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Abstract. We introduce Signatures of Correct Computation (SCC), a new model
for verifying dynamic computations in cloud settings. In the SCC model, a trusted
source outsources a function f to an untrusted server, along with a public key for
that function (to be used during verification). The server can then produce a suc-
cinct signature σ vouching for the correctness of the computation of f , i.e., that
some result v is indeed the correct outcome of the function f evaluated on some
point a. There are two crucial performance properties that we want to guarantee in
an SCC construction: (1) verifying the signature should take asymptotically less
time than evaluating the function f ; and (2) the public key should be efficiently
updated whenever the function changes.

We construct SCC schemes (satisfying the above two properties) support-
ing expressive manipulations over multivariate polynomials, such as polynomial
evaluation and differentiation. Our constructions are adaptively secure in the ran-
dom oracle model and achieve optimal updates, i.e., the function’s public key can
be updated in time proportional to the number of updated coefficients, without
performing a linear-time computation (in the size of the polynomial).

We also show that signatures of correct computation imply Publicly Verifiable
Computation (PVC), a model recently introduced in several concurrent and inde-
pendent works. Roughly speaking, in the SCC model, any client can verify the
signature σ and be convinced of some computation result, whereas in the PVC
model only the client that issued a query (or anyone who trusts this client) can
verify that the server returned a valid signature (proof) for the answer to the query.
Our techniques can be readily adapted to construct PVC schemes with adaptive
security, efficient updates and without the random oracle model.

1 Introduction

Given the emergence of the cloud computing paradigm in business and consumer
applications, it has become increasingly important to provide integrity guarantees in
third-party data management settings. Consider for example the following scenario: A
company has developed some novel algorithm, e.g., for personalized medicine, or for
stock trend prediction. To avoid investing in expensive IT infrastructure in-house, the
company chooses to outsource the execution of this algorithm to an external, untrusted
cloud provider (e.g., Amazon, Google). How could a user verify the correctness of the
computation under the assumption that she only trusts the company that developed the
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algorithm, but not the cloud provider? The above question poses two crucial require-
ments: (1) efficiency, meaning that the running time of the verification algorithms ex-
ecuted by the client should be asymptotically less than the time needed to execute the
algorithm in the cloud; and (2) public verifiability, meaning that our verification mech-
anism should not be tied to a specific verifier’s secret key so that any user can verify the
computation. In addition, another desirable property is to efficiently handle updates to
the outsourced algorithm, without computing public parameters from scratch.

In this paper, we propose a new paradigm for verifying dynamic computation in the
cloud called signatures of correct computation (SCC). SCC allows an untrusted worker
to produce a signature vouching for the correctness of some computation over some
input; any user can verify the signature using a public key (produced by an one-time
preprocessing) published by a trusted source who outsourced the function in the cloud.

Signatures of correct computation are closely related to publicly verifiable com-
putation (PVC), proposed by Parno et al. [31], Canetti et al. [9] and Fiore and Gen-
naro [12,13], in concurrent and independent works to ours. Specifically, signatures of
correct computation are stronger than publicly verifiable computation: given an SCC
scheme, one can directly construct a PVC scheme; while the other way around does not
seem to be true. More specifically, in PVC, a “proof of correct computation” is tied to a
specific challenge (generated by an algorithm ProbGen in [31]), and can only be ver-
ified by the client who has generated that challenge (or anyone who trusts this client).
By contrast, a signature of correct computation is not tied to any challenge, and can be
verified by anyone in the world, in much the same way as a traditional signature on a
message. We provide a detailed comparison of PVC and SCC in Section 1.2.

1.1 Results and Contributions

We design SCC schemes for multivariate polynomial manipulations, including polyno-
mial evaluation and differentiation. One of our technical highlights is a new method in
this setting that allows us to slightly modify our selectively secure schemes to achieve
adaptive security. Our SCC schemes achieve adaptive security under the random oracle
model. We also show that under the weaker PVC model, our techniques can achieve
adaptive security under the standard model without random oracles.

Our main results and contributions are summarized below:

Definition of New Paradigm. We are the first ones to formally define signatures of
correct computation (SCC) and its security and to study its relation to PVC.

Novel Constructions for Polynomial Manipulations. We focus on deriving efficient
and optimized constructions for specific functionalities rather than generic construc-
tions, as the approach taken by Parno et al. [31] and Canetti et al. [9]. We present
efficient SCC constructions for expressive polynomial manipulations, including multi-
variate polynomial evaluation and differentiation. Operations on polynomials represent
a common building block in a wide range of applications, such as in statistical analysis,
scientific computing, and machine learning. Fiore and Gennaro [13] point out many in-
teresting applications of publicly verifiable computation on polynomials, including its
use in proofs of retrievability, verifiable keyword search, discrete Fourier tranform, and
linear transformations. Our constructions are based on bilinear groups. We prove the
adaptive security of our constructions under the random oracle model.
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Efficient Incremental Updates. Our constructions allow a trusted source to make in-
cremental updates in time proportional to the number of the updated polynomial coeffi-
cients, and without performing a computation from scratch that would take linear time
in the size of the polynomial.

Novel proof Techniques for Adaptive Security. Our constructions and proofs intro-
duce several novel techniques. First, we observe key polynomial decomposition prop-
erties (Lemmas 1 and 3) that become the central idea underlying our constructions.
Second, while achieving adaptive security appears relatively easy for univariate poly-
nomial evaluation [23], achieving adaptive security in the multivariate case appears to
be fundamentally more difficult. To this end, we present novel techniques that involve
embedding randomness in the polynomial decomposition properties (Lemmas 2 and 4),
such that our simulator can later manipulate these random numbers in the proof. We
give a high-level technical overview in Section 1.3.

Contributions to Publicly Verifiable Computation. Our results also bring advances
in the area of publicly verifiable computation. Specifically, our techniques can be read-
ily applied to yield publicly verifiable computation schemes (for the same operations)
with adaptive security (without the random oracle model) and with efficient updates. In
comparison, existing PVC works [9,13,31], achieve adaptive security but do not support
efficient updates. We give a more detailed comparison in Section 1.2.

1.2 Related Work

Authenticated Data Structures. The SCC model is directly related to the model of
authenticated data structures (ADS) [33,35]. In some sense, SCC and ADS are dual
problems to each other, sharing exactly the same security properties. In SCC, a trusted
source outsources a function, and a client wishes to verify the outcome of the function
at a given point. In ADS, a trusted source outsources the data or a data structure, and
the client wishes to verify the correctness of the result of a data structure query, e.g.,
dictionaries [18,26], graphs [20,25] and hash tables [29,34]. Most authenticated data
structures schemes incur logarithmic or linear overheads for verification costs, with
some exceptions being authenticated range queries [2,19] and set operations [30], where
verification takes time proportional to the size of the answer.

Verifiable Computation in the Secret Key Setting (SVC). Recent works on verifiable
computation [1,10,14] achieve efficient verification of general boolean circuits, but in
the secret key model. Therefore they are inherently inadequate for the setting of signa-
tures, which are required to be publicly verifiable.

