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Abstract. One of the most delicate transformations in color image pro-
cessing is contrast enhancement due to the fact that artifacts and unnat-
ural colors can appear after the process. Here we propose a variational
framework in which contrast enhancement is obtained through the min-
imization of a suitable energy functional of wavelet coefficients. We will
show that this new approach has advantages with respect to the usual
spatial techniques sustained by the fact that the wavelet representation
is intrinsically local, multiscale and sparse. The computational complex-
ity of the model is O(N), N being the number of input pixels, and the
algorithmic implementation is fast thanks to the fact that the functional
minimum can be reached through few iterations of Newton-Raphson’s
method.

Keywords: Wavelets, Variational Principles, Contrast, Color Percep-
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1 Introduction

Contrast enhancement can help improving the detail visibility in images affected
by poor global or local contrast. This problem can be induced by, e.g. wrong cam-
era exposition or aperture settings, back-light conditions, high dynamic range
of the scene, and so on. For gray-level, state-of-the-art techniques in contrast
enhancement have reached a high quality level and real-time or almost real-time
performances. However, when we deal with color images, contrast enhancement
is a much more complicated procedure because artifact and unnatural colors can
appear after the contrast modification.

Since humans are capable of a high-quality color vision, it is quite natural to
design algorithms that take inspiration from the Human Visual System (HVS)
features in order to produce an efficient enhancement and avoiding the gener-
ation of unnatural colors. The algorithms built in this way are usually called
perceptually-inspired and their use can be found in research fields as computa-
tional photography, image quality, interior design and robotic vision to cite but
a few.
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In this paper we analyze the problem of perceptual contrast enhancement
with variational techniques from the point of view of wavelet theory. For this
purpose we propose a functional of detail coefficients whose minimization induces
a local and multiscale improvement of contrast. We will show that the Euler-
Lagrange equations of the functional are implicit non-linear equations which
enhance the wavelet detail coefficients of the image. By using Newton-Raphson’s
method those equations can be quickly solved, ensuring a global computational
complexity of O(N), N being the total number of image pixels. Moreover, the
sparsity of the wavelet representation allows the algorithm to be even faster.

For the sake of clarity, it is worthwhile to introduce here the notation that
we are going to use throughout the paper. Given a discrete RGB image, we will
denote by I ⊂ Z

2 its spatial domain and by x ≡ (x1, x2) and y ≡ (y1, y2) the
coordinates of two arbitrary pixels in I. We will always consider a normalized
dynamic range in [0, 1], so that a color image function will be I : I → [0, 1]3,
I(x) = (IR(x), IG(x), IB(x)), where Ik(x) is the intensity level of the pixel x ∈ I
in the chromatic channel k ∈ {R,G,B}. We stress that every computation will
be performed on the scalar components of the image, thus treating independently
each chromatic component as in Retinex-like algorithms [1,2]. Therefore, we will
avoid the subscript k and write simply I(x) to denote the intensity of the pixel
x in a given chromatic channel.

2 A Perceptual Contrast Functional in the Wavelet
Domain

In this section we shall motivate our choice for the contrast functional to be
minimized in order to obtain a perceptually-inspired contrast enhancement in
the wavelet domain.

In [3], the authors proved that there exists only a type of contrast functional
that comply with a set of basic phenomenological HVS properties: color con-
stancy, i.e. the ability to perceive colors as (almost) the same independently on
the illumination conditions, locality of contrast enhancement, exhibited by well-
known phenomena as e.g. Mach bands or simultaneous contrast, and Weber-
Fechner ’s law of contrast perception, i.e. the logarithmic response of the HVS
to changes of spot light intensity. This functional is the following1:

Cw(I) =
∑

x∈I

∑

y∈I

w(x, y)
min{I(x), I(y)}
max{I(x), I(y)} , (1)

where w : I × I → (0,+∞) is a weight function that induces locality. The
full details about why this functional complies with the basic HVS features

1 In the quoted paper the definition of Cw allows an increasing diffeomorphism ϕ to
act on the fraction inside the integral and the case ϕ ≡ id, id being the identity
map used here, is studied as a subcase. Since ϕ will not have any prominent role in
the present paper, we have omitted its presence since the beginning to simplify the
notation as much as possible.
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listed above can be found in the quoted paper, here we briefly report why
the minimization of Cw induces contrast enhancement and how it is related
to color constancy. Regarding contrast enhancement, observe that the function

c(I(x), I(y)) = min{I(x),I(y)}
max{I(x),I(y)} is minimized when the minimum intensity value de-

creases and the maximum increases, which of course corresponds to a contrast in-
tensification. The relation with color constancy comes from the observation that
c is a homogeneous function of degree zero, i.e. c(λI(x), λI(y)) = c(I(x), I(y)) for
all λ �= 0; in image formation models λ is interpreted as the ‘color temperature’ of
the light source that illuminates a scene, thus the homogeneity property implies
that the functional Cw is able to automatically discard the color cast induced
by a global illuminant, coherently with the HVS property of color constancy.

