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Abstract. SM3 is a hash function, designed by Xiaoyun Wang et al. and published
by the Chinese Commercial Cryptography Administration Office for the use of
electronic authentication service system. The design of SM3 builds upon the design
of the SHA-2 hash function, but introduces additional strengthening features. In
this paper, we present boomerang distinguishers for the SM3 compression function
reduced to 32 steps out of 64 steps with complexity 214.4, 33 steps with complexity
232.4, 34 steps with complexity 253.1 and 35 steps with complexity 2117.1. Examples
of zero-sum quartets for the 32-step and 33-step SM3 compression function are
provided. We also point out a slide-rotational property of SM3-XOR, which exists
due to the fact that constants used in the steps are not independent.

Keywords: Cryptanalysis, Boomerang attack, Rotational attack, Slide attack,
SM3.

1 Introduction

In December of 2007, the Chinese National Cryptographic Administration Bureau re-
leased the specification of a Trusted Cryptography Module detailing a cryptoprocessor
to be used within the Trusted Computing framework in China. The module specifies a
set of cryptographic algorithms that includes the SMS4 block cipher, the SM2 asym-
metric algorithm and SM3, a new cryptographic hash function designed by Xiaoyun
Wang et al. [1]. The design of SM3 resembles the design of SHA-2 but includes addi-
tional fortifying features such as feeding two message-derived words into each step, as
opposed to only one in the case of SHA-2.

The only previous work that we are aware of on the analysis of SM3 has been pre-
sented by Zou et al. [2] at ICISC 2011 where a preimage attack on step-reduced SM3 is
provided. In particular, Zou et al. presented attacks on SM3 reduced to 30 steps, starting
from the 7-th step, with time complexity 2249 and 28 steps, starting from the 1-st step
with time complexity 2241.5.
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The use of zero-sums as distinguishers have been introduced by Aumasson et al. [3].
The boomerang attack [4], originally introduced for block ciphers, has been adapted
to the hash function setting independently by Biryukov et al. [5], and Lamberger and
Mendel [6]. In particular, in [5], a distinguisher for the 7-round BLAKE-32 was pro-
vided, whereas in [6] a distinguisher for the 46-step SHA-2 compression function was
provided. The latter SHA-2 result was extended to 47 steps in [7]. In [8], Mendel
and Nad presented boomerang distinguishers for the SIMD-512 compression function.
Sasaki [9] gave a boomerang distinguisher on the full compression function of 5-pass
HAVAL. Sasaki also proposed a 2-dimension sums attack on 48-step RIPEMD-128
and 42-step RIPEMD-160 in [10]. Boomerang distinguishers have also been applied to
Skein and Threefish. In [11] Aumasson et al. proposed a related-key boomerang distin-
guisher on 34-step Skein and a known-related-key boomerang distinguisher on 35-step
Skein. In [12], Leurent and Roy showed that, under some conditions, three independent
paths instead of two can be combined to achieve a distinguisher for the compression
function with complexity 2114. In [13] Chen et al. proposed related-key boomerang
distinguishers on 32-step, 33-step and 34-step Threefish-512. Recently, Yu et al. [14]
proposed boomerang attacks on the 32-step, 33-step and 34-step Skein-512.

Khovratovich et al. introduced rotational distinguishers in [15], where two words
are said to be rotational if they are equal up to bit-wise rotation by some number of
positions. Slide attacks were introduced by Biryukov et al. [16] and subsequently were
applied to many cryptographic primitives.

Our Contribution. In the first part of this paper, we present a boomerang attack on the
SM3 hash function reduced to 32 steps out of 64 steps with complexity 214.4, 33 steps
with complexity 232.4, 34 steps with complexity 253.1 and 35 steps with complexity
2117.1. Particular examples of the boomerang distinguisher for the 32-step and also the
33-step compression function are provided. The previous results and a summary of ours
are given in Table 1.

In the second part of the paper, we present a slide-rotational property of SM3 and we
analyze the SM3-XOR compression function, which is the SM3 compression function
with the addition mod 232 replaced by XOR. In particular, we show that, for SM3-XOR,
one can easily construct input-output pairs satisfying a simple rotational property. Such
a property exists due to the fact that, unlike in SHA-2, the constants in steps i, i + 1,
for i = 0, . . . , 63, i � 15 are computed by bitwise rotation starting from two predefined
independent values. Previously, SHA2-XOR was analyzed in [17].

Paper Outline. The rest of the paper is organized as follows. In Section 2, we briefly
review the specifications of the SM3 hash function and give the notation used in this
paper. A brief overview of boomerang attacks is provided in Section 3. The differential
characteristics, and a description of the boomerang attack process and its complexity
evaluation are provided in Section 4. The slide-rotational property is explained in Sec-
tion 5. Finally, our conclusion is given in Section 6.
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Table 1. Summary of the attacks on the SM3 compression function (CF) and hash function (HF)

Attack CF/HF Steps Complexity Reference
Preimage attack HF 28 2241.5 [2]
Preimage attack HF 30 2249 [2]

Boomerang attack CF 32 214.4 Section 4
Boomerang attack CF 33 232.4 Section 4
Boomerang attack CF 34 253.1 Section 4
Boomerang attack CF 35 2117.1 Section 4

2 Description of SM3 and Notation

In this section, we briefly review relevant specifications of the SM3 hash function and
provide the notation used throughout the paper.

2.1 Description of SM3

The SM3 hash function compresses messages of arbitrary length into 256-bit hash val-
ues. Given any message, the algorithm first pads it into a message of length that is a
multiple of 512 bits. We omit the padding method here since it is irrelevant to our at-
tack. For our purpose, SM3 consists mainly of two parts: the message expansion and
the state update transformation. In here, we briefly review the relevant specifications
of these two components. For a detailed description of the hash function, we refer the
reader to [1].