Verifiable Computation for Polynomials. Benabbas et al. [3] developed methods for
efficient verification of multivariate polynomial evaluation by using algebraic one-way
functions—however, in the SVC model. This work does not achieve efficient updates
of polynomial coefficients (specifically, in order to update a coefficient, one has to re-
randomize all the existing coefficients).1 Kate et al. [23] give a publicly verifiable com-
mitment scheme for univariate polynomials, which is essentially an SCC scheme for

1 However, apart from verification of polynomial evaluation, their techniques can be applied to
support very efficient dynamic verifiable databases (constant query and update complexity).
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Table 1. Asymptotic cost on the client side. In the table below, n is the number of variables in
the polynomial and d is the maximum degree. With SVC we denote a “secretly delegatable and
verifiable scheme”, with PVC we denote a “publicly delegatable and verifiable scheme”, with
PVC* we denote a “publicly verifiable but not publicly delegatable scheme” (see Section 1.2,
Paragraph 5) and with SCC we denote a “signatures of correct computation scheme”. Notice
that an n-variate polynomial of degree d can have up to

(
n+d
d

)
terms, requiring up to

(
n+d
d

)

time to evaluate. Therefore, the verification costs here are smaller than the cost of evaluating the
polynomial. For PVC schemes, the client cost includes both delegation and verification costs.

scheme
polynomial polynomial efficient

security model
evaluation differentiation updates

Benabbas et al. [3] n log d N/A no adaptive SVC

Parno et al. [31] n n+ log d no adaptive PVC

Canetti et al. [9] polylog
((

n+d
d

))
polylog

((
n+d
d

))
no adaptive PVC

Fiore and Gennaro [12,13] n log d N/A no adaptive PVC*
This paper n n+ d yes selective SCC

This paper n+ d n+ d2 yes adaptive PVC

This paper n+ d n+ d2 yes adaptive (RO) SCC

univariate polynomial evaluation. However, their scheme does not directly extend to
multivariate polynomials. Also note that our construction is the first to support efficient
verification of differentiation queries—even in the SVC setting.

Relation to CS Proofs and SNARGs. Our SCC model is strongly related to the model
of computationally-sound proofs, introduced by Micali in 1994 [27], and to the subse-
quent works on succinct non-interactive arguments (SNARGs) by Groth [22], Bitan-
sky et al. [4,5] and Gennaro et al. [15]. The main connection is that both SCC and
SNARGs models are non-interactive and publicly verifiable (CS proofs can also be
non-interactive in the random oracle model), i.e., a publicly verifiable proof can be
computed independently from (and with no communication with) the verifier. We note
here that all CS proofs and SNARGs constructions that have been presented in the lit-
erature are generalized, in that they can handle all of NP by using powerful tools such
as the PCP theorem (with an exception of [15] that uses a different characterization of
NP). Moreover, all of them (except for the work of Micali [27] that is secure in the ran-
dom oracle model) are proved secure based on non-falsifiable assumptions [17], e.g.,
the works of Groth [22] and Gennaro et al. [15] use variants of the knowledge-based
assumption introduced by Damgard [11]. Non-falsifiable assumptions are considered to
be a lot stronger than all common assumptions used in cryptography (one-way func-
tions, trapdoor permutations, DDH, RSA, LWE etc.). We note that the assumptions that
we are using in our construction do not belong in this category—however, for verifying
multivariate polynomials (not for univariate ones) we do use the random oracle, as the
construction of Micali [27] does. The main difference (with [27]) however is that we do
not use the PCP theorem, hence achieving more practical schemes.

Concurrent and Independent Works. Two closely related schemes are the ones by
Parno et al. [31] and Cannetti et al. [9], which were developed concurrently with and
independently from our work.
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In the PVC formulation proposed by Parno et al. [31], any client can verify that an
untrusted server correctly computes a function f on a specific input a. Their definition
however requires an input preparation randomized algorithm (ProbGen), mapping user
inputs a to server inputs σa and preparing an object VKa to be used for verification,
specific for σa. Therefore, as opposed to the SCC setting, only the client that issued a
query for a (or anyone who trusts this client) can verify that the server returned a valid
signature (proof) for f(a). For otherwise, a client running the ProbGen algorithm can
potentially collude with the server to forge a proof, convincing another party to accept
the proof. Apart from defining PVC, Parno et al. [31] give a construction for gener-
alized boolean functions (closed under complement) from attribute-based encryption
(ABE). Their construction is asymptotically efficient—the proof size is proportional to
the size of the answer. Moreover, due to recent advances in ABE schemes by Lewko
and Waters [24], the PVC constructions of Parno et al. [31] can be proved adaptively
secure, since they directly inherit the security of the underlying ABE scheme.

A PVC scheme having similar properties with the scheme of Parno et al. [31] was
presented by Canetti et al. [9], where client verification is polylogarithmic in the size
of the evaluated circuit. Canetti et al. achieve adaptive security under a slightly weaker
model (as Parno et al. point out [31]), in which the client needs to keep certain secret
state. Their scheme shares the same limitation with the scheme of Parno et al. [31] in
that a client can verify only his queries unless extra assumptions are put into place.

The most closely related works are the recent works by Fiore and Gennaro [13],
who presented a PVC scheme tailored for multivariate polynomials that is based on
algebraic one-way functions. An improved version [12] uses less complex assumptions
such as RSA to achieve the same goal. The works by Fiore and Gennaro differ from
ours in the following sense. First, they consider a model (denoted with PVC* in Table 1)
that is more restrictive than the PVC model proposed by Parno et al. [31]—and hence
more restrictive than the SCC model. Specifically, there is an explicit delegation phase
where a problem instance is generated based on an input (as in the PVC definition
by Parno et al. [31]). However, in their constructions (and unlike the original PVC
definition), only the party who ran the setup algorithm for a specific function can run
the problem generation algorithm. Therefore, their schemes are publicly verifiable, but
not publicly delegatable. As a result, their schemes would not work for the application
scenario where a pharmaceutical company outsources a genomic algorithm, and each
user submits their own genomic data for computation. Moreover, they do not consider
efficient updates of the polynomial coefficients. In comparison, their scheme has more
efficient verification and a delegation step of O(n log d) cost. A detailed comparison
of our scheme against several related works in terms of verification cost and security
model is presented in Table 1.

1.3 Highlights of Techniques

Multivariate Polynomial Evaluation. The polynomial commitment scheme by Kate
et al. [23] can be employed to construct an SCC scheme of univariate polynomial
evaluations. Specifically, Kate et al. [23] observe that to vouch for the outcome of a
polynomial f(x) in Zp evaluated at the point a ∈ Zp, one can rely on the property
that the polynomial f(x) − f(a) is perfectly divisible by the degree-1 polynomial
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x − a, where a ∈ Zp. In other words, one can find a polynomial w(x) such that
f(x) − f(a) = (x − a)w(x). Using this property, they construct a witness from the
term w(x), and using the pairing operation in bilinear groups, they encode the above
test f(x)− f(a) = (x− a)w(x) in the exponents of group elements.