We now want to show how it is possible to recast the variational framework
of [3] into the wavelet domain.

For this purpose, let us start recalling that, following the classical reference
book [4], an orthogonal wavelet multi-resolution analysis of an image between
two scales 2L and 2J , L, J ∈ Z, L < J , is given by three sets of detail coef-
ficients {dHj,k, dVj,k, dDj,k}k∈I,j=L,...,J , which correspond to the horizontal, vertical
and diagonal detail coefficients, respectively, completed by {aJ,k}k∈I, the ap-
proximation coefficients at the coarser scale. If the image is in color, then each
chromatic channel has its own set of detail and approximation coefficients. The
set {aJ,k}k∈I gives a coarse description of the image at the scale J and it is ob-
tained by convolution between the image and a low pass filter. The set {dj,k}k∈I

is obtained by convolution between the image and a spatially localized band pass
filter, so that the {dj,k}k∈I give a measure of local contrast in the image at the
scale 2j.

Our proposal for a perceptual contrast functional in the wavelet domain is

Cpj,{aj,k}({dj,k}) =
∑

k∈I

pj
aj,k
dj,k

, (2)

where pj are positive coefficients that permits to modulate the strength of con-
trast enhancement. This definition makes sense if the detail coefficients are dif-
ferent from zero, for this reason we fix a threshold Tj > 0 for each scale and
consider only those dj,k satisfying |dj,k| > Tj; the other coefficients will be left
unchanged.

Thanks to the locality of the wavelet representation, the functional Cpj ,{aj,k}
is intrinsically local and does not need the introduction of any further weighting
function, which it is instead essential in the spatial variational framework to
localize the computation.

If we keep the approximation coefficients fixed and let the other free to vary,
then the minimization of

aj,k
dj,k

corresponds to the intensification of the detail

coefficients and thus of local contrast. Also observe that here the basic contrast
variable is

aj,k
dj,k

, which is still a homogeneous function of degree 0 as in the

variational framework recalled above.
We cannot determine the enhanced detail coefficients solely by minimizing the

functionalCpj ,{aj,k} because that could lead to anuncontrollable over-enhancement
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of contrast, thus we have to introduce a dispersion control term, Dd0j,k , that bal-
ances the effect of Cpj with a conservative action that tends to maintain the detail
coefficients to their original values {d0j,k}. In [3] it has been proven that a suitable
choice for the dispersion term to preserve dimensional coherence when the con-
trast is a homogeneous functional of degree 0 is the entropy dispersion, which in
the present problem can be written as:

Dd0
j,k

({dj,k}) =
∑

k∈I

[
d0j,k log

d0j,k
dj,k

− (
d0j,k − dj,k

)
]
. (3)

We then define the wavelet-based perceptually-inspired contrast-enhancement
energy as the sum of the two previous functionals, i.e.

Epj ,{aj,k},d0j,k({dj,k}) =
(
Cpj ,{aj,k} +Dd0j,k

)
({dj,k}). (4)

By setting to zero the first variation of this energy we find its Euler-Lagrange
equations, as we show in the following proposition.

Proposition 1. The minimization of Epj ,{aj,k},d0j,k gives rise to the following

Euler-Lagrange equations for the detail coefficients:

∂Epj,{aj,k},d0j,k
∂{dj,k} = 0 =⇒ dj,k = d0j,k + pj

aj,k
dj,k

. (5)

Proof: the computation of the first variation of Dd0j,k with respect to {dj,k} gives:

∂Dd0j,k
∂{dj,k} = 1− d0j,k

dj,k
. (6)

The first variation of Cpj ,{aj,k} with respect to {dj,k} gives

∂Cpj ,{aj,k}
∂{dj,k} = −pj aj,k

(dj,k)2
. (7)

Summing (6) and (7) we get

1− d0j,k
dj,k

− pj
aj,k

(dj,k)2
= 0, (8)

multiplying by dj,k and simplifying the algebraic expression, we arrive to the
result stated in Proposition 1. �

We can now summarize the steps of the variational wavelet-based algorithm for
perceptual contrast enhancement as follows:
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1. Consider the three chromatic components of an image independently2 and
use the discrete wavelet transform to obtain a multiresolution analysis of
each component over a certain number of scales;

2. Compute, for each scale, the new detail coefficients (horizontal, vertical and
diagonal) as prescribed by eq. (5) and substitute the original with these new
ones;

3. Apply the inverse wavelet transform to obtain the filtered image. In addition
to these steps, we operate a linear stretching of the coarser approximation
coefficients aJ,k in order to maximize the dynamic range reproduced.

