA) · snd({|B, tS , NA, kAB|}sh(A,S), {|A, tS , kAB|}sh(B,S))

Example 4 (K3 to K2). Recall that K3 results from K5 by structural transfor-
mations f5 eliminating the forwarding of B’s ticket by A. In K3, defined below,
there are therefore separate events for the server sending A and B’s ticket and
for B receiving his ticket (from S) and the authenticator (from A).

K3(A) = snd(A,B, nA) · rcv({|B, TS , nA,KAB|}sh(A,S))·
snd({|c, tA|}KAB ) · rcv({|tA|}KAB )

K3(S) = rcv(A,B,NA) · snd({|B, tS , NA, kAB|}sh(A,S)) · snd({|A, tS , kAB |}sh(B,S))
K3(B) = rcv({|A, T ′

S ,K
′
AB|}sh(B,S)) · rcv({|c, TA|}K′

AB
) · snd({|TA|}K′

AB
)

The type-based message transformation Sf3 = (Tf3 , Γf3 , Ef3) is defined by Tf3 =
{βtA , γc} and Ef3 = E0(f3). Applying f3 to K3 yields protocol K2 = f3(K3)
where the key confirmation messages have been removed.

K2(A) = snd(A,B, nA) · rcv({|B, TS , nA,KAB|}sh(A,S))
K2(B) = rcv({|A, T ′

S ,K
′
AB|}sh(B,S))

A further abstraction, f2, removes tS and nA from K2, resulting in protocol K1.

3.4 Well-Definedness and Simulation

We are now in a position to establish the substitution property for splitting
protocols and well-typed substitutions. Its proof uses Lemmas 2 and 3 above to-
gether the following lemma stating that well-typed substitutions preserve types.

Lemma 4. Let θ be a well-typed substitution with respect to a typing environ-
ment Γ . Then for all terms t ∈ T , Γ � t : τ implies that Γ � tθ : τ .

Theorem 2 (Substitution property). Let P be a splitting protocol and Sf
be a type-based protocol transformation and θ be a well-typed substitution with
respect to ΓP . Then for all t ∈ M�

P , we have f(tθ) = f(t)f(θ).

The first application of the substitution property is to establish well-definedness.

Proposition 3 (Well-definedness). Let P be a splitting protocol and Sf be a
type-based protocol transformation. Then f(P ) is a protocol with honest substi-
tution δf(P ) = f(δP ).
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Next, we lift deducibility preservation (Theorem 1) to non-ground terms and
establish the simulation property. Since protocol descriptions contain non-ground
terms, we restrict our attention to simple-keyed protocols, for which the set of
(ground) types of the protocol’s terms is simple-keyed. Hereafter, IK 0 and IK ′

0

denote the intruder’s initial knowledge associated with P and f(P ), respectively.

Definition 17. A protocol P is simple-keyed if the set of types ΓP (RtP ) is
simple-keyed.

Lemma 5. If P is a simple-keyed protocol, T ⊆ Rt�P and θ is well-typed ground
substitution with respect to ΓP , then Tθ is a simple-keyed set of terms.

Proposition 4. Let P be a simple-keyed, splitting protocol, Sf a type-based mes-
sage transformation, and θ a well-typed ground substitution with respect to ΓP .
Assume that IK 0 is simple-keyed and f(IK 0) ⊆ IK ′

0. Then, for all T ⊆ Rt�P
and u ∈ M�

P , we have Tθ ∪ IK 0 � uθ implies f(T )f(θ) ∪ IK ′
0 � f(u)f(θ).

Theorem 3 (Simulation). Let P be a simple-keyed, splitting protocol and let
Sf be a type-based message transformation. Assume that IK 0 is simple-keyed
and f(IK 0) ⊆ IK ′

0. Then for all states (tr, th, σ) reachable in P such that σ is
well-typed w.r.t. ΓP , then (f(tr), f(th), f(σ)) is a reachable state of f(P ) and
f(σ) is well-typed w.r.t. Γf(P ).