Unfortunately, the above test does not apply to the multivariate case. We therefore
propose a novel technique based on the following observation. Let f(x) be a multivari-
ate polynomial in Zp where x = [x1, x2, . . . , xn]. Then, for a = [a1, a2, . . . , an] ∈ Z

n
p ,

the polynomial f(x)− f(a) can be expressed as f(x)− f(a) =
∑n

i=1(xi − ai)wi(x).
The polynomials wi(x) will be used to construct witnesses in our scheme. Specifically,
we encode their terms as exponents of bilinear group elements. The verification is a
pairing product equation encoding the above test in the exponent.

From Selective to Adaptive Security. The test that holds for the polynomial evaluation
contains a sum of terms, as opposed to a single term in the univariate case [23]. This
gives rise to certain technicalities in the proof, allowing us to prove only the weaker
notion of selective security (see Definition 6 in the Appendix).

Going from selective security to adaptive security turns out to be non-trivial. To
achieve this, we devise a novel technique where we build randomness into the polyno-
mial decompositions (Lemmas 2 and 4) which are central to our constructions. As an
immediate corollary of our adaptively secure SCC construction with random oracles,
we construct an adaptively secure PVC scheme in the plain model.

Derivative Evaluation. A naive method to support verifiable derivative evaluation is
for the source to commit to nk polynomials during setup, corresponding to the 1st,
2nd, . . . , k-th derivatives of each possible variable. However, as noted in Section 5, this
scheme results in increased setup and update overhead.

Our techniques for verifying the evaluation of an arbitrary derivative are inspired
by the following observation that holds for first derivatives of univariate polynomi-
als: Given a univariate polynomial f(x), the remainder of dividing the polynomial
f(x)− f ′(a)x with the polynomial (x − a)2 is always a constant polynomial, and not
a degree-one polynomial, as would generally happen. In other words, f(x)− f ′(a)x =
(x − a)2q(x) + b for some q(x) ∈ Zp[x], and b ∈ Zp. A similar, slightly more in-
volved, observation can be made for higher-order derivatives and multivariate polyno-
mials. More details are provided in Section 5.

2 Preliminaries, Definitions and Assumptions

In this section, we give necessary definitions that are going to be used in the rest of the
paper. The security parameter is denoted λ, PPT stands for probabilistic polynomial-
time and neg(λ) denotes the set of negligible functions, i.e., all the functions less than
1/p(λ), for all polynomials p(λ). We also use bold letters for vector variables, i.e.,
x = [x1, x2, . . . , xn] denotes a vector of n entries x1, x2, . . . , xn.

2.1 Problem Definition

We now formally define signatures of correct computation (SCC).
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Definition 1 (SCC scheme). An SCC scheme (signatures of correct computation) for
a function family F is a tuple (KeyGen,Setup,Compute,Verify,Update) of five PPT
algorithms with the following specification:

1. (PK, SK) ← KeyGen(λ,F): Algorithm KeyGen takes as input the security pa-
rameter λ and a function family F . It outputs a public/secret key pair (PK, SK).
KeyGen is run only once at system initialization by a trusted source;

2. FK(f) ← Setup(SK,PK, f): Algorithm Setup (run by a trusted source) takes as
input the secret key SK, the public key PK, and a function f ∈ F . It outputs the
function public key FK(f) for the function f ;

3. (v, w) ← Compute(PK, f, a): Algorithm Compute (run by an untrusted server)
takes as input the public key PK, a function f ∈ F and a value a ∈ domain(f). It
outputs a pair (v, w), where v = f(a) and w is a signature;

4. {0, 1} ← Verify(PK,FK(f), a, v, w): Algorithm Verify (run by any verifier) takes
as input the public key PK, the function public key FK(f), value a ∈ domain(f), a
claimed result v and a signature w. It outputs 0 or 1;

5. FK(f ′)← Update(SK,PK,FK(f), f ′): Algorithm Update (run by a trusted source)
takes as input the secret key SK, the public key PK, the function public key FK(f)
for the old function f and the updated function description f ′. It outputs the up-
dated function public key FK(f ′).

The Update algorithm allows the source to update the function f to a new function f ′.
A naive way to implement Update is to simply run the Setup algorithm again for the
new f ′. However, in practice, one may wish to allow more efficient incremental updates
(and this is what is achieved by our constructions).

2.2 Correctness and Security Definitions

We describe now the correctness and adaptive security definitions for SCC. Intuitively,
an SCC scheme is correct if whenever its algorithms are executed honestly, it never
rejects a correct signature. Also, it is secure if, after the setup/update algorithms have
been executed, an adversary cannot convince a verifier to accept a wrong result on an
input of his choice, except with negligible probability.

Definition 2 (Correctness of an SCC scheme). Let λ be the security parameter and let
P be an SCC scheme (KeyGen,Setup,Compute,Verify,Update) for a function family
F . Let (PK, SK)← KeyGen(λ,F). For all i = 1, . . . , poly(λ), for any function fi ∈ F ,
suppose FK(fi) is the output of Update(SK,PK,FK(fi−1), fi), where FK(f0) is output
by algorithm Setup(SK,PK, f0) for some f0 ∈ F . We say that P is correct, if for any
i = 0, . . . , poly(λ), for any a ∈ domain(fi), it is 1 ← Verify(PK,FK(fi), a, v, w),
where (v, w)← Compute(PK, fi, a).

Definition 3 (Adaptive security of an SCC scheme). Let λ be the security parameter
and let P be an SCC scheme (KeyGen,Setup,Compute,Verify,Update) for a function
family F . We say that P is adaptively secure if no PPT adversary A has more than
negligible probability neg(λ) in winning the following security game, played between
the adversary A and a challenger:
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1. Initialization. The challenger runs algorithm KeyGen which outputs (PK, SK) and
then gives PK to the adversary but maintains SK secret;

2. Setup and update. The adversary makes an oracle query to the Setup(SK,PK, f0)
algorithm, specifying an initial function f0 ∈ F , outputting FK(f0). Then, for
i = 1, . . . , k, where k = poly(λ), he makes a polynomial number of oracle queries
to the Update(SK,PK,FK(fi−1), fi) algorithm, each time specifying fi ∈ F . The
challenger answers the queries by returning the resulting FK(fi);

3. Forgery. The adversary A outputs a point b ∈ domain(fi) for some 0 ≤ i ≤ k,
and the forgery (b, v, w).

The adversary A wins the game if 1← Verify(PK,FK(fi),b, v, w) and fi(b) �= v.

2.3 SCC Implies PVC

As we highlighted in the introduction, signatures of correct computation (SCC) are
stronger than the publicly verifiable computation (PVC) notions studied in concurrent
but independent papers [9,12,13,31]. Specifically, a correct and secure SCC scheme
implies a correct and secure PVC scheme, but not the other way around. To see that,
one can implement algorithm σa ← ProbGen(PK, a) of the PVC scheme (e.g., [31]) to
simply output a and all the other algorithms remain the same.