The wavelet algorithm previously described has computational complexityO(N),
N being the number of image pixels, and we implemented it in MATLAB using
the ‘wavelet toolbox’.

Besides the direct and inverse wavelet transformations, the operation that re-
quires more time is the iterative computation of the enhanced detail coefficients,
i.e. the resolution of the implicit equation (5). An efficient way to do that is using
Newton-Raphson’s method [5], initialized with the original values d0j,k. Our algo-
rithm stops when the relative error between two subsequent iterations is smaller
than 10−3 and typically convergence is reached in just two, or at maximum three,
iterations. Thanks to the quadratic convergence of Newton-Raphson’s algorithm
and to the low computational cost of the discrete wavelet transform, the wavelet
algorithm is considerably faster than the spatial variational algorithm of [3].

In the next section we shall discuss the effect of parameters on the wavelet
algorithm and its performances on natural images.

3 Tests

As it was presented above, the wavelet algorithm has 4 different types of parame-
ters: 1) the threshold Tj beyond which the wavelet coefficients are considered sig-
nificantly above 0 at the scale 2j ; 2) the number of scales over which the compu-
tation is performed; 3) the coefficients pj , 2

L ≤ 2j ≤ 2J , that express how much
we permit to change the original wavelet detail coefficients in each scale; 4) the
mother wavelet ψ. In the next subsections we shall discuss how the algorithm per-
formances are influencedby theseparameters, butbefore thatwewould like to show
the efficiency of the wavelet algorithm on three images affected by distinct prob-
lems: under-exposure, color cast and over-exposure; as can be seen in Figure 1 the
wavelet algorithm is able to performa radiometric adjustment of the non-optimally
exposed pictures and to strongly reduce the color cast.

3.1 The Threshold Parameter Tj

In the computational algorithm we have set the threshold parameter to be Tj ≡
maxk∈I{dj,k}

K , K > 1, for all the scales 2j. Of course selecting K 
 1 we deal

2 Processing color images by performing operations separately on the three chromatic
channels is common in all Retinex-like algorithms, that do not use CIELab or similar
spaces for their computation.
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Fig. 1. Images on the left : Original ones. Images on the right : enhanced versions after
the wavelet algorithm: details appear in originally underexposed and overexposed areas,
and the pink color cast in the ‘Lena’ image is removed. The filtering parameters are the
following: the mother wavelet is the Daubechies wavelet with two vanishing moments,
the computation is performed over the maximum number of scales allowed for each

image (see Subsection 3.2 for more details), pj = 0.5, and Tj =
maxk∈I{dj,k}

10
for each

scale 2j .

only with the largest detail coefficients, while if we set K � 1 we introduce in
the computation also the smaller ones. Our tests have shown that an optimal
value for K is 10 for every scale, in fact, selecting values of K bigger then 10
the algorithm does not introduce significant improvement in detail rendition but
it may have the unwanted effect to intensify the noise corresponding to small

detail coefficients. Thus, we have set once and for all Tj =
maxk∈I{dj,k}

10 for all
the scales 2j, which means that we only deal with the detail coefficients that lie
in the same decimal order of magnitude of the biggest ones. In Figure 2 we show
the effect of decreasing too much the threshold Tj .

3.2 The Number of Scales

The number of scales J−L that can be used depends on the image dimension and
the width Wψ of the mother wavelet support. In fact, the maximum number of
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Fig. 2. From left to right : ‘Lena’ image filtered with the wavelet algorithm with de-

creasing values of the threshold Tj =
maxk∈I{dj,k}

K
corresponding to K =10 and 50,

respectively. We can see that when K = 50 the resulting image is affected by noise
due to the intensification of small detail coefficients corresponding to noise. The other
parameters are maintained fixed: the computation is performed over the maximum
number of scales allowed for each image (see Subsection 3.2 for more details), pj = 0.5
for each scale, and the mother wavelet is ‘Sym8’, the Symlet with support a with of 15
pixels (arbitrary chosen).

meaningful scales is the highest value of J −L such that the following inequality
holds: 2J−LWψ ≤ min{width(I), height(I)}. This value can be automatically
computed with the command ‘wmaxlev’ in the MATLAB wavelet toolbox. Our
tests have shown that the best contrast enhancement performances of the wavelet
algorithm in terms of detail rendition and elimination of color cast corresponds to
the highest number of scales allowed. For this reason we have used the command
‘wmaxlev’ to automatically set the number of scales over which carry on the
computation of the enhanced detail coefficients, thus eliminating the variability
of this parameter.

3.3 The Contrast Enhancement Coefficients pj

From eq. (5) it follows that, if we increase the value of the coefficients pj , the
effect of contrast enhancement becomes more intense. However, if we increase
them too much, contrast can be over-enhanced, resulting in unpleasant images
with unnaturally high contrast. This effect is shown in Figure 3, where we show
the difference produced by increasing the coefficients pj of one order of magni-
tude.