4 Property Language and Soundness

We introduce a specification language for security properties including secrecy
and authentication. We extend our transformations to formulas of the property
language and establish the preservation of well-typed attacks (and hence sound-
ness) for protocols and formulas satisfying certain injectiveness conditions.

4.1 Security Properties

Our property specification language is an instance of first-order logic with formu-
las in negation normal form (negation occurs only in front of atomic formulas).

φ ::= A | ¬A | φ1 ∧ φ2 | φ1 ∨ φ2 | ∀i. φ′ | ∃i. φ′

Here, A are atomic predicates and the quantified variables i represent thread
identifiers. An atomic predicate or negated atomic predicate is called a literal.
The atomic predicates and their meaning are as follows, where m,m′ ∈ M�

P are
messages, e, e′ are events, i, j are thread-id variables, and R is a role name.

A ::= i = j thread i and thread j are equal
| m = m′ messages m and m′ are equal
| role(i, R) thread i executes role R
| honest(i, R) the agent playing role R in thread i’s view is honest
| steps(i, e) thread i has executed event e
| (i, e) ≺ (j, f) thread i has executed e before thread j has executed f
| secret(m) the intruder does not know m
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To achieve attack preservation, we focus on the fragment of this logic where the
predicate secret(m) only occurs positively. We call this language LP . A property
is a closed formula of LP . In examples, we freely use standard abbreviations
(e.g., for implication) if there is an equivalent negative normal form in LP .

Recall that AH denotes the set of honest agents. Let ϑ be a substitution
such that range(ϑ) ⊆ dom(th). We define formula satisfaction, (tr, th, σ, ϑ) � φ,
as follows (omitting the standard cases for the boolean operators and the dual
existential quantifier):

(tr, th, σ, ϑ) � i = j iff ϑ(i) = ϑ(j)
(tr, th, σ, ϑ) � m = m′ iff mσ = m′σ
(tr, th, σ, ϑ) � role(i, R) iff ∃seq ∈ Event∗. th(ϑ(i)) = (R, seq)
(tr, th, σ, ϑ) � honest(i, R) iff Rϑ(i)σ ∈ AH

(tr, th, σ, ϑ) � steps(i, e) iff (ϑ(i), e) ∈ tr
(tr, th, σ, ϑ) � (i, e) ≺ (j, e′) iff (ϑ(i), e) ≺tr (ϑ(j), e

′)
(tr, th, σ, ϑ) � secret(m) iff IK (tr)σ ∪ IK 0 � mσ is not derivable
(tr, th, σ, ϑ) � ∀i. φ′ iff (tr, th, σ, ϑ[i �→ tid]) � φ′ for all tid ∈ dom(th)

where a ≺tr b (“a occurs before b on tr”) holds if tr = tr1 ·a · tr2 · b · tr3 for some
tr1, tr2, tr3. We write (tr, th, σ, ϑ) � φ if (tr, th, σ, ϑ) � φ does not hold. If φ is a
closed formula, we write (tr, th, σ) � φ instead of (tr, th, σ, ϑ) � φ.

Definition 18 (Attack). We say that a state s = (tr, th, σ) is an attack on φ
if s �|= φ. The state (attack) s is well-typed if σ is well-typed.

We extend transformations f to formulas φ ∈ LP as follows:

f(i = i′) = i = i′ f(secret(m)) = secret(f(m))
f(m = m′) = f(m) = f(m′) f(¬A) = ¬f(A)

f(role(i, R)) = role(i, f(R)) f(φ1 ∧ φ2) = f(φ1) ∧ f(φ2)
f(honest(i, R)) = honest(i, f(R)) f(φ1 ∨ φ2) = f(φ1) ∨ f(φ2)
f(steps(i, e)) = steps(i, f(e)) f(∀i. φ′) = ∀i. f(φ′)

f((i, e) ≺ (j, e′)) = (i, f(e)) ≺ (j, f(e′)) f(∃i. φ′) = ∃i. f(φ′)

Example 5 (Secrecy and authentication). Consider the initiator and re-
sponder roles of the core Kerberos IV protocol K4 as specified in Example 3.

