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Abstract. Service clustering provides an effective means to discover
hidden service communities that group services with relevant function-
alities. However, the ever increasing number of Web services poses key
challenges for building large-scale service communities. In this paper,
we address the scalability issue in service clustering, aiming to discover
service communities over very large-scale services. A key observation is
that service descriptions are usually represented by long but very sparse
term vectors as each service is only described by a limited number of
terms. This inspires us to seek a new service representation that is eco-
nomical to store, efficient to process, and intuitive to interpret. This new
representation enables service clustering to scale to massive number of
services. More specifically, a set of anchor services are identified that al-
low to represent each service as a linear combination of a small number
of anchor services. In this way, the large number of services are encoded
with a much more compact anchor service space. We conduct extensive
experiments on real-world service data to assess both the effectiveness
and efficiency of the proposed approach. Results on a dataset with over
3,700 Web services clearly demonstrate the good scalability of sparse
functional representation.

1 Introduction

Service oriented computing holds tremendous promise by exploiting Web services
as an efficient vehicle to deliver and access various functionalities over the Web.
The past few years have witnessed a fast boost of Web services due to the
wide adoption of service-oriented computing in both industry and government.
The proliferating services have formed a functionality-centric repository, through
which key computing resources can be conveniently accessed via the standard
Web service interface. However, the ever increasing number of Web service poses
key challenges to discover services with user required functionalities. A rigorous
and systematic methodology is in demand for efficiently and accurately searching
user desired services from a large and diverse service repository.

Universal Description Discovery and Integration (UDDI) provides a standard
registry service to publish and discover Web services. To make a service search-
able, the service provider needs to first publish its service in the UDDI registry.
Nonetheless, as service providers are autonomous in nature, it is infeasible to en-
force them to publish their services in the registry. In fact, most service vendors
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choose to directly advertise their services via their own web sites. Furthermore,
when change occurs to a published service, the service entry in the UDDI may
need to be updated to ensure consistency. This gives rise to additional main-
tenance cost for service providers. Recent statistics show that more than 50%
services in the public UDDI registries are invalid.

Service search engines have gained increasing popularity by automatically col-
lecting service descriptions using crawlers. Service descriptions are then indexed
and matched against user’s searching keywords. One key impediment towards
the wide adoption of service search engines has been the poor search quality
resulted from simple keyword matching. While keyword matching may perform
reasonably well on regular Web pages, it suffers from service descriptions, which
are usually generated from application programs using Web service deployment
tools. Many service descriptions are comprised of very limited number of terms,
most of which are not proper words. Therefore, there is a low chance for a service
description to match a searching keyword even though the service may provide
the exact user-desired functionality.

Clustering techniques have been adopted to improve the quality of service
discovery [5,16,3]. Service clustering computes the similarity among services to
group together relevant services into homogeneous service communities. Clus-
tering enables services to be discovered by exploiting the proximity to other
services. Consider two similar services, S1 and S2, where S1 contains the search-
ing keyword while S2 does not. Through service clustering, both S1 and S2 will
be returned as they are deemed to provide similar functionality desired by the
user. In this way, the search quality can be dramatically improved. Furthermore,
service discovery can be directed to only relevant service communities so that
more efficient performance is achieved.

As the number of services keeps increasing, building service communities over
large-scale Web services arises as a central challenge. Following traditional docu-
ment clustering, each service description si is denoted by a term vector, in which
si(j) is set to the normalized frequency (or other metrics such as TF/IDF) of tj if
tj ∈ si and 0 otherwise. The length of si is equal to the size of the term dictionary,
which consists of the distinct terms over all service descriptions. Most service
descriptions are generated from program source codes, where various naming
conventions may be used by different developers. This results in a large number
of distinct terms especially when scaling to a massive number of services. For ex-
ample, in one of the real service dataset used in our experiments [18], we extract
around 17,000 distinct terms from over 3,700 service descriptions. However, each
service description only consists of 20 distinct terms on average. Therefore, the
term vector si will be very large and extremely sparse (density is around 0.1%
in our dataset) when dealing with large-scale services.

Simple clustering algorithms, such as K-means, scales well with the number
of services. The similarity between two term vectors is usually computed based
on the number of terms that co-occur in these two vectors. However, directly
applying these algorithms to large-scale service clustering usually leads to poor
clustering quality because the term vectors for service descriptions are extremely
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sparse and hence less likely to share common terms. Advanced algorithms, such
as matrix factorization based ones (e.g., SVD co-clustering [17] and NMTF [4]),
have been demonstrated to be more effective in dealing with limitations of service
descriptions and generate high-quality service communities. However, it remains
unclear how these algorithms can handle extremely large and sparse term vectors.
In addition, the high computational cost also prohibits them from scaling to a
massive number of services.