Message Expansion. The message expansion of SM3 splits the 512-bit message block
M into 16 words mi, (0 ≤ i ≤ 15) , and expands them into 68 expanded message words
wi (0 ≤ i ≤ 67) and 64 expanded message words wi

′(0 ≤ i ≤ 63) as follows:

wi =

{
mi, 0 ≤ i ≤ 15,
P1(wi−16 ⊕ wi−9 ⊕ (wi−3 ≪ 15)) ⊕ (wi−13 ≪ 7) ⊕ wi−6, 16 ≤ i ≤ 67,

wi
′ = wi ⊕ wi+4, 0 ≤ i ≤ 63.

The functions P0(X) which is used in the state update transformation and P1(X) which
is used in message expansion are given by

P0(X) = X ⊕ (X ≪ 9) ⊕ (X ≪ 17),

P1(X) = X ⊕ (X ≪ 15) ⊕ (X ≪ 23).

State Update Transformation. The state update transformation starts from an initial
value IV = (A0, B0,C0,D0, E0, F0,G0,H0) of eight 32-bit words and updates them in
64 steps. In step i + 1(0 ≤ i ≤ 63) the 32-bit words wi and wi

′ are used to update the
state variables Ai, Bi,Ci,Di, Ei, Fi,Gi,Hi as follows:
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Fig. 1. One step of the SM3 hash function

S S 1i = ((Ai ≪ 12) + Ei + (Ti ≪ i))≪ 7,

S S 2i = S S 1i ⊕ (Ai ≪ 12),

TT1i = FFi(Ai, Bi,Ci) + Di + S S 2i + wi
′,

TT2i = GGi(Ei, Fi,Gi) + Hi + S S 1i + wi,

Ai+1 = TT1i, Bi+1 = Ai,Ci+1 = (Bi ≪ 9),Di+1 = Ci,

Ei+1 = P0(TT2i), Fi+1 = Ei,Gi+1 = (Fi ≪ 19),Hi+1 = Gi.

The round constants are Ti = 0x79cc4519 for i ∈ {0, ..., 15} and Ti = 0x7a879d8a, for
i ∈ {16, ..., 63}. As for the bitwise Boolean functions FF(X, Y, Z) and GG(X, Y, Z) used
in each step, we have

FF(X, Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15,
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), 16 ≤ i ≤ 63,

GG(X, Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15,
(X ∧ Y) ∨ (¬X ∧ Z), 16 ≤ i ≤ 63.

If M is the last block, then (A64 ⊕ A0, B64 ⊕ B0,C64 ⊕ C0,D64 ⊕ D0, E64 ⊕ D0, F64 ⊕
F0,G64⊕G0,H64⊕H0) is the hash value. Otherwise (A64⊕A0, B64⊕B0,C64⊕C0,D64⊕D0,
E64 ⊕D0, F64 ⊕F0,G64 ⊕G0,H64 ⊕H0) constitutes the input of the next message block.
One step of the SM3 compression function is depicted in Fig. 1.

2.2 Notation

Our attacks use the integer modular subtraction difference. In here, we introduce the
notation used in throughout the rest of the paper.
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1. X, Y, X′ and Y′ represent four 256-bit middle chaining values.
2. IVX , IVY , IVX′ and IVY′ represent four 256-bit initial values.
3. HX ,HY ,HX′ and HY′ represent four 256-bit outputs of the compression function.
4. MX ,MY ,MX′ and MY′ represent four 512-bit message blocks.
5. wi, j denotes the j-th bit of wi, 0 ≤ j ≤ 31.
6. (Wt)

j
i (t can be X, Y, X′ or Y′) denotes ( j− i+ 1) 32-bit words, wi to wj, where i < j.

7. S i[+ j] = S i + 2 j with no bit carry, S i[− j] = S i − 2 j with no bit carry, where S can
be w, A, B,C,D, E, F,G,H.

8. S Mc
i denotes the chaining value used in step i combined with the middle chaining

value Mc where Mc can be X, Y, X′, Y′, and S can be w,w′, A, B,C,D, E, F,G,H, S S 1,
or S S 2.

3 Boomerang Distinguishers for Hash Functions

In this section, we review known-related-key boomerang attacks which can be used to
distinguish a given permutation from a random oracle. We concentrate on the known-
related-key boomerang attack to the compression function in the Davies-Mayer mode,
i.e., CF(M,K) = E(M,K) ⊕ M. As noted in [5,7,9,14], we can start from middle steps
to construct boomerang distinguishers. Then we have

CF−1
0 (X,K1) ⊕CF−1

0 (X ⊕ β,K2) = α, (1)

and
CF1(X,K1) ⊕ CF1(X ⊕ γ,K3) = δ, (2)

where the differential in CF−1
0 holds with probability p0 and holds with probability p1

in CF1. Using these two differentials, we can construct the boomerang attack for the
compression function CF as follows:

1. Choose a random value X, compute the corresponding value X′ = X ⊕ β, Y =
X ⊕ γ, Y′ = Y ⊕ β and K2 = K1 ⊕ βk,K3 = K1 ⊕ γk,K4 = K3 ⊕ βk.

2. Compute backward from (X,K1), (X′,K2), (Y,K3), (Y′,K4) using CF−1
0 to obtain

P, P′,Q,Q′.
3. Compute forward from (X,K1), (X′,K2), (Y,K3), (Y′,K4) using CF1 to obtain C,C′,

D,D′.
4. Check whether P ⊕ P′ = Q ⊕ Q′ = α and C ⊕ D = C′ ⊕ D′ = δ.

From (1) and (2),

P ⊕ P′ = Q ⊕ Q′ = α and C ⊕ D = C′ ⊕ D′ = δ, (3)

holds with probability at least p2
0 in the backward direction and with probability at least

p2
1 in the forward direction. Hence, assuming that the differentials are independent, the

attack succeeds with probability p2
0 p2

1. The expected number of solutions to (3) is 1, if
we repeat the attack about 1/(p2

0 p2
1) times.

For an n-bit random permutation, there exist 3 types of boomerang distinguishers
which are summarized by Yu et al. in [14]. Here we recall the three distinguishers as
follows.
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– Type I: A quartet that satisfies P ⊕ P′ = Q ⊕ Q′ = α, and C ⊕ D = C′ ⊕ D′ = δ
where the differences α and δ are fixed. In this case, there exists a generic attack
with complexity 2n.