K4(A) = snd(A,B, nA) · rcv({|B, TS , nA,KAB, X |}sh(A,S))·
snd(X, {|c, tA|}KAB ) · rcv({|tA|}KAB )

K4(B) = rcv({|A, T ′
S ,K

′
AB|}sh(B,S), {|c, TA|}K′

AB
) · snd({|TA|}K′

AB
)

We express the secrecy of the session key kAB for role A by

φs = ∀i. (role(i, A) ∧ honest(i, [A,B]) ∧ steps(i, rcv(t2))) ⇒ secret(Ki
AB).

where t2 = {|B, TS , nA,KAB, X |}sh(A,S) and honest(i, [A,B]) abbreviates the
obvious conjunction. We abstract this property to verify it on the simplified
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protocol K1 = g(K4), where g = f2 ◦ f3 ◦ f5 ◦ f4 is the composition of all
transformations in our running example. Hence, we derive φ′

s = g(φs), yielding

φ′
s = ∀i. (role(i, A) ∧ honest(i, [A,B]) ∧ steps(i, rcv(t′2))) ⇒ secret(Ki

AB).

where t′2 = {|B,KAB|}sh(A,S). Next, we formalize non-injective agreement of B
with A on the key kAB and the timestamp tA. This property is based on the
authenticator.

φa = ∀i. (role(i, B) ∧ honest(i, [A,B]) ∧ steps(i, rcv(u1, u2)))
⇒ ∃j. role(j, A) ∧ steps(j, snd(X, {|c, tA|}KAB ))

∧ 〈Ai, Bi,K ′ i
AB, T

i
A〉 = 〈Aj , Bj ,Kj

AB, t
j
A〉

where u1 = {|A, T ′
S ,K

′
AB|}sh(B,S) and u2 = {|c, TA|}K′

AB
. For the simplified pro-

tocol K3 = f5 ◦ f4(K4), we check the abstracted formula φ′
a = f5 ◦ f4(φa), where

B’s ticket and the associated variable X of role A have been removed.

φ′
a = ∀i. (role(i, B) ∧ honest(i, [A,B]) ∧ steps(i, rcv(u2)))

⇒ ∃j. role(j, A) ∧ steps(j, snd({|c, tA|}KAB ))

∧ 〈Ai, Bi,K ′ i
AB, T

i
A〉 = 〈Aj , Bj ,Kj

AB, t
j
A〉

4.2 Soundness

We now show that if there exists a well-typed attack on a property φ of a protocol
P , then the transformed attack state constitutes an attack on property f(φ) of
protocol f(P ). In other words, we can say that the protocol P is at least as
secure as f(P ).

However, attack preservation does not hold for all properties φ and type-
based message transformations f . For example, attacks on properties involving
protocol events may not be preserved if f maps two different events of P to a
single one in f(P ). Similarly, if f identifies messages then attacks on equality
are not preserved. These atomic predicates typically appear in authentication
properties.

Our soundness result is therefore restricted to a subset of (P, f)-safe formulas
of LP . We first define some auxiliary notions. Let T+

eq(φ) be the set of pairs
(m,m′) such that the equation m = m′ occurs positively in φ and let Tevt(φ)
(T+

evt(φ)) be the set of events s(m), s′(m′) such that (i, s(m)) ≺ (j, s′(m′)) or
steps(i, s(m)) occurs (positively) in φ.