In general, setting pj = 0.5 corresponds to overall good performances of the
wavelet algorithm, thus 0.5 can be considered as a ‘reference value’ for the coef-
ficients pj. However, since their setting is very intuitive, they can also be easily
tuned around this reference value by a user that may want more or less contrast
enhancement.
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Fig. 3. From left to right: effect of increasing the coefficients pj from 0.5 to 5, re-
spectively. The images filtered with pj = 10 have unnatural high contrast. In all the
computations the other parameters are maintained fixed: the computation is performed

over the maximum number of scales allowed, Tj =
maxk∈I{dj,k}

10
for each scale and the

mother wavelet is the ‘Sym8’ (arbitrarily chosen).

3.4 The Mother Wavelet ψ

Different mother wavelets ψ have, in general, different support and symmetry
properties3. As a consequence, different mother wavelets induce different local
contrast enhancement, as can be seen in Figure 4. How to properly choose the
family of wavelet is still an open problem that we would like to address in the
future.

Fig. 4. From left to right: output of the wavelet algorithm obtained with the Daubechies
and Coiflet wavelet, respectively, with 4 vanishing moments. The other parameters are
maintained fixed: the computation is performed over the maximum number of scales

allowed, Tj =
maxk∈I{dj,k}

10
and pj = 0.5 for each scale.

Let us suppose that a give wavelet class is chosen, then one has a further degree
of freedom given by the number of vanishing moments. These ones have a strong
relation with local contrast: it can be proved (see [4]) that the bigger is the num-
ber of vanishing moments of ψ, the higher must be the image contrast detected
in the support of ψ to get detail coefficients appreciably different from zero. So,

3 For an extensive discussion about mother wavelet properties, the interested reader
is referred to chapter 7 of the standard book [6].
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Fig. 5. From left to right: output of the wavelet algorithm obtained with the Daubechies
wavelet with 3 and 8 vanishing moments, respectively. The other parameters are main-
tained fixed: the computation is performed over the maximum number of scales allowed,

Tj =
maxk∈I{dj,k}

10
and pj = 0.5 for each scale.

the rationale for choosing the number of moments of a mother wavelet within the
wavelet-based algorithm discussed in this paper is the following: if a user is inter-
ested in highlighting only high contrast regions, then a wavelet with a high number
of vanishing moments should be selected; viceversa, if one is also interested in en-
hancing lower contrast regions, then a smaller number of vanishing moments must
be preferred. This fact is best shown in dark image zones, as in Figure 5, where we
show the effect of changing the number of vanishing moments of the Daubechies
wavelet from 3 to 8. Coherently with what stated above, it can be seen that the
contrast enhancement on low contrast areas provided by a wavelet with a smaller
number of vanishing moments is better since a greater number of detail coefficients
appreciably greater than zero can be enhanced.

4 Conclusions and Perspectives

We have proposed a variational model of perceptually-inspired contrast enhance-
ment of color images based on the wavelet representation. The wavelet framework
allows introducing a new definition of perceptual contrast which permits to con-
struct a fast algorithm that can be used to intensify contrast in color images
without introducing artifacts or unnatural colors.

The wavelet algorithm is intrinsically local and has computational complexity
O(N), N being the number of image pixels, and it can be parallelized in order to
achieve real-time performances even for large images, thus it could be also used to
efficiently process video sequences (e.g. to reduce flickering or remove color cast
due to film ageing). This improvement with respect to the variational algorithm
presented in [3] is provided by the sparsity of the wavelet representation and by
quadratic convergence of Newton-Raphson’s algorithm, which is used to solve
the implicit equations that give the enhanced detail coefficients.

Qualitative and quantitative tests about the wavelet-based algorithm shows
that it is able to enhance both under and over exposed images and to remove
color cast, as the spatial variational method of [3].
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The wavelet framework points out new issues whose discussion is beyond the
scope of this paper, but that we consider interesting for future investigation:
1) What is the relation between the intrinsic features of the mother wavelet ψ,
i.e. shape, support width and symmetry, and the color normalization abilities of
the wavelet algorithm? 2) Can we devise an analogue model by suitably apply
the windowed Fourier transform to the spatial variational algorithm presented
in [3]? If so, how does that model relates to the one described in this paper? 3)
Which is the optimal selection of the coefficients pj for contrast enhancement?
4) Can neuroscience models of vision provide insights to properly choose the
mother wavelet ψ and the coefficients pj or to guide towards a more complete
model?

We are particularly intrigued by this final point since, as discussed in [7],
Gabor wavelets can play a major role in answering question 4): we are now per-
forming a theoretical research on the relationship between the model presented
in this paper and that of [7]. This could eventually lead us to select once and
for all the best suited mother wavelet, thus fixing a tricky parameter of the
algorithm presented in this paper.
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