– Type II: A quartet that only satisfies the condition C ⊕ D = C′ ⊕ D′. This type of
attack is called second-order differential collision attack or zero-sum attack. In this
case, we can use Wagner’s generalized birthday attack [19] to obtain a quartet with
the complexity 2n/3.

– Type III: A quartet satisfies the conditions P ⊕ P′ = Q ⊕ Q′ and C ⊕ D = C′ ⊕ D′.
The complexity of this attack is about 2n/2.

In this paper, we apply a type III attack to develop distinguishers for 32/33/34/35 steps
of the SM3 compression function. Therefore, the attack is valid if p2

0 · p2
1 > 2−n/2.

4 Attacks on the SM3 Compression Function

In this section, we describe the proposed boomerang attack on the SM3 compression
function reduced to 32 steps, and then expend our attack to 33, 34 and 35 steps. Firstly,
we give a summary of the differential characteristics to be used to distinguish the target
compression function from random functions. Secondly, we describe how to use the
message modification technique to correct the conditions in the intermediate steps by
modifying the chaining values A16 to H16. We express our attack algorithm on 32-
step SM3 compression function in the third part of this section. Then we evaluate the
complexity of our attack and extend it to 33, 34 and 35 steps.

4.1 Differential Characteristics

In here, we mainly describe the differential characteristics which are used to attack 32-
step SM3 compression function. In Table 2, we present a differential characteristic in
the backward direction from step 16 to step 1 which holds with probability 2−67, and
the sufficient conditions that ensure that this characteristic holds. A differential charac-
teristic in the forward direction from step 17 to step 32 which holds with probability
2−34 and its associated sufficient conditions are presented in Table 3.

Finding the differential characteristics for both backward and forward directions is
an important part of the attack. We construct the differential characteristics as follows.

– The characteristic has a single bit difference in the message word wi at some step, i,
followed by 15 message words without differences. When using such characteristic,
12 steps (the ones that follow i) can be bypassed with probability 1. Because of the
fast diffusion of the difference coming from the message words, any characteristic
that does not follow this strategy will have a low probability.

– In the backward direction, the differences in the message words are chosen as
follows: Δw2 = [+31], Δwi = 0 (0 ≤ i ≤ 15, i � 2). Because Δw2= [+31] and
w2
′ = w2 ⊕ w6, we choose w6,31 = 0 to ensure that Δw2

′= [+31]. Since w18 =

P1(w2 ⊕w9 ⊕ (w15 ≪ 15))⊕ (w5 ≪ 7)⊕w12, by choosing proper w12,14,w12,22 and
w12,31, we can ensure that Δw18= [+14, +22, +31] holds. Combined with w14,i = 0
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Table 2. Differential characteristic for steps 1-16 using signed bit-wise differences (32 steps)

Step Differences of w w′ Pr Sufficient conditions
chaining values
B0:[+22] 2−6 A0,22 = C0,22,
C0:[-31] E0,12 = G0,12,
D0:[-22,+31] D0,22 = 1,D0,31 = 0,
F0:[+12] H0,i = 1(i = 12, 31),
G0:[-31]
H0:[-12,+31]

1 C1:[+31] 2−2 D1,31 = 1,
D1:[-31] H1,31 = 1.
G1:[+31]
H1:[-31]

2 D2:[+31] [+31] [+31] 2−2 D2,31 = 0,
H2:[+31] H2,31 = 0.

3 1
...

...
...

...
...
...

14 [+14,+22,+31] 1
15 A15:[+14,+22,+31] 2−57 A16,i = 0(i = 1, 2, 9, 11, 14, 18, 22, 26, 31),

B16,i = 0(i = 6, 14, 21, 22, 29, 31),
C16,8 = D16,31,C16,23 = D16,14,
C16,31 = D16,22,
(B16 ≪ 12) + F16 = −(T15 ≪ 15),
E16,i = 0(i = 1, 3, 9, 10, 18, 26, 27),⊕

i∈Λ j
E16,i = 0, j ∈ {1, 2, 3},

Λ1 = {6, 14, 15, 16, 22, 24, 30, 31},
Λ2 = {0, 6, 7, 14, 22, 23, 24, 30},
Λ3 = {0, 7, 15, 16, 23, 31}.

16 A16:[+1,+2,+9,+11,
+14,+18,+22,
+26,+31]

B16:[+14,+22,+31]
E16:[+1,+3,+9,+10
+18,+26,+27]

(i = 14, 22, 31), we can get Δw14
′= [+14, +22, +31]. So the differences of the mes-

sage words in the backward direction are Δw2 = [+31], Δw2
′ = [+31], Δw14

′ =
[+14,+22,+31], and all the other message words differences are zero.

If A15[+14,+22,+31] holds, then we can cancel the differences Δw14
′ = [+14,

+22,+31] in step 15, and skip 12 steps from step 15 to step 4 with probability 1.
The following is the derivation for the sufficient conditions in step 16 of Table 2.
The differential characteristic in step 16 is given by:
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Table 3. Differential characteristic for steps 17-32 using signed bit-wise differences

Step Differences of w w′ Pr Sufficient conditions
chaining values

16 A16:[-6] [+3,+4,+5, [+3,+4,+5,
D16:[-6,-11,-13, +11,+13, +11,+13,

-18,-19,-20, +19,+20, +19,+20,
-22,-25,-26] +22,+27] +22,+27]

E16:[-28]
H16:[-4,-5,-11,

-13,-19,-20,
-22,-25,-26]

17 B17:[-6] 2−27 A16,i = 1(i = 6, 23), A16,13 = 0,
F17:[-28] B16,6 = C16,6,

D16,i = 1(i = 6, 11, 13, 18, 19, 20, 22, 25, 26),
E16,28 = 1, F16,28 = G16,28,
H16,i = 1(i = 4, 5, 11, 13, 19, 20, 22, 25, 26).
S S 116,i = 1(i = 3, 18, 25).