Definition 19 ((P, f)-safe formulas). Let P be a protocol and Sf be a type-
based message transformation for P and function symbol f . A formula φ ∈ LP

is (P, f)-safe if

1. mσ �= m′σ implies f(mσ) �= f(m′σ) for all (m,m′) ∈ T+
eq(φ) and well-typed

ground substitutions σ,
2. m �= m′ implies f(m) �= f(m′) for all s(m) ∈ T+

evt(φ) and s(m′) ∈ Event �P ,
and

3. f(m) �= nil for all s(m) ∈ Tevt(φ).
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Table 1. Experimental verification results for Kerberos (times in seconds); the abstrac-
tion level increases from left to right columns; (*) denotes highest abstraction level for
marked properties

protocol K4/6 K5/6 K3/6 K2/6 K1/6
property sec aut kc sec aut kc sec aut kc∗ sec aut∗ sec∗
time [sec] 1.45 1.31 1.16 20.65 20.5 18.27 1.44 1.31 1.18 0.95 0.85 0.14
#clauses/1000 15.4 13.8 12.1 188.9 486.2 165.6 15.9 14.2 12.6 10.0 8.8 1.1
#atoms/1000 2.0 1.9 1.9 33.0 32.9 32.8 2.0 2.0 1.9 1.4 1.3 0.4

Theorem 4 (Attack preservation). Let P be a simple-keyed, splitting proto-
col, Sf a type-based message transformation for P and function symbol f , and
φ ∈ LP a (P, f)-safe property. Assume that IK 0 is simple-keyed and f(IK 0) ⊆
IK ′

0. Then, for all well-typed states (tr, th, σ) reachable in P , we have that
(f(tr), f(th), f(σ)) is a well-typed reachable state of f(P ), and if (tr, th, σ) � φ
then (f(tr), f(th), f(σ)) � f(φ).

Example 6. Consider the protocol K4 and the typed-based message transfor-
mation Sf4 from Example 3. We check that φs and φa from Example 5 are
(K4, f4)-safe, i.e., satisfy the three conditions of Definition 19. The first condi-
tion holds for φs, since T+

eq(φs) = ∅. It also holds for φa, since f4(t) = t for all t
of the form 〈t1, t2, t3, t4〉 such that ΓK4 � t : 〈α, α, βkAB , βtA〉. The second condi-
tion holds trivially for φs and it holds for φa, since f4 does not identify the only
term 〈X, {|c, tA|}KAB 〉 ∈ T+

evt(φa) in its conclusion is not identified with another
protocol event term. The third condition holds, since f4 does not map any term
appearing in a steps predicate of φs or φa to nil. Hence, the properties φs and
φa are both (K4, f4)-safe. Since the protocol K4 is splitting and simple-keyed,
Theorem 4 guarantees that the transformation f4 preserves well-typed attacks
on these properties.

4.3 Experimental Results

We applied abstractions analogous to those described in this paper for the four-
message core versions of Kerberos IV and V, K4 and K5, to the full six-message
version of these protocols, K4/6 and K5/6. For the resulting protocols we have
verified several secrecy and authentication properties using SATMC [3]. Our
results are summarized in Table 1.

The columns denote the protocols and the properties verified. We grouped
the properties into three classes: session key secrecy from the perspective of each
role (sec), authentication properties involving a Kerberos server (aut), and key
confirmation (kc). Those columns where the highest degree of abstraction for
a given property class is achieved are marked with a star (∗). The rows show
the verification time and the number of clauses and atoms of the SAT encoding
(in thousands). The verification time is dominated by the encoding into a SAT
problem whereas the SAT solving time is negligible.
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We observe a slowdown from K4/6 to K5/6. We attribute this to the unen-
crypted responder ticket in K5/6, which increases the intruder’s possibilities to
interfere with the ticket variable X . The performance on K3/6 is similar to the
one on K4/6. More interesting are the performance gains obtained by the further
abstractions and the overall speedups that we achieve for the protocols K4 and
K5. For example, verifying secrecy on K1/6 is 148 times faster than on K5/6 and
still 10.4 times faster than on K4/6.

Additionally, we also used SATMC to verify a variant of the ISO/IEC 9798-3
three-pass mutual authentication protocol (ISO) and both secrecy and authenti-
cation for the TLS protocol (TLS). For both protocols we observed an enormous
performance gain. For ISO, verification time for the initiator dropped from 107s
to 0.2s (factor 535) by removing the responder’s nonce and similarly for the re-
sponder. For TLS, we have reduced the verification for each property from more
than 120s to less than 0.8s (factor 150) by removing fields that are irrelevant for
the verified properties such as the cipher suite offer, session id, and certificate
verification.

