
K. Mustofa et al. (Eds.): ICT-EurAsia 2013, LNCS 7804, pp. 300–305, 2013.
IFIP International Federation for Information Processing 2013

UVHM: Model Checking Based Formal Analysis Scheme
for Hypervisors

Yuchao She1,*, Hui Li1, and Hui Zhu1,2

1 State Key Laboratory of Integrated Service Networks (ISN),
Xidian University, Xi’an 710071, P.R. China

sheyuchao@gmail.com
2 Network and Data Security Key Laboratory of Sichuan Province,

Chengdu 611731, P.R. China

Abstract. Hypervisors act a central role in virtualization for cloud computing.
However, current security solutions, such as installing IDS model on hypervi-
sors to detect known and unknown attacks, can not be applied well to the virtua-
lized environments. Whats more, people have not raised enough concern about
vulnerabilities of hypervisors themselves. Existing works mainly focusing on
hypervisors’ code analysis can only verify the correctness, rather than security,
or only be suitable for open-source hypervisors. In this paper, we design a bi-
nary analysis tool using formal methods to discover vulnerabilities of hypervi-
sors. In the scheme, Z notation, VDM, B, Object-Z or CSP formalism can be
utilized as suitable modeling and specification languages. Our proposal se-
quently follows the process of disassembly, modeling, specification, and verifi-
cation. Finally, the effectiveness of the method is demonstrated by detecting the
vulnerability of Xen-3.3.0 in which a bug is added.

Keywords: hypervisor, security, model checking, formal analysis.

1 Introduction

Cloud computing is a significant technology at present. The software that controls
virtualization is termed as a hypervisor or a virtual machine monitor (VMM) that is
seen as an efficient solution for optimum use of hardware, improved reliability and
security.

Although there are many benefits, cloud computing encounters critical issues of
security and privacy. Hypervisors have already become the path of least resistance for
one guest operating system to attack another and it is also the path of least resistance
for an intruder on one network to gain access to another network. The most important
security issues for hypervisors are typically the risk of information leakage caused by
information flow security weakness, etc. Some vulnerabilities of hypervisors have
already been reported[1][2].

* Corresponding author.

 UVHM: Model Checking Based Formal Analysis Scheme for Hypervisors 301

Our Contribution. In this paper, we propose UVHM to detect vulnerabilities of
hypervisors. In order to find as many vulnerabilities in the hypervisors as possible, the
evaluation process must include demonstration of correct correspondences between
security policy objectives, security specifications, and program implementation. Thus,
we could use model checking theory[3][4] to discover vulnerabilities.

Related Work. Vulnerability analysis on hypervisors basically remains as a chal-
lenge. There are some existing works heavily focusing on code verification and
hypervisor analysis. VCC[5] focuses on verifying the correctness of software rather
than the security of it. Moreover, it can only verify C language. The Xenon project[6]
is only suitable for open-source hypervisors. For Maude[7], the algebraic specifica-
tion-based approach does not apply to analyze the vulnerabilities of VMMs. The ex-
isting models have a lot of limitations and can not pretend to address all of the securi-
ty requirements of a system. Most of the available model checkers[8][9] use a pro-
prietary input model. In summary, new studies have to be carried out basically start-
ing from scratch.

2 Formal Analysis on Hypervisors

In UVHM, we develop suitable formal models, verification tools and related security
policies according to our own needs to conduct more comprehensive studies on dif-
ferent aspects of hypervisor’s security. Practical hypervisors’ different design, archi-
tectures and working mechanisms will lead to different models, security policies, etc.

2.1 Formal Analysis on Binary Code

The scheme follows the process of disassembling – modeling – specification – verifi-
cation. The general flow chart of UVHM is shown below.

Fig. 1. The Flow Chart of UVHM

We shall first disassemble the hypervisor’s binary file, and then formally model
definitions of security, capture the behaviours of hypervisor’s interfaces with such
formal model, and verify the security using self-developed prover under the
verification conditions.

302 Y. She, H. Li, and H. Zhu

1) Disassembling

We present static analysis techniques to correctly disassemble binaries and use at least
two different disassemblers. The latter disassembler shall help fulfil some special
requests/cases which cannot be handled by the former.

2) System Modeling
1. The self-developed formal models are needed. This model should contain the

following characteristics: accurate, unambiguous, simple, abstract, easy to un-
derstand and only related with security. Only related with security means that
the models only pay attention to the security features, and will not involve too
many about functions and details of the implementation.

2. A great many hypervisors need hardware-assistant virtualization. Thus, we
could adopt Z notation, VDM, B, Object-Z or CSP formalism to analyze con-
current process, and choose these formalism to define security. The partial or-
ders of the system can be modelled into a lattice[10]. The most important rela-
tionship to be captured is probably the triangular dependency between three
major entities from the state space: virtual contexts for guest domains, virtual
instruction set processor VCPUs, and virtual interrupts or event channels. The
mutual dependence between key components is a common feature in kernel de-
sign.

3) Specification

Unambiguous, precise specification of our requirement is needed. Integrality of secu-
rity policy’s specifications need to pay attention to. We could define some special
hypercall interface sequences in security policy to identify illegal codes which ex-
ecute in either guest or host domain and attempt to access another domain without
permission.

For inter-domain security infringement, covert channel analysis will be adopted.
Meta-flows[11] are combined to construct potential covert channels. Figure 2 shows
the scene that the extension of f to mf is supervised by a series of rules. In this frame-
work, we should define illegal flows in the form of information flow sequence, i.e.,
define the flow security policy.