18 C18:[-15] 2−2 A17,6 = C17,6,
G18:[-15] E17,28 = 0.

19 D19:[-15] [+15] [+15] 2−2 A18,15 = B18,15,
H19:[-15] E18,15 = 1.

20 1
...

...
...

...
...

...

31 [±6,+15,+30]1 1
32 A32:[±6,+15,+30] 2−3

1 The difference of w2 affects w31,6. In other words, if we choose wX
31,6−wY

31,6 = +1, then the difference
wX′

31,6 − wY′
31,6 = −1, and vice versa (We used ” ± ” to denote this fact). Note that this does not affect

the XOR-differences in step-32.

(A16[+1,+2,+9,+11,+14,+18,+22,+26,+31], B16[+14,+22,+31],C16,D16,

E16[+1,+3,+9,+10,+18,+26,+27], F16,G16,H16) −→
(A15[+14,+22,+31], B15,C15,D15, E15, F15,G15,H15).

1. Because A15 = B16, B15 = (C16 ≫ 9),C15 = D16, E15 = F16, F15 = (G16 ≫
19) and G15 = H16, we choose (B16 ≪ 12)+F16 = −(T15 ≪ 15) to ensure that
ΔS S 1 = Δ((B16 ≪ 12)+F16 + (T15 ≪ 15)) ≪ 7 = [+1,+9,+18] holds and
the conditions B16,i = 0(i = 6, 21, 29) ensure that ΔS S 2 = ΔS S 1 ⊕ Δ(B16 ≪
12)= [+1,+2,+9,+11,+18,+26] holds.

2. The conditions B15,i = C15,i, (i = 14, 22, 31), i.e., C16,8=D16,31, C16,23=D16,14

and C16,31=D16,22 ensure that ΔFF15(A15, B15, C15)= ΔFF15(B16, C16 ≫ 9,
F16)= [+14,+22,+31] hold. Combined with Δw15

′ = 0, we can get ΔD15 =

ΔA16 - (ΔFF15(B16, C16 ≫ 9, D16) + ΔS S 2 + Δw15
′) = 0. Similarly, the

conditions
⊕

i∈Λ j
E16,i = 0, j ∈ {1, 2, 3}, Λ1 = {6, 14, 15, 16, 22, 24, 30, 31},

Λ2 = {0, 6, 7, 14, 22, 23, 24, 30},Λ3 = {0, 7, 15, 16, 23, 31} ensure that ΔH15 = 0
holds.

Thus the above conditions constitute a set of sufficient conditions for the differential
characteristic in step 16.
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Table 4. Differential characteristic for steps 1-16 using signed bit-wise differences (33 steps)

Step Differences of w w′ Pr Sufficient conditions
chaining values
B0:[+22] 2−6 A0,22 = C0,22,
C0:[-31] E0,12 = G0,12,
D0:[-22,+31] D0,22 = 1,D0,31 = 0,
F0:[+12] H0,i = 1(i = 12, 31).
G0:[-31]
H0:[-12,+31]

1 C1:[+31] 2−2 D1,31 = 1,
D1:[-31] H1,31 = 1.
G1:[+31]
H1:[-31]

2 D2:[+31] [+31] [+31] 2−2 D2,31 = 0,
H2:[+31] H2,31 = 0.

3 1
...

...
...

...
...

...

14 [+14,+22,+31] 1
15 A15:[+14,+22,+31] 2−59 A16,i = 0(i = 3, 9, 11, 14, 15, 16, 17, 22, 26, 31),

A16,1 = 1, B16,i = 0(i = 6, 14, 21, 22, 29, 31),
C16,8 = D16,31,C16,23 � D16,14,C16,31 = D16,22,
(B16 ≪ 12) + F16 = −(T15 ≪ 15),
E16,i = 0(i = 1, 3, 9, 10, 18, 26, 27),⊕

i∈Λ j
E16,i = 0, j ∈ {1, 2, 3},

Λ1 = {6, 14, 15, 16, 22, 24, 30, 31},
Λ2 = {0, 6, 7, 14, 22, 23, 24, 30},
Λ3 = {0, 7, 15, 16, 23, 31}.

16 A16:[-1,+3,+9,+11,
+14,+15,+16,
+17,+22,
+26,+31]

B16:[+14,+22,+31]
E16:[+1,+3,+9,+10
+18,+26,+27]

– In the forward direction, we choose the message differences as follows: Δw19 =

[+15], Δwi = 0(20 ≤ i ≤ 34). Since w19
′ = w19 ⊕ w23, we choose w23,15 = 0

to ensure that Δw19
′ = [+15]. Because Δw19 = [+15] and w19 = P1(w3 ⊕ w10

⊕(w16 ≪ 15)) ⊕ (w6 ≪ 7) ⊕ w13, let w3 ⊕ w10 = 0 and (w6 ≪ 7) ⊕ w13 = 0,
to get Δw16= [+3,+4,+5,+11,+13, +19, +20, +22, +27]. If we choose w20,i = 0,
(i = 3, 4, 5, 11, 13, 19, 20, 22, 27) and w23,15 = 0, from w16

′ = w16 ⊕ w20, we can
get Δw16

′ = Δw16. Because w35 =P1(w19 ⊕ w26 ⊕ (w32 ≪ 15)) ⊕(w22 ≪ 7) ⊕ w29

and w31
′ = w31 ⊕ w35, we choose w31,i = 0 (i = 6, 15, 30), such that Δw31

′ =
[±6,+15,+30]1.