For completeness, in Definition 6 in the Appendix, we also provide the definition of
publicly verifiable computation (PVC) . Our PVC definition is essentially equivalent to
those proposed by Parno et al. [31] and Canetti et al. [9], with the exception that we aug-
ment it with an Update algorithm which a trusted source can employ to incrementally
update the outsourced function (also, our ProbGen algorithm is called Challenge).

2.4 Multivariate Polynomials Notation

We now give some notation for multivariate polynomials. We use the notion of a multi-
set over some universe U , a generalized set comprising elements from the universe U ,
where each element can appear more than once; for example, {1, 1, 2, 3, 3, 3} is a multi-
set. In this paper, we use the following notation to denote multisets. Formally, a multiset
S : U → Z

≥0 is a function mapping each element in a universe U to its multiplicity.
For any x /∈ S, S(x) = 0. E.g., for the multiset {a, a, b, c, c, c}, we have S(a) = 2,
S(b) = 1, S(c) = 3; however, S(e) = 0 since e is not contained in the above multiset.

Let now S, T denote two multisets over universe U . It is S ⊆ T , if ∀a ∈ U ,
S(a) ≤ T (a). The size of S over universe U , denoted |S|, is defined as the sum
of the multiplicity of all elements in S, i.e., |S| =

∑
a∈U S(a). Finally, Sd,n de-

notes the set of multisets of size at most d over the universe {1, 2, . . . , n}. Let now
f ∈ Zp[x1, x2, . . . , xn] = Zp[x] be an n-variate polynomial over Zp with maximum
degree d. We can use the following generic notation to represent f , i.e.,

f(x) = f(x1, x2, . . . , xn) =
∑

S∈Sd,n

cS ·
∏

i∈S

x
S(i)
i . (2.1)

For example, the multiset {1, 1, 2, 2, 2, 5} corresponds to the term for x2
1x

3
2x5 in the

expanded form of the polynomial. The empty multiset ∅ corresponds to the constant
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term in the polynomial. Finally, the degree of a multivariate polynomial is the maximum
total degree of any monomial contained in the polynomial. For example, the degree of
the polynomial 3x1x2 + x3

3x4x5 is 5.

2.5 Bilinear Groups and Computational Assumption

We now review some background on bilinear groups of prime order. Let G be a cyclic
multiplicative group of prime order p, generated by g. Let also GT be a cyclic multi-
plicative group with the same order p and e : G × G → GT be a bilinear pairing with
the following properties: (1) Bilinearity: e(P a, Qb) = e(P,Q)ab for all P,Q ∈ G and
a, b ∈ Zp; (2) Non-degeneracy: e(g, g) �= 1; (3) Computability: There is an efficient
algorithm to compute e(P,Q) for all P,Q ∈ G. We denote with (p,G,GT , e, g) the bi-
linear pairings parameters, output by a PPT algorithm on input 1λ. We use the following
computational assumption [6]:

Definition 4 (Bilinear �-strong Diffie-Hellman assumption). Suppose λ is the secu-
rity parameter and let (p,G,GT , e, g) be a uniformly randomly generated tuple of bi-
linear pairings parameters. Given the elements g, gt, . . . , gt

� ∈ G for some t chosen at
random from Z

∗
p, for � = poly(λ), there is no PPT algorithm that can output the pair

(c, e(g, g)1/(t+c)) ∈ Z
∗
p\{−t} ×GT except with negligible probability neg(λ).

3 Selectively Secure Multivariate Polynomial Evaluation

As a warm-up exercise, in this section we first present an SCC scheme for multivariate
polynomial evaluation that is secure under a relaxed security model, namely, the se-
lective security model. Then, in Section 4, we explain how to augment this selectively
secure scheme and achieve adaptive security in the random oracle model.

Selective security is weaker than adaptive security, requiring the adversary to commit
ahead of time to the challenge point a, which is analogous to the selective security no-
tion often adopted in Identity-Based Encryption (IBE) [7], Attribute-Based Encryption
(ABE) [21], Functional Encryption (FE) [32] and Predicate Encryption (PE) [8]. The
detailed selective security definition is described in Definition 6 in the Appendix.

3.1 Intuition

Our construction relies on the following key observation.

Lemma 1 (Polynomial decomposition). Let f(x) ∈ Zp[x] be an n-variate polyno-
mial. For all a ∈ Z

n
p , there exist polynomials qi(x) ∈ Zp[x] such that the polynomial

f(x)− f(a) can be expressed as f(x)− f(a) =
∑n

i=1(xi− ai)qi(x). Moreover, there
exists a polynomial-time algorithm to find the above polynomials qi(x).

The above lemma can be proved by explicit construction, dividing each time the poly-
nomial f(x)−f(a) with (xi−ai). Its proof is given in the full version of our paper [28].

Given now an n-variate polynomial f(x), the trusted source runs algorithms KeyGen
and Setup to create the function public key FK(f) = gf(t) of the polynomial f
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evaluated over a randomly chosen point t. Later in the computation stage, when a
server wishes to prove that v is indeed the value f(a), it will rely on the key obser-
vation stated in Lemma 1: It will compute n polynomials q1(x), q2(x), . . . , qn(x) such
that the relation of Lemma 1 holds, and the values gqi(t) (i = 1, . . . , n) will be provided
as the signature. To allow the server to evaluate the polynomials qi(x) at the commit-
ment point t in the exponent, the public key must contain appropriate helper terms.
If the claimed computation result v is correct, then the following must be true, where
both sides of the equation are evaluated at the commitment point t, i.e., it should be
f(t)− v =

∑
i∈[n](ti − ai)qi(t). We note here that in the real construction, the terms

in the above equation are encoded in the exponents of group elements, and therefore
the verifier cannot directly check the above equation. However, the verifier can check
the above condition using operations in the bilinear group, including the pairing opera-
tion which allows one to express one multiplication in the exponent. The bilinear group
operations directly translate to checking the above condition in the exponent.

3.2 Detailed Construction

We now present our selectively secure SCC scheme supporting multivariate polynomial
evaluation.

Algorithm (PK, SK) ← KeyGen(λ,F): Suppose that the function family F ⊆ Zp[x]
represents all polynomials over Zp with at most n variables and degree bounded by d.
Namely, family F contains the polynomials represented by multisets in set Sn,d (see
Equation 2.1). The KeyGen algorithm invokes the bilinear group generation algorithm
to generate a bilinear group instance of prime order p (of λ bits), with a bilinear map
function e : G × G → GT . Then it chooses a random generator g ∈ G and a random
point t = [t1, t2, . . . , tn] ∈ Z

n
p and computes the signature generation setWn,d

Wn,d =
{
g
∏

i∈S t
S(i)
i : ∀S ∈ Sn,d

}
. (3.2)

For example,W2,2 contains the elements g, gt1 , gt2 , gt
2
1 , gt

2
2 , gt1t

2
2 , gt

2
1t2 , gt

2
1t

2
2 . The al-

gorithm finally outputs the public key PK that contains g,Wn,d and the description of
G,GT , e. The secret key SK contains the commitment point t. We describe an opti-
mization referring to reducing the number of group elements ofWn,d in the full version
of the paper [28].