5 Related Work

We can classify existing work on protocol transformations into syntactic and
semantic approaches. Syntactic approaches use syntactic criteria to delimit a
class of transformations for which soundness can be established a priori. Hui
and Lowe [11] define several kinds of transformations similar to ours with the
aim improving the performance of the CASPER/FDR model checker. They prove
soundness of each kind of transformations based on general soundness criteria
for secrecy and authentication. Their protocol model is restricted to atomic keys
and they establish their results only for ground messages. We work in a more
general setting and discuss in detail the non-trivial issue of handling terms with
variables as they appear in protocol specifications. Other works [16,7,6] propose
a set of syntactic transformations without however formally establishing their
soundness.

Semantic approaches generally cover a larger class of transformations, but
each transformation requires a separate proof for its justification. Examples are
classical refinement and using abstract channels with security properties [17,4]
and Guttman’s protocol transformations based on strand spaces [9,8]. Sprenger
and Basin [17] have recently proposed a refinement strategy for security proto-
cols that spans several different abstraction levels (including, e.g., confidential
and authentic channels). The transformations in the present paper belong to
their most concrete level of cryptographic protocols. Guttman [9,8] studies the
preservation of security properties by a rich class of protocol transformations in
the strand space model. His approach to property preservation is based on the
simulation of protocol analysis steps instead of execution steps. Each analysis
step explains the origin of a received message. However, he does not provide
syntactic conditions for the transformations’ soundness.
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6 Conclusions

We presented a large class of protocol transformations which is useful both for
abstraction and refinement. We have shown its soundness with respect to an
expressive property language. Our results constitute a significant extension of
Hui and Lowe’s work [11]. To validate our approach, we used our transformations
to simplify the Kerberos, ISO, and TLS protocols. As a result, we achieved
substantial performance improvements for SATMC. We also showed how to use
our transformations in the other direction to refine the abstract protocol K1 into
the core Kerberos IV and V protocols.

To handle terms with variables as they occur in protocol specifications, our
transformations employ the type system given by Arapinis and Duflot [2]. The
use of a type system is also motivated by the fact that there are type-flaw at-
tacks that can be fixed by simple transformations that we would like to cover.
For example, Meadows [13] presents such an attack on the full seven-message
Needham-Schroeder-Lowe protocol, which can be fixed by swapping the com-
ponents of a pair. Transformations fixing type-flaw attacks are obviously un-
sound. In a typed model, this problem is avoided since attacks based on type
confusion are ruled out. In practice, well-typedness can be achieved by using
appropriate tagging schemes [12,10]. Arapinis and Duflot [2] show that for se-
crecy properties of well-formed protocols it is sufficient to consider well-typed
attacks. Well-formedness can be achieved by a lightweight tagging scheme. In
her PhD thesis [1] (in French), Arapinis extends this result to a fragment of
PS-LTL.

In future work, we want to formally justify the restriction to well-typed attacks
for all properties expressible in our language LP . This could be achieved either by
embedding our property language LP into PS-LTL or by directly proving a sim-
ilar result for LP . We also envision several other extensions. First, tool support
to automate the abstraction process is needed. This should include automatic
abstraction-refinement to find an appropriate abstraction for a given protocol
and property. Second, we want to support additional transformations such as
the context-dependent removal of message fields and the transformation of com-
posed messages into atomic ones other than nil (e.g., to turn a Diffie-Hellmann
exponentiation into a nonce). This will require the inclusion of freshness argu-
ments in the soundness proof. Finally, extensions of the message algebra with
equational theories and the adversary model would be useful (e.g., for modeling
forward secrecy for Diffie-Hellmann protocols). However, it is not clear how to
extend the typed setting to equational theories.
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