1 Because w31 =P1(w15 ⊕ w22 ⊕ (w28 ≪ 15)) ⊕(w18 ≪ 7) ⊕ w25 and Δw18= [+14, +22, +31]
in the backward direction, if we choose wX

31,i = 0 and wY
31,i = 1(i = 6, 15, 30), then the bits

in wX′
31 and wY′

31 are wX′
31,i = 0(i = 15, 30), wX′

31,6 = 1 and wY′
31,i = 1(i = 15, 30), wY′

31,6 = 0. So
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Table 5. Differential characteristic for steps 17-33 using signed bit-wise differences

Step Differences of w w′ Pr Sufficient conditions
chaining values

16 C16:[-0,-2,-5,-6,-18, [+27]
-23,-25,-30,-31]

D16:[-27]
G16:[-0,-2,-5,-6,-16,

-17,-23,-25,-31]
H16:[-3,-8,-10,-11,

-19,-26,-27]
17 A17:[-18] [+0,+2,+7, [+0,+2,+7, 2−54 A16,i=B16,i(i = 0, 2, 5, 6, 23, 25, 30, 31),

D17:[-0,-2,-5,-6,-18, +15,+16, +15,+16, A16,18 � B16,18,
-23,-25,-30,-31] +17,+23, +17,+23, C16,i = 1(i = 0, 2, 5, 6, 18, 23, 25, 30, 31),

E17:[-8] +25,+31] +25,+31] T T 116,8 = 0,D16,27 = 1,
H17:[-0,-2,-5,-6,-16, E16,i=1(i = 0, 2, 5, 6, 16, 23, 31),

-17,-23,-25,-31] E16,i = 0(i = 17, 25),
G16,i = 1(i = 0, 2, 5, 6, 16, 17, 23, 25, 31),
H16,i = 1(i = 3, 8, 10, 11, 19, 26, 27),
T T 216,i = 1(i = 3, 8, 10, 11, 17, 19, 25, 26, 27).

18 B18:[-18] 2−9 A17,i = 1(i = 3, 18), A17,25 = 0,
F18:[-8] B17,18 = C17,18,

E17,8 = 1, F17,8 = G17,8,
S S 117,i = 1(i = 5, 15, 30).

19 C19:[-27] 2−2 A18,18 = C18,18,
G19:[-27] E18,8 = 0.

20 D20:[-27] [+27] [+27] 2−2 A19,27 = B19,27,
H20:[-27] E19,27 = 1.

21 1
...

...
...

...
...

...

32 [+10,+18,+27] 1
33 A32:[+10,+18,+27] 2−3

In this case, the massage word differences in the forward direction are Δw16 =

Δw16
′= [+3,+4,+5,+11,+13,+19,+20,+22,+27],Δw19 = Δw19

′ = [+15],Δw31
′=

[±6,+15,+30], and all the other message words differences are zero.

The following is the derivation for the sufficient conditions for step 17 in Table 3.
The differential characteristic in step 17 is given by:

(A16[−6], B16,C16,D16[−6,−11,−13,−18,−19,−20,−22,−25,−26], E16[−28], F16,

G16[+28],H16[−4,−5,−11,−13,−19,−20,−22,−25,−26]) −→
(A17, B17[−6],C17,D17, E17, F17[−28],G17,H17).

the difference of w2 affects w31,6. In other words, if we choose wX
31,6 − wY

31,6 = +1, then the
difference wX′

31,6 − wY′
31,6 = −1, and vice versa (We used ” ± ” to denote this fact). Note that this

does not affect the XOR-differences in step 32.
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1. From ΔA16 = [−6] and B16,6 = C16,6, we get ΔFF16(A16, B16,C16) = 0. From
ΔE16 = [−28] and F16,28 = G16,28, we get ΔGG16(E16, F16,G16) = 0.

2. From ΔA16 = [−6] and ΔE16 = [−28], it follows that the conditions S S 116,3 =

1, S S 116,25 = 1 ensure ΔS S 116 = [−3,−25]. Combined with the conditions
S S 116,18 = 1, A16,13 = 0 and A16,23 = 1, we can get ΔS S 216 = [+3,+18,−25].
Therefore, ΔA17 = ΔTT116 = 0, and ΔE17 = ΔP0(TT216) = 0.

Thus the above conditions constitute a set of sufficient conditions for the differential
characteristic in step 17.

4.2 Message Modification

We use the message modification technique which has been introduced by Wang et
al. [18] to improve the complexity of our attack. We can modify the chaining val-
ues A16 to H16 to ensure that almost all the conditions in Ai to Hi (i=17,18,19) hold.
For example, in the backward direction, we can modify E16,i(i = 6, 15) to make the
sufficient conditions

⊕
i∈Λ j

E16,i = 0, j∈ {1, 2, 3}, Λ1 = {6, 14, 15, 16, 22, 24, 30, 31},
Λ2 = {0, 6, 7, 14, 22, 23, 24, 30},Λ3 = {0, 7, 15, 16, 23, 31} hold.

In Table 3, there are 31 sufficient conditions from step 17 to step 19 in each dif-
ferential. We can correct all the sufficient conditions in one differential by using mes-
sage modification techniques, and the sufficient conditions S S 116,i = 1(i = 3, 18, 25),
A17,6 = C17,6, E17,28 = 0, A18,15 = B18,15 and E18,15 = 1 are not corrected in another
differential. So the probability of step 17 to step 19 can be improved from 2−2×31 =

2−62 to 2−7. In Table 5, there are 63 sufficient conditions from step 17 to step 18 in
each differential. We can correct all the sufficient conditions in one differential by us-
ing message modification techniques. However, the sufficient conditions TT116,8 = 0,
TT216,i = 1(i = 3, 8, 10, 11, 17, 19, 25, 26, 27), A17,i = 1(i = 3, 18), A17,25 = 0, E17,8 = 1
and S S 117,i = 1(i = 5, 15, 30) are not corrected in the other differential. So the proba-
bility of step 17 to step 18 can be improved from 2−2×63 = 2−126 to 2−17. Consequently,
in this case, the probability of step 17 to step 20 can be improved from 2−2×67 = 2−134

to 2−17−2×4 = 2−25.

4.3 Boomerang Attacks on the 32-Step SM3 Compression Function

The attack algorithm on 32-step SM3 compression function can be summarized as
follows.