Algorithm FK(f)← Setup(SK,PK, f): Let f(x) ∈ Zp[x] denote an n-variate polyno-
mial of maximum degree d overZp that is represented by the multisets S1, S2, . . . , Sk ∈
Sn,d and the respective coefficients c1, c2, . . . , ck ∈ Zp (the polynomial has k terms),
as defined in Equation 2.1. The setup algorithm, by using the signature generation set
Wn,d contained in PK, computes the polynomial public key, i.e.,

FK(f) = gf(t) =
(
g
∏

i∈S1
t
S1(i)

i

)c1

×
(
g
∏

i∈S2
t
S2(i)

i

)c2

× . . .×
(

g
∏

i∈Sk
t
Sk(i)

i

)ck

.

(3.3)
The algorithm outputs the function public key FK(f).

Algorithm (v, w) ← Compute(PK, f, a): This algorithm first computes v = f(a).
Using Lemma 1, it finds an appropriate set of polynomials q1(x), q2(x), . . . , qn(x) to
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express polynomial f(x)− v as f(x) − v =
∑n

i=1(xi − ai)qi(x) . The signature w is
a vector of n witnesses w1, w2, . . . , wn, such that wi = gqi(t) for all i ∈ [n]. Note that
wi can easily be computed using the signature generation setWn,d, as is achieved for
the function public key in Equation 3.3. It finally outputs the pair (v, w), where v is the
outcome of the polynomial evaluated at a, and w is the signature of correctness.

Algorithm Verify(PK,FK(f), a, v, w): Parse PK as the signature generation setWn,d.
To verify that v is indeed f(a), given a signature w = [w1, w2, . . . , wn], algorithm
Verify checks if the following equation holds:

e
(
FK(f)g−v, g

) ?
=

n∏

i=1

e
(
gti−ai , wi

)
. (3.4)

In the above, the terms gti are contained in PK (specifically inWn,d) and the function
public key FK(f) equals gf(t). The algorithm accepts the result v, and outputs 1 if the
above equations hold; otherwise, it rejects and outputs 0.

Algorithm FK(f ′) ← Update(SK,PK,FK(f), f ′): Let f denote the current polyno-
mial and f ′ be the new polynomial that corresponds to the update. Assume f ′ and f
differ in only one coefficient. Specifically, let S denote the multiset corresponding to
that coefficient.2 Suppose the current function public key is FK(f). The algorithm sets

FK(f ′) = FK(f) · g(c′S−cS)
∏

i∈S t
S(i)
i ,

updating FK(f) to FK(f ′), the new function public key. We now state our first theorem.

Theorem 1. There exists an SCC scheme for polynomial evaluation such that (1) It is
correct according to Definition 2; (2) For univariate polynomials, it is adaptively se-
cure according to Definition 3 and under the �-SBDH assumption; (3) For multivariate
polynomials, it is selectively secure according to Definition 6 and under the �-SBDH
assumption.

The correctness of our construction follows in a straightforward manner from Lemma 1,
and the bilinear property of the pairing operation e. The asymptotic cost analysis of the
scheme’s algorithms are presented in Section 6.The security proofs are presented in the
full version of the paper [28]. However, we give a proof sketch in the following.

3.3 Selective Security Proof Sketch

We briefly explain the selective security proof intuition of our scheme. The simulator
obtains an �-SBDH instance, g, gτ , . . . , gτ

� ∈ G and it will construct a simulation such
that if an adversary can break the selective security of the SCC scheme, the simula-
tor can leverage it to break the �-SBDH instance. Specifically, with knowledge of the
challenge point a = [a1, a2, . . . , an] that the adversary commits to at the beginning of
the selective security game, the simulator can carefully craft the simulation such that

2 I.e., the only difference between f and f ′ is that the coefficient cS corresponding to term∏
i∈S x

S(i)
i is updated to c′S in f ′.
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ti − ai = λi(τ + c), where t = [t1, t2, . . . , tn] represents the committed point used to
compute the polynomial digest, and λi and c are constants known to the simulator.

If an adversary can forge a signature for a wrong outcome of a polynomial, then
the simulator is able to raise terms in Equation 3.4 to the (τ + c)−1 power and output
e(g, g)(τ+c)−1

, breaking in this way the �-SBDH assumption. Notice that in the selective
security proof, the simulator’s ability to take appropriate terms in Equation 3.4 to the
(τ + c)−1 power relies on knowing the challenge point a in advance, and the ability to
craft the simulation such that ti − ai = λi(τ + c).

4 Adaptively Secure Multivariate Polynomial Evaluation

In this section, we augment the above selectively secure SCC scheme to achieve adap-
tive security in the random oracle model. We also show that the same techniques can be
applied to construct an adaptively secure PVC scheme under the formulation of Parno
et al. [31] without the random oracle model.

4.1 Intuition

The intuition of the new construction is similar to the selectively secure construction.
For technical reasons explained later, instead of relying on the polynomial decomposi-
tion method described in Lemma 1, we use a new decomposition that is randomized, so
that it can later be manipulated by a simulator in the proof to achieve adaptive security.
The decomposition we are using is the following:

Lemma 2 (Randomized decomposition). Let f(x) ∈ Zp[x] be an n-variate polyno-
mial of degree at most d. For all a ∈ Z

n
p and for all r1, . . . , rn−1 ∈ Zp such that

r1r2 . . . rn−1 �= 0, there exist polynomials qi(x) ∈ Zp[x] such that the polynomial
f(x)− f(a) can be expressed as

f(x)− f(a) =

n−1∑

i=1

[ri(xi − ai) + xi+1 − ai+1] qi(x) + (xn − an)qn(xn) ,

where qn(xn) is a polynomial of degree at most d that contains only variable xn. More-
over, there exists a polynomial-time algorithm to find the above polynomials qi(x).

The above lemma can be proved by explicit construction, each time dividing the poly-
nomial by ri(xi − ai) + xi+1 − ai+1, for increasing values of i, in a way such that
the remainder should not contain xi. The full proof of Lemma 2 is provided in the full
version of our paper [28]. We note here that in our construction explained below, the
numbers r1, r2, . . . , rn−1 mentioned in Lemma 2 will be chosen “at random” by calling
a hash function modelled as a random oracle (see Equation 4.5).

4.2 Detailed Construction

We now continue with the algorithms of our adaptively secure SCC scheme.
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Algorithm (PK, SK)← KeyGen(λ,F): Same as in Section 3.

Algorithm FK(f)← Setup(SK,PK, f): Same as in Section 3.