Fig. 2. Framework of Covert Channel Identification

 UVHM: Model Checking Based Formal Analysis Scheme for Hypervisors 303

4) Verification

Automated verification of a representative subset will be able to provide some critical
insights into the potential difficulties and reveal the approaches that should be
avoided.

3 System Implementation and Testing

We choose Xen-3.3.0 as our experimental subject. We use UVHM to verify whether
the Xen contains the bug numbered 1492 in Xen’s official website.

Before disassembling, we add this bug to Xen and compile it into hypervisor’s bi-
nary file. Then, we use UVHM to get the whole formal analysis tool.

3.1 Adding the Bug

Add “free(buf); buf=NULL” to the file "tools/python/xen/lowlevel/acm/acm.c". Xen
with the bug above could not detect the installed DEFAULT policy and reports the
DEFAULT policy as "None" after initializing XSM-ACM module successfully.

There are two pictures to make a comparison between the installed Xen with the
bug and without it.

Fig. 3. Comparison Picture

Figure 3A shows that the DEFAULT security policy in the secure Xen is ACM
whose version is 1.0, and it could be used as normal. Figure 3B shows that for the
vulnerability added Xen, the DEFAULT security policy could not be used.

3.2 Implementation Module

1) Disassembling
We use IDA Pro, and BitBlaze to disassemble acm.o file. We could build up our
models through analyzing the assembly language they gives us.

2) Modeling
What we concern about is whether the buffer where ACM policy loaded in is ‘NULL’
after the XSM-ACM module was initialized successfully.

304 Y. She, H. Li, and H. Zhu

Only several states that related with the buffer’s state are being defined. We don’t
capture assignment instructions’ behaviors which appeared in the assembly code
which have nothing to do with the buffer’s state.

3) Specification
If the buffer is ‘NULL’, of course, there is no policy could be used. We define this
situation as a vulnerability. If not, the bug which the Xen contains is not the one de-
fined above. Thus, we can define the following secure policy:

1) The buffer is ‘NULL’: This is a vulnerability caused by some wrong opera-
tions to the buffer, flag = 1 ;

2) The buffer is not ‘NULL’: Success, flag = 0.

4) Verification
Combining the model and specification together, we can get the tool. The input va-
riables and relations among these variables can be regarded as an initial state. Based
on the different range of the variables, the branch conditions will send them to differ-
ent states. We could judge whether this is the vulnerability we defined through detect-
ing the value of the flag. The following chart shows the visible model of the assembly
code.

Fig. 4. The Visible Model

Now, the binary analysis tool is accomplished. We could use this tool to detect Xen
hypervisors whether contains the vulnerability or not.

3.3 System Testing and Results Analysis

First, we disassemble the acm.o binary file. According to the assembly code and the
defined model, we then sequently input needed variables or relations between them
after analyzing the semantics of its assembly code.

1) For Xen with the bug, we input the following information after analysis:
x_handle=32, x_op =1, buf != NULL, errno != EACCES. The system’s report tells us
this Xen contains the vulnerability we defined in the secure policy.

2) For Xen without the bug, we input the information: x_handle=6, x_op=-9,
buf != NULL , errno != EACCES. The report says this Xen doesn’t contain the vulne-
rability we defined.

 UVHM: Model Checking Based Formal Analysis Scheme for Hypervisors 305

Thus, without installing Xen, we are able to kown whether the Xen contains this
bug.

This demonstrates the effectiveness of our formal binary analysis framework. The
model and specification are all written in C language. They are linked through the
flag.

4 Conclusion

There are security challenges in the cloud, and a secure cloud is impossible unless the
virtual environment is secure. Aiming at this problem, we present our formal method
which follows the process of disassembling – modeling – specification – verification
to analyze the vulnerabilities of various hypervisors, etc.

We use this idea to realize a system that could verify whether the Xen contains the
bug that will prevent the ACM policy from being used although the XSM-ACM mod-
ule has been initialized successfully through analyzing its binary code. This demon-
strates the effectiveness of the above method. This approach can be applied to detect
vulnerabilities of various kinds of hypervisors.

References

1. Marshall, D.: Microsoft Hyper-V gets its first security patch. Infoworld (February 2010),
http://www.infoworld.com/d/virtualization/
microsoft-hyper-v-gets-its-first-security-patch-106

2. Vulnerability report: MS11-047 – Vulnerability in Microsoft Hyper-V could cause denial
of service (June 2011),
http://www.sophos.com/support/knowledgebase/
article/113734.html

3. Clarke, E., Grumberg, O., Long, D.: Model Checking. MIT Press (1999)
4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
5. Leinenbach, D., Santen, T.: Verifying the Microsoft Hyper-V Hypervisor with VCC. In:

Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 806–809. Springer,
Heidelberg (2009)

6. Freitas, L., McDermott, J.: Formal methods for security in the Xenon hypervisor. Interna-
tional Journal on Software Tools for Technology Transfer 13(5), 463–489 (2011)

7. Webster, M., Malcolm, G.: Detection of metamorphic and virtualization-based malware
using algebraic specifi cation. In: EICAR 2008 (2008)

8. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley (2004)

9. Ball, T., Levin, V., Rajamani, S.K.: A Decade of Software Model Checking with SLAM.
Communications of the ACM 54(7), 68–76 (2011)

10. Denning, D.: lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976)

11. Shen, J., Qing, S.: A Dynamic Information Flow Model of Secure Systems. In: CCS,
pp. 341–343 (2007)

	UVHM: Model Checking Based Formal Analysis Scheme
for Hypervisors
	Introduction
	Formal Analysis on Hypervisors
	Formal Analysis on Binary Code

	System Implementation and Testing
	Adding the Bug
	Implementation Module
	System Testing and Results Analysis

	Conclusion
	References