1. Choose a random 512-bit message M and expand it to 36 words. Set proper message
words as in section 4.1 to ensure that Δw2 = [+31], Δw2

′ = [+31], Δw14
′= [+14,

+22, +31] in the backward direction, and Δw16 =Δw16
′= [+3,+4, +5, +11, +13,

+19,+20, +22, +27], Δw19 = [+15], Δw19
′= [+15], Δw31

′= [±6, +21, +29] in
the forward direction. Let MX = M, MX′ = M ⊕ Δw2. Expend the messages MX

and MX′ to 36 words WX and WX′ , respectively. Let WY = WX ⊕ Δw19 and WY′ =

WX′ ⊕ Δw19. Then we use the 16 words (WY)34
19 and (WY′ )34

19 to get two 36-word
(WY )35

0 and (WY′ )35
0 by using the message expansion algorithm. Let MY = (WY )15

0 ,
MY′ = (WY′ )15

0 .
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Table 6. Example of a quartet for 32 steps of the SM3 compression function

Message
MX ecffec51 192fa6b4 6314d06c f86f5604 ed6f140d 4597860c 3a4ccc9a b78b2ded

6a5b06f8 33169484 355b11c5 6b81ddd0 1e58820e 78fa46f6 742b217f 4669940f
MX′ ecffec51 192fa6b4 e314d06c f86f5604 ed6f140d 4597860c 3a4ccc9a b78b2ded

6a5b06f8 33169484 355b11c5 6b81ddd0 1e58820e 78fa46f6 742b217f 4669940f
MY e8fff051 1bafa634 6b4cf854 a86ff654 6dea968e 4597060c 524cc49a b78b25ed

6a5b06f8 430624d4 3d5311d5 6b81ddd0 1e58020e 50fa4ef6 742b217f 4669940f
MY′ e8fff051 1bafa634 eb4cf854 a86ff654 6dea968e 4597060c 524cc49a b78b25ed

6a5b06f8 430624d4 3d5311d5 6b81ddd0 1e58020e 50fa4ef6 742b217f 4669940f
Chaining Value

IVX 0d548434 6f039a92 3d5fb868 01b03347 29c6a571 0d8b6217 4f2359fa d6a363f4
IVX′ 0d548434 6f439a92 bd5fb868 81703347 29c6a571 0d8b7217 cf2359fa 56a373f4
IVY 792457dc 8f057732 6137fcd4 7899b663 948b29bf d5f5a832 d9ae3751 c747e405
IVY′ 792457dc 8f457732 e137fcd4 f859b663 948b29bf d5f5b832 59ae3751 4747f405
HX a1e82b03 54b1bb42 2563b063 e514d921 a0eaf1fa 632d0eef e2a999cf ad4964d1
HX′ 3fd356c7 ca7f9b81 3a9694d6 31d02769 b454a3bd c2d2dc37 45ffc720 2e319c71
HY e1e8ab43 54b1bb42 2563b063 e514d921 a0eaf1fa 632d0eef e2a999cf ad4964d1
HY′ 7fd3d687 ca7f9b81 3a9694d6 31d02769 b454a3bd c2d2dc37 45ffc720 2e319c71

2. Randomly choose the chaining values A16, B16, C16, D16, E16, G16 and H16 such
that almost all the conditions used in step 16 and step 172 in Table 2 and Table 3
hold.

3. By using the message modification technique, modify A16,19, H16,28, C16,15 and
G16,15 to make the sufficient conditions A17,6 = C17,6, E17,28 = 0, A18,15 = B18,15

and E18,15 = 1 hold in one of the differentials in the forward direction.
4. Use state update transformation process to get IVX , IVY , IVX′ , IVY′ , HX , HY , HX′

and HY′ . Check whether IVX ⊕ IVX′= IVY ⊕ IVY′ and HX ⊕ HY= HX′ ⊕ HY′ hold.
5. If a quartet is found, then a distinguisher is found. Repeat the above 4 steps with

different messages and chaining values (A16 to H16) until a distinguisher is found.

4.4 Complexity of the Attack

Using the differential characteristics and the message modification technique, we can
construct the boomerang attack for the SM3 compression function reduced to 32 steps.

In the backward direction, all the sufficient conditions used in step 16 can be set in
both of the differentials and the sufficient conditions used in step 3 to step 1 cannot
be corrected in both of the differentials. So the differential characteristic used in the
backward direction holds with probability 2−10. Thus both of the differentials used in
the backward direction hold with probability 2−10×2 = 2−20. In the forward direction, 7
sufficient conditions, from step 17 to step 19, are not corrected in one of the differen-
tials by using message modifications and in step 32, non of the sufficient conditions is
corrected in both of the differentials. Thus both of the differentials used in the forward
direction hold with probability 2−7−3×2 = 2−13 after the message modification.

Hence, we can give a boomerang attack on 32-step SM3 with complexity 220+13 =

233. We can also use the amplified differential characteristics to improve the complexity
of the attack. In this case, both of the two differentials used in the backward direction
hold with probability 2−3.2 and the two differentials used in step 32 hold with probability

2 All the conditions used in step 16 can hold in both of the differentials. In step 17 the conditions
S S 116,i = 1(i = 3, 18, 25) cannot be corrected in one of the differentials and all the other
conditions can hold.
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2−4.2. So we can get a 32-step boomerang distinguisher with complexity 23.2+7+4.2 =

214.4. An example of a 32-step boomerang distinguisher (quartet) is presented in Table 6.

4.5 Attacks on 33/34/35 Steps SM3 Compression Function

In what follows we extend the proposed boomerang distinguisher to the 35-step SM3
compression function. First, we obtain a new 33-step boomerang distinguisher and then
extend it to 35 steps. If we simply add one step in the forward differential characteristic
in Table 3, this will result in some contradictions in A16 and E16 between Table 2 and
Table 3. So we choose the message words differences as follows: Δw2 = [+31], Δwi = 0
(0 ≤ i ≤ 15, i � 2) in the backward direction, and Δw20 = [+27], Δwi = 0(21 ≤ i ≤ 35)
in the forward direction.

We also correct ΔA16 = [−1,+3,+9,+11,+14,+15,+16,+17,+22,+26,+31] and
change one of the sufficient conditions C16,23 = D16,14 to C16,23 � D16,14.