Algorithm (v, w) ← Compute(PK, f, a): Parse a as [a1, a2, . . . , an]. The algorithm
first computes the outcome of the polynomial v = f(a). Next, compute the following,
where H : {0, 1}∗ → Zp is a hash function (later modelled as a random oracle):

∀1 ≤ i ≤ n− 1 : ri = H(a||i) . (4.5)

Now, using Lemma 2, find an appropriate set of polynomials q1(t), q2(t), . . . , qn(tn) to
express polynomial f(x)− f(a) as

∑n−1
i=1 [ri(xi − ai) + xi+1 − ai+1] qi(x) + (xn −

an)qn(xn) . Next, leverage the signature generation setWn,d (see Equation 3.2) to com-
pute wi = gqi(t) for 1 ≤ i ≤ n − 1. It is not hard to see that all wi’s can be computed
fromWn,d. The signaturew is composed as w = [w1, w2, . . . , wn, polynomial qn(xn)],
where the polynomial qn(xn) contains the description of the polynomial, i.e., up to d
coefficients βd, . . . , β0, since it is a univariate polynomial in xn of degree at most d.

The algorithm outputs the pair (v, w) denoting the outcome of the polynomial eval-
uated at a, and a signature to vouch for the correctness of the computation.

Algorithm {0, 1} ← Verify(PK,FK(f), a, v, w): Parse a as [a1, a2, . . . , an] ∈ Z
n
p ;

then parse the signature w as [w1, w2, . . . , wn−1, polynomial qn(xn)]. To verify that v
is indeed the outcome of the correct polynomial evaluated at point a ∈ Z

n
p , algorithm

Verify first computes gqn(tn) using the signature generation set Wn,d (Equation 3.2)
which is part of the public key PK.

Next, it computes the ri values in the same way as in Equation 4.5, namely, ri =
H(a||i) for 1 ≤ i ≤ n− 1. Finally, it checks if the following equation holds:

e
(
FK(f) · g−v, g

) ?
=

n−1∏

i=1

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
e
(
gtn−an , gqn(tn)

)
, (4.6)

In the above, the terms gti are contained in PK (specifically inWn,d) and FK(f) equals
gf(t). The algorithm accepts if the above equation holds; otherwise, it rejects.

Algorithm FK(f ′)← Update(SK,PK,FK(f), f ′): Same as in Section 3.

4.3 Adaptive Security Proof Sketch

The simulator obtains an �-SBDH instance, g, gτ , . . . , gτ
� ∈ G and it will construct a

simulation such that if an adversary can break the adaptive security of the SCC scheme,
the simulator can leverage it to break the �-SBDH instance. Unlike in the selective
security proof of Section 3.3, without the adversary committing to the challenge point
in advance, the simulator cannot craft terms to satisfy conditions such as ti − ai =

λi(t+c)—but this condition is crucial later for the simulator to compute e(g, g)(τ+c)−1

and break the hardness assumption.
To circumvent this barrier in the proof, we embed “randomness” into the verification

equation, such that the simulator can manipulate these random numbers to satisfy a
condition described below, without having to know the challenge point ahead of time:
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ri(ti − ai) + ti+1 − ai+1 = λi(τ + c) for i = 1, . . . , n− 1 , (4.7)

where λi and c are constants known to the simulator.
Specifically, since these random numbers are outputs from a “random” hash function,

under the random oracle model, the simulator can manipulate the answers to the random
oracle queries in the simulation to achieve the above goal. Note that our SCC signature
with adaptive security has size O(n+d), as opposed to O(n), which was the size of the
signature in the selectively secure scheme (see Section 6). This is because it is essential
the signature contain the polynomial qn(xn) for the adaptive security proof to work, so
that the simulator can divide both sides of Equation 4.6 with τ + c. We can now state
our main theorem (see detailed proof in the full version of our paper [28]).

Theorem 2. There exists an SCC scheme for the evaluation of multivariate polynomials
such that (1) It is correct according to Definition 2; (2) It is adaptively secure according
to Definition 3, under the �-SBDH assumption and in the random oracle model.

4.4 An Adaptively Secure PVC Scheme without Random Oracles

Our techniques can be readily adapted to construct an adaptively secure PVC scheme
for multivariate polynomial evaluation—see Section 2.3. Neverthelsess, if we were to
use the observations of Section 2.3 as a black box, we would construct a PVC scheme
that has the random oracle. However, we are able to remove the random oracle by taking
advantage of the fact that PVC is weaker than SCC.

The resulting PVC scheme is very similar to our construction in this section—except
that in the PVC scheme, the random numbers ri’s are directly chosen at random (as
a challenge) by a client issuing a query to the untrusted server, instead of being the
outputs of a hash function modeled as a random oracle. We provide the detailed PVC
scheme with full security in the the full version of the paper [28].

Theorem 3. There exists a PVC scheme for the evaluation of multivariate polynomials
of total such that (1) It is correct according to Definition 8; (2) It is adaptively secure
according to Definition 9 and under the �-SBDH assumption.

5 SCC Schemes for Polynomial Differentiation

In this section, we construct an SCC scheme for the verification of differentiation
queries. Given a multivariate polynomial f(x), we show how to construct signatures
of correct computation for derivatives ∂kf(x)/∂xk

j (a) evaluated at a chosen point a.
One naive method to support verification of derivative computation is to commit to

all nk polynomials corresponding to all the possible derivatives (k in total) of each pos-
sible variable. This would incur a setup cost of O(nk

(
n+d
d

)
). In contrast, our construc-

tion requires only O(
(
n+d
d

)
) setup cost (see Section 6), the same with the polynomial

evaluation scheme. Another drawback of the naive method is increased update cost,
since an update operation would now involve updating all nk polynomials. In contrast,
our construction allows for efficient incremental updates.
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5.1 Intuition

The intuition of supporting polynomial differentiation is similar to the evaluation case.
In place of the decomposition lemmas (Lemmas 1 and 2) for polynomial evaluation, we
have the following counterparts (Lemmas 3 and 4) for derivative computation:

Lemma 3 (Decomposition for derivatives). For a ∈ Z
n
p , the n-variate polynomial

f(x) ∈ Zp[x] can be expressed as

f(x) =

n−1∑

i=1

(xi − ai)ui(x) + (xn − an)
k+1q(xn) + ckx

k
n + . . .+ c1xn + c0 .

Then, the k-th derivative of f(x) wrt xn equals k!·ck at point a, i.e., ∂kf(x)/∂xk
n(a) =

k! · ck. A similar result holds for other variables xi by variable renaming.