In this case, the backward direction is from step 16 to step 1 and the differential
characteristic which is given in Table 4 holds with probability 2−3.2. The forward di-
rection is from step 17 to step 33 and the differential characteristic is given in Table 5
where 25 sufficient conditions are not corrected in one of the differentials by using
message modifications. So the forward differential characteristic holds with probability
2−25−4.2 = 2−29.2. So we can get the 33-step boomerang distinguisher with complexity
23.2+29.2 = 232.4. In step 34 both of the differentials hold with probability 2−20.7 using the
amplified differential characteristics. Thus we obtain a 34-step boomerang distinguisher
with complexity 232.4+20.7 = 253.1. We also assume A35 and E35 all have 32-bit differ-
ences. Thus the 35-step boomerang distinguisher has a complexity≈ 253.1+2×32 = 2117.1.

5 A Slide-Rotational Property of SM3-XOR

In this section, we show that, in the case of the full SM3-XOR, pairs satisfying a certain
rotational relation can be easily generated. An example of such a pair for the SM3-XOR
is provided in Table 8. Such a property is not known to exist for SHA2-XOR [17].

The above mentioned property exists due to the fact that the constants over the 64
steps of SM3 are related. According to the SM3 specification, in steps j ∈ {0, . . . , 15},
one constant rotated by j is utilized, whereas the other constant rotated by j is used in
steps j ∈ {16, . . . , 63}. Since operations like XOR, FFi, GGi, 0 ≤ i < 64, that are used
in the SM3-XOR step function preserve the rotational property, it is natural to attempt a
rotational attack, as provided below. We note that if instead of SM3-XOR, the original
SM3 compression function is used, the addition mod 232 transforms the attack into a
probabilistic one, as outlined below. Due to the high number of additions per step, it
appears difficult to exploit this rotational property directly and therefore the security of
the SM3 compression function, at this stage of analysis, does not seem to be directly
affected.

Two 32-bit words X, Y are said to be rotational if X = Y <<< n. Let messages W and
W∗ satisfy W∗1 = W0 <<< 1,W∗2 = W1 <<< 1, . . . ,W∗16 = W15 <<< 1. Below, a procedure for
the instant generation of pairs v, v∗ such that
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Table 7. Example of a quartet for 33 steps of the SM3 compression function

Message
MX 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
MX′ 00000000 00000000 80000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
MY 04001c00 02800080 08582838 5000a050 80858283 00008000 68000800 00000800

00000000 7010b050 08080010 00000000 00008000 28000800 00000000 00000000
MY′ 04001c00 02800080 88582838 5000a050 80858283 00008000 68000800 00000800

00000000 7010b050 08080010 00000000 00008000 28000800 00000000 00000000
Chaining Value

IVX 274e6355 3333edb0 14f1b3d9 7be58154 d969d138 bb60c21a ff5909df e92dce5d
IVX′ 274e6355 3373edb0 94f1b3d9 fba58154 d969d138 bb60d21a 7f5909df 692dde5d
IVY 28b7b4d8 fe5f1155 93973138 c10d3808 32d4319b dc8de94e ef594319 8ef80fe1
IVY′ 28b7b4d8 fe1f1155 13973138 414d3808 32d4319b dc8df94e 6f594319 0ef81fe1
HX 52793642 8017615c fbf548ba 8b05cf67 dcb79a73 e1035e10 2caefeae 701d22d9
HX′ 772427a1 b2064c80 0dd79a89 2a809122 8bc2413f 8dd6b954 bad8867b 06c59c18
HY 987f3286 c017e19c fbf548ba 8b05cf67 dabd9677 e1035e10 2caefeae 701d22d9
HY′ bd222365 f206cc40 0dd79a89 2a809122 8dc84d3b 8dd6b954 bad8867b 06c59c18

Table 8. An example for a slide-rotational pair for the SM3-XOR compression function

A1 , B1 , . . . ,H1 0x565060b7 0x125d5655 0x285c7653 0xea f 5 f e1e
0xda8bd7dd 0xb8bb1904 0x43bca f 18 0x7c f 88895

W1
0 , . . . ,W

1
15

0x8 f 450bbd 0x4a0c9922 0x73dd44 f 8 0x9eceaa f 8
0x33b13e20 0xb59d9c33 0x6b5a5 f 23 0xc0d2b468
0x7a9a1e16 0xa f f 62878 0x3 f bb01 f 4 0x75278787
0xac0b849e 0x498 f 3045 0x62687c15 0xd3498eb

A2 , B2 , . . . ,H2 0x24baacaa 0x53285c76 0xd5eb f c3d 0xd f 1ee2a6
0x71763209 0x2bc610e f 0x f 9 f 1112a 0x f f eb86a4

W2
0 , . . . ,W

2
15

0x7e f a7542 0x1e8a177b 0x94193244 0xe7ba89 f 0
0x3d9d55 f 1 0x67627c40 0x6b3b3867 0xd6b4be46
0x81a568d1 0x f 5343c2c 0x5 f ec50 f 1 0x7 f 7603e8
0xea4 f 0 f 0e 0x5817093d 0x931e608a 0xc4d0 f 82a

v∗1 = v0 <<< 1, v∗2 = v1 <<< 8, v∗3 = v2 <<< 1

v∗5 = v4 <<< 1, v∗6 = v5 <<< 18, v∗7 = v6 <<< 1

V∗1 = V0 <<< 1,V∗2 = V1 <<< 8,V∗3 = V2 <<< 1

V∗5 = V4 <<< 1,V∗6 = V5 <<< 18,V∗7 = V6 <<< 1

(4)

is provided, where V = SM3-XOR(v,W), V∗ = SM3-XOR(v∗,W∗) and vi,Vi for 0 ≤
i ≤ 7 denote i-th 32-bit word in the v and V , respectively. For a random function, a
random (v,W), (v∗,W∗) satisfying the above constraints will yield the corresponding V
and V∗ with probability 2−6×32 = 2−192, since (4) imposes 6 32-bit conditions on V , V∗.