Lemma 4 (Randomized decomposition for derivatives). For a ∈ Z
n
p and for all

r1, . . . , rn−2 ∈ Zp such that r1r2 . . . rn−2 �= 0, the n-variate polynomial f(x) ∈ Zp[x]
can be expressed as

f(x) =
n−2∑

i=1

[ri(xi − ai) + xi+1 − ai+1]ui(x) + (xn−1 − an−1)un−1(x)

+ (xn − an)
k+1q(xn) + ckx

k
n +

k∑

i=0

cix
i
n ,

where un−1(x) is a polynomial containing only variables xn−1 and xn and q(xn) is
a polynomial containing only variable xn. Then, the k-th derivative of f(x) wrt xn

equals k! · ck at point a, i.e., ∂kf(x)/∂xk
n(a) = k! · ck. A similar result holds for other

variables xi by variable renaming.

Similar to the multivariate polynomial evaluation case, Lemmas 3 and 4 allow us to
construct respectively: 1) an SCC scheme for polynomial differentiation with selective
security; and 2) an SCC scheme for polynomial differentiation with adaptive security
in the random oracle model and a PVC scheme for polynomial differentiation with
adaptive security without the random oracle model .

5.2 Detailed Construction

We now present the adaptively secure SCC scheme for polynomial differentiation (based
on Lemma 4). For completeness, we also present a selectively secure scheme for poly-
nomial differentiation in the full version of the paper [28].

Algorithm (PK, SK)← KeyGen(λ,F): Same as in Section 3.

Algorithm FK(f)← Setup(SK,PK, f): Same as in Section 3.

Algorithm (v, w) ← Compute(PK, f, a, k, ind): In addition to the point a ∈ Z
n
p , the

Compute algorithm here takes in two additional parameters k and ind, indicating the
evaluation of the k-th derivative of the polynomial with respect to variable xind at a.
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Without loss of generality, below we assume ind = n. In other words, the algorithm
should evaluate the k-th partial derivative with respect to xn at point a. First, the algo-
rithm computes randomness ri as

ri = H(a||ind||k||i) ∀1 ≤ i ≤ n− 2 , (5.8)

where H : {0, 1}∗ → Zp is a hash function (later modeled as a random oracle). Due to
Lemma 4, f(x) can be expressed as f(x) =

∑n−2
i=1 [ri(xi− ai) +xi+1− ai+1]ui(x) +

(xn−1−an−1)un−1(x)+(xn−an)k+1q(xn)+
∑k

i=0 cix
i
n. The signature w for correct

derivative computation is the following tuple:

w =
(
gu1(t), . . . , gun−2(t), gq(tn), ck−1, . . . , c1, c0, polynomial un−1(x)

)
,

where polynomial un−1(x) is a description of the polynomial containing the corre-
sponding coefficients. Note that by Lemma 4, polynomial un−1(x) contains up to d2

terms. Also, the signature does not contain the term ck—this can be implicitly retrieved
by the result v since ck = v/k!. Finally, the result of the computation v is returned.

Algorithm Verify(PK,FK(f), a, k, ind, v, w): Let ck = v
k! . To verify that v is indeed

the outcome of the k-th partial derivative on variable xind (ind = n) evaluated at point
a ∈ Z

n
p , perform the following steps.

Parse w as (w1, . . . , wn−2, wn, ck−1, . . . , c1, c0, polynomial un−1(x)).
Compute the ri values in the same way as in Equation 5.8, i.e., ri = H(a||ind||k||i)

for 1 ≤ i ≤ n− 2.

Check if e (FK(f), g) equals the following quantity (where L =
∏k

i=0 e
(
gt

i
n , g

)ci
):

n−2∏

i=1

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
· e

(
gtn−1−an−1 , gun−1(t)

)
· e

(
g(tn−an)

k+1

, wn

)
· L ,

The above quantity can be easily computed with the public keys in O(n + d2) time,
since un−1(x) is a polynomial containing d2 terms and k ≤ d (see Section 6). The
algorithm accepts v and outputs 1 if the above equation holds; otherwise, it rejects.

Algorithm FK(f ′)← Update(SK,PK,FK(f), f ′): Same as in Section 3.

Theorem 4. There exists an SCC scheme for the differentiation of multivariate poly-
nomials such that (1) It is correct according to Definition 2; (2) It is adaptively secure
according to Definition 3, under the �-SBDH assumption and in the random oracle
model.

Corollary 1. There exists a PVC scheme for the differentiation of multivariate polyno-
mials such that (1) It is correct according to Definition 8; (2) It is adaptively secure
according to Definition 9 and under the �-SBDH assumption.

6 Asymptotic Cost Analysis

In this section, we analyze the asymptotic cost of our schemes. Clearly, the worst-case
complexity of KeyGen is O(

(
n+d
d

)
), since the set Wn,d should contain one term for
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every possible term of the polynomial in n variables and total degree d. Similarly
algorithm Setup takes O(

(
n+d
d

)
) time to execute in the worst case. In practice, both

these complexities can be O(m), where m is the number of the terms contained in the
polynomial—see the full version of the paper [28] for minimizing the size ofWn,d.

Also for our adaptive security schemes, the size of the signature is O(n), and the
client performs O(n) amount of work to verify it using algorithm Verify (these costs are
O(n+d) for derivative computation). For our adaptive security schemes, the size of the
signature increases to O(n + d), and the client performs O(n + d) amount of work to
verify it (again, these costs O(n+ d2) for derivative computation).

As for algorithm Compute, it needs to decompose the polynomial according to Lem-
mata 1, 2, 3, 4 (depending on which scheme we are using). This polynomial decomposi-
tion dominates the asymptotic performance. To perform the polynomial decomposition,
the server performs n polynomial divisions. If we use the naive polynomial division
algorithm, since each variable can have degree up to d, each polynomial division in-
volves d steps, and each step takes time proportional to the number of terms in the poly-
nomial, namely, O(

(
n+d
d

)
). Therefore, the polynomial decomposition (Lemma 1) can

be achieved in O(nd
(
n+d
d

)
) time using the naive algorithm. However, in cases where

d > log n, one can use the FFT method to perform polynomial division, resulting in
O(n log n

(
n+d
d

)
) computation time. Finally, algorithm Update takes constant time to

update a constant number of coefficients.

7 Extensions and Observations

7.1 I/O Privacy

In our constructions, the client’s sensitive input is in plaintext, directly readable by
the untrusted server. To offer input and output privacy, we could potentially use a
fully-homomorphic public-key encryption scheme [16] (FHE scheme) so that algorithm
Compute executed by the untrusted server could operate on encrypted points. In this
way, everybody that knows pk could send queries to the server. After Compute executes
on the encryption of some point ā, it outputs the encrypted signature w of the value
v̄ = f(ā) under the public key pk, allowing only the owner of the secret key to de-
crypt and retrieve (and verify) the output of the computation. This could have various
applications which we highlight in the Appendix of the full version of the paper [28].

7.2 Removing the Random Oracles Through Stronger Assumptions

We now observe that if we are willing to (i) use subexponential assumptions and (ii)
restrict the size of the domain of the inputs of our polynomials to be subexponential
(now it is exponential), we can remove the random oracle from our adaptively secure
constructions. The subexponential assumption we use can be stated as follows:

Definition 5 (δ-subexponential bilinear �-strong Diffie-Hellman assumption). Sup-
pose k is the security parameter, let 0 < δ < log k−1

log k and let (p,G,GT , e, g) be a uni-
formly randomly generated tuple of bilinear pairings parameters. Given the elements
g, gt, . . . , gt

� ∈ G for some t chosen at random from Z
∗
p, for � = poly(k), there is no
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algorithm running in time less than 22k
δ

that can output the pair (c, e(g, g)1/(t+c)) ∈
Z
∗
p\{−t} ×GT , except with negligible probability neg(k).

Note that in the above definition, we require δ < log k−1
log k so that 2kδ < k.

Theorem 5 (Adaptive security in the standard model). Let x be the input to our
polynomial. For x belonging to a domain of subexponential size, our selectively se-
cure scheme (Section 3) is adaptively secure in the standard model and assuming the
δ-subexponential bilinear �-strong Diffie-Hellman assumption. Namely, for all PPT ad-
versaries, we can build a simulator running in subexponential time that breaks the
δ-subexponential bilinear �-strong Diffie-Hellman assumption (see Definition 5).

Proof. Suppose we have n variables x1, x2, . . . , xn, and each one of which can take
values in [0, 1, . . . ,m − 1]. Assume that mn = 2k

δ

, yielding n logm = kδ. To build
the desired simulator, we modify the initialization phase of our selective security proof
in Section 3.3: We do not require the adversary to commit to an initial point a. In-
stead the simulator guesses the point a that the adversary is going to output later as a
forgery—and the simulator aborts if the guess is wrong. Clearly, the guess is success-
ful with probability 2−kδ

. Therefore the simulation, in expectation, takes 2k
δ

time to
succeed. Since the adversary runs in at most polynomial time (see our adaptive secu-
rity definition), it follows that we have derived an algorithm that runs in poly(k)2k

δ

time and breaks the assumption. Note that this is a contradiction since the function
poly(k)2k

δ

= o(22k
δ

). This completes our proof. �

The same technique was also described by Boneh and Boyen [7] to achieve adaptive
security in their IBE scheme.
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Appendix

Definition 6 (Selective security of an SCC scheme). Let λ be the security parameter
and let P be an SCC scheme (KeyGen,Setup,Compute,Verify,Update) for a function
familyF . We say thatP is selectively-secure if no PPT adversaryA has more than neg-
ligible probability neg(λ) in winning the following game between A and a challenger:

1. Initialization. The adversary A commits to a point b. The challenger runs algo-
rithm KeyGen which outputs (PK, SK) and gives PK toA but maintains SK secret;

2. Setup and Update. The adversary A initially makes an oracle query to algorithm
Setup(SK,PK, f0), specifying an initial function f0 ∈ F , outputting FK(f0). Then,
for i = 1, . . . , k, where k = poly(λ), he makes a polynomial number of oracle
queries to the Update(SK,PK,FK(fi−1), fi) algorithm, each time specifying fi ∈
F . The challenger answers the queries by returning the resulting FK(fi);

3. Forgery. The adversaryA outputs a forgery (b, v, w) for point b that he committed
in the initialization phase, for some function fi previously queried where 0 ≤ i ≤ k.

The adversary A wins if 1← Verify(PK,FK(fi),b, v, w) and fi(b) �= v.

Definition 7 (PVC scheme). We define a PVC scheme for a function family F to be a
tuple of six PPT algorithms (KeyGen,Setup,Challenge,Compute,Verify,Update) with
the following specification:
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1. (PK, SK) ← KeyGen(λ,F): Algorithm KeyGen takes as input the security pa-
rameter λ and a function family F . It outputs a public/secret key pair (PK, SK).
KeyGen is run only once at system initialization by a trusted source;

2. FK(f) ← Setup(SK,PK, f): Algorithm Setup (run by a trusted source) takes as
input the secret key SK, the public key PK, and a function f ∈ F . It outputs the
function public key FK(f) for the function f ;

3. chal(a) ← Challenge(PK, a): Algorithm Challenge (run by the verifier) takes as
input a value a ∈ domain(f). It outputs a challenge chal(a) corresponding to a;

4. (v, w) ← Compute(PK, f, a, chal(a)): Algorithm Compute (run by an untrusted
server) takes as input the public key PK, a function f ∈ F and a value a ∈
domain(f). It outputs a pair (v, w), where v = f(a) and w is a signature;

5. {0, 1} ← Verify(PK,FK(f), a, chal(a), v, w): Algorithm Verify (run by the verifier)
takes as input the public key PK, function public key FK(f), value a ∈ domain(f),
a claimed result v and a signature w. It outputs 0 or 1;

6. FK(f ′) ← Update(SK,PK,FK(f), f ′): Algorithm Update (run by the trusted
source) takes as input the secret key SK, the public key PK, the function public
key FK(f) for the old function f and the updated function description f ′. It outputs
the updated function public key FK(f ′).

Definition 8 (Correctness of a PVC scheme). Let λ be the security parameter and let
P be a PVC scheme (KeyGen,Setup,Challenge,Compute,Verify,Update) for a func-
tion family F . Let (PK, SK) ← KeyGen(λ,F). For all i = 1, . . . , poly(λ), for any
function fi ∈ F , suppose FK(fi) is the output of Update(SK,PK,FK(fi−1), fi), where
FK(f0) is output by algorithm Setup(SK,PK, f0) for some f0 ∈ F . We say that P
is correct, if for any i = 0, . . . , poly(λ), for any a ∈ domain(fi), for any chal(a)
output by Challenge(PK, a), it is 1 ← Verify(PK,FK(fi), a, chal(a)), v, w), where
(v, w)← Compute(PK, fi, a, chal(a))).

Definition 9 (Adaptive security of a PVC scheme). Let λ be the security parameter
and let P be a PVC scheme (KeyGen,Setup,Challenge,Compute,Verify,Update) for
a function family F . We say that P is adaptively secure if no PPT adversary A has
more than negligible probability neg(λ) in winning the following security game, played
between the adversary A and a challenger:

1. Initialization. The challenger runs algorithm KeyGen which outputs (PK, SK) and
then gives PK to the adversary but maintains SK secret;

2. Setup and Update. The adversary initially makes an oracle query to algorithm
Setup(SK,PK, f0), specifying an initial function f0 ∈ F , outputting FK(f0). Then,
for i = 1, . . . , k, where k = poly(λ), he makes a polynomial number of oracle
queries to the Update(SK,PK,FK(fi−1), fi) algorithm, each time specifying fi ∈
F . The challenger answers the queries by returning the resulting FK(fi);

3. Challenge and Forgery. The adversary A outputs a point b and sends it to the
challenger. The challenger returns chal(b) output by Challenge. The adversary A
outputs the forgery (b, chal(b), v, w) for one of the functions fi (0 ≤ i ≤ k) that
has been queried.

The adversary A wins if 1← Verify(PK,FK(fi),b, chal(b), v, w) and fi(b) �= v.
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