5.1 Constructing a Slide-Rotational Pair

In this section, step i denotes the transformation from (Ai, Bi,Ci,Di, Ei, Fi,Gi,Hi) to
(Ai+1, Bi+1,Ci+1,Di+1, Ei+1, Fi+1,Gi+1,Hi+1). For example by step 0 the first compres-
sion function step is denoted. We start by the following observations:

- The slide rotational messages expand to slide-rotational expanded messages with
probability 1. In particular, fix W0, . . . ,W15 and let

W∗1 = W0 <<< 1,W∗2 = W1 <<< 1, . . . ,W∗16 = W15 <<< 1 (5)

After expanding both W and W∗, we have W∗i+1 = Wi <<< 1, for i = {0, 1, . . . , 62}
and also W

′∗
i+1 = W′i <<< 1, for i = {0, 1, . . . , 66}.
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- We recall that Ti, 0 ≤ i ≤ 63 are the step constants. If we have

W∗i+1 = Wi <<< 1,W
′∗
i+1 = W′i <<< 1, Ti+1 = Ti <<< 1 (6)

A∗i+1 = Ai <<< 1, B∗i+1 = Bi <<< 1, . . . ,H∗i+1 = Hi <<< 1 (7)

for i = k, then (7) will also hold for i = k + 1, where k = 0, . . . , 62.

The observations above suggest that sliding can be introduced, as depicted in Fig. 2.
Namely, consider randomly initializing W and letting W∗ satisfy (5). Moreover,

A0, B0 . . . ,H0 is chosen randomly and the inner state registers after the first step in
the second instance of the hash function are initialized according to (7). Then, until step
15, due to (6), the rotational property in the inner state registers will be preserved. Once
the two instances reach steps 15 and 16, respectively, a different step transformation is
applied in the two instances and the rotational property may discontinue. This problem
is bypassed by starting from the middle, i.e., by populating the inner states entering the
critical steps 15 and 16 (see Fig. 2).

5.2 Bypassing Steps 15 and 16

The idea is to start by populating the inner states entering the critical steps 15 and 16
(see Fig. 2). In particular, a rotational pair (A15, . . . ,H15), (A∗16, . . . ,H

∗
16) is carefully

chosen so that (A16, . . . ,H16) and (A∗17, . . . ,H
∗
17) satisfy relation (7). It should be noted

that the rotational property may be destroyed only between A16 and A∗17 and between
E16 and E∗17, since the other registers go through identical rotational-preserving trans-
formations in step 15 and step 16. As for A16 and A∗17, for the purpose of tracking the
possible rotational disturbance between the two registers, the equation to compute these
two registers can be rewritten as

A15 B15 C15 D15 E15 F15 G15 H15

…
 

…
 

…
 

…
 

A63

B64

B0

B0 B64

A’16 B’16 C’16 F’16E’16

F’15

G’16 H’16

…
 

…
 

…
 

…
 

A’64

A’0 A’64

D’16

A’0

B’1
<<< 1

<<< 1

<<< 1

…
 

…
 

Fig. 2. The slide-rotational attack against SM3-XOR
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A16 = FF15(A15, B15,C15) ⊕ (T15 <<< 22) ⊕ α (8)

A∗17 = FF16(A∗16, B
∗
16,C

∗
16) ⊕ (T16 <<< 23) ⊕ α∗ (9)

where α = D15 ⊕ W15 ⊕ W19 ⊕ (((A15 <<< 12) ⊕ E15) <<< 7) ⊕ (A15 <<< 12) and α∗ =
D∗16 ⊕W∗16 ⊕W∗20 ⊕ (((A∗16 <<< 12) ⊕ E∗16) <<< 7) ⊕ (A∗16 <<< 12). Since (7) and (6) hold for
i = 15, α∗ = α <<< 1. Therefore, to have A16 and A∗17 be a rotational pair, it suffices to
make FF15(A15, B15,C15)⊕(T15 <<< 22) and FF16(A∗16, B

∗
16,C

∗
16)⊕(T16 <<< 23) satisfy the

rotational property. After expressing A∗16, B∗16, C∗16 in terms of A15, B15, C15 and using
that FF15 and FF16 preserve the rotational property, the condition can be expressed in
terms of A15, B15, C15 as follows:

FF15(A15, B15,C15) ⊕ FF16(A15, B15,C15) = (T15 ⊕ T16) <<< 22 (10)

When applied on 1-bit values X, Y and Z, the equation FF15(X, Y, Z)⊕FF16(X, Y, Z) = 0
is satisfied for 2 out of 8 (X, Y, Z) values. Since the Hamming weight of the right-hand
side of (10) is equal to 14, the number of solutions to the equation is 218 × 614 =

232×314. As for preserving the rotational property between E16 and E∗17, developing the
registers as in (8) and then forming the equation of the form (10) yields that the number
of solutions E15, F15 and G15 is 432 = 264. Therefore, the number of solutions for
(A15, . . . ,H15) that pass the disturbance in steps 15 and 16 is 232×314×264×264 ≈ 2182.19,
since D15 and H15 are free variables. For such pairs, it follows that relations (4) are
satisfied.

When instead of SM3-XOR, the SM3 compression function is considered, this prop-
erty turns into a probabilistic one. Following [15], if pr = P[(x <<< r) + (y <<< r) =
(x + y) <<< r] where x and y are 32-bit words, then p1 = 2−1.415. Since there exists 8
additions in one SM3 step, the probability that one step and its corresponding slided
step will preserve the rotational property is given by (p1)8 = 2−11.320 [15].

6 Conclusions

In this paper, we have shown an application of the boomerang-style attack on the step-
reduced SM3 compression function. In particular, we presented distinguishing attacks
for 32 steps of the compression function with complexity 214.4, 33 steps with complexity
232.4, 34 steps with complexity 253.1 and 35 steps with complexity 2117.1. Our results
suggest that 35-step SM3 compression does not behave randomly. In the second part of
the paper, a slide-rotational property of SM3-XOR function is exposed and an example
of a slide-rotational pair for SM3-XOR compression function is given.
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