In this paper, we address the scalability issue in service clustering, aiming
to discover service communities over very large-scale services. The central idea
is that instead of using a large and highly diverse dictionary of terms, we seek
a much more succinct representation of service descriptions. Inspired by recent
works on sparse coding [8,19], we devise a novel strategy to learn a set of “anchor”
services, which form a new dictionary to encode the service descriptions. This
allows each service to be represented as a linear combination of a small num-
ber of anchor services. In general, the number of anchor services is smaller than
the number of distinct terms with several orders of magnitude. Hence, the large
number of services are encoded with a much more compact dictionary of an-
chor services. The new representation is essentially a projection onto the anchor
service space. Similarity between services is determined based on how they are
related to a small number of anchor services. Simple clustering algorithms, like
K-means, can then be applied to this compact representation to efficiently and
accurately cluster large-scale services. We demonstrate the effectiveness of the
proposed algorithm via extensive experiments on two real-world service datasets.

The remainder of the paper is organized as follows. We discuss some related
works in Section 2, which provide a background overview of the proposed ap-
proach. We present the details of sparse functional representation in Section 3.
We use a concrete example to explain how sparse functional representation works
and provide intuitive justifications of its effectiveness. We also propose a novel
clustering scheme that integrates information from both the anchor service space
and the term vector space. We apply sparse functional representation to two real-
world service datasets and assess its effectiveness in Section 4. We conclude the
paper and provide some future directions in Section 5.

2 Related Work

Service clustering and related technologies have been increasingly adopted to
facilitate service discovery [5] or other key tasks in service computing, such as
service composition [10] and service ontology construction [13].

Clustering has been a central technique to improve the accuracy of service
search engines. Woogle, a Web service search engine, performs term clustering
to generate a set of high-level concepts, which are then used to facilitate the
matching between users’ queries and the service operations [5]. Similarly, term
clustering is also used in [10] to facilitate service discovery and composition.
Basic K-means algorithms are usually used and the similarity between terms
are evaluated based on their co-occurrence in the service descriptions. Quality
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Threshold (QT) clustering is employed to cluster Web services in [6] to boot-
strap the discovery of Web services. WSDL descriptions are carefully parsed and
important components are extracted, which include content, types, messages,
ports, and name of the Web service. Weights are assigned to each component
when similarity between two services is evaluated. More complicated algorithms,
such as Probabilistic Latent Semantic Analysis (PLSA), have also been applied
to service clustering and discovery [12]. A SVD based algorithm is adopted to
achieve the co-clustering of services and operations in [17]. Co-clustering ex-
ploits the duality relationship between services and operations to achieve better
clustering quality than one-side clustering.

Given the limitations of the WSDL service descriptions, some recent propos-
als seek to explore external information sources, such as Wordnet 1 and Google,
to improve service clustering and discovery [9,1]. In [16], matrix factorization
and the semantic extensions of service descriptions have been integrated for ser-
vice community discovery. The integration has the effect of placing the extended
semantics into the context of the service, which more effectively leverages the
extended semantics to benefit community discovery. As Web services usually
consist of both WSDL and free text descriptors, novel approaches have been de-
veloped in [13] to integrate both types of descriptors for effective bootstrapping
of service ontologies. Another important piece of information that is complemen-
tary to service descriptions is the service tags that users use to annotate services.
A novel approach, referred to as WTCluster, is developed in [3] that exploits
both WSDL documents and service tags for Web service clustering.

3 Sparse Functional Representation for Service
Clustering

Sparse functional representation aims to seek a compact dictionary of anchor
services to succinctly represent large-scale services. Consider a set of services
S = {s1, ..., sm}, where each si ∈ R

n is denoted as a term vector and n is the
size of the term dictionary that is comprised of all distinct terms extracted from
the services in S. By mapping terms into rows and services into columns, S is
conveniently represented by a two dimensional service matrix X ∈ R

n×m. Each
entry Xij ∈ X is set to the normalized frequency of term ti in service sj and
zero if ti /∈ sj. Table 1 provides a quick reference to a set of symbols that are
commonly used in the paper.

As discussed in Section 1, due to the diverse naming conventions used in ser-
vice descriptions, the size of the term dictionary increases dramatically with the
number of services in S. This will result in a huge and extremely sparse matrix X.
For example, in our experiments, a 16, 884 × 3, 738 matrix is constructed from
a real-world service dataset with 3, 738 services. X consists of approximately
6.3×108 entries, among which only 0.1% are nonzero, implying a 99.9% sparsity
ratio. This poses a set of key challenges for clustering large-scale services. First,

1 http://wordnet.princeton.edu/
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Table 1. Symbols and Descriptions

Symbol Description
S set of services
sj , ti the jth service and ith term
X,A,W, Z matrices
X′ the transpose of matrix X

Xij the element at the ith row and jth column of matrix X

xj the j-th column vector of matrix X

xj(i) the i-th element of xj

xT
i the i-th row vector of matrix X

scalability arises as a significant challenge for storing and processing a large ser-
vice matrix whose size grows quickly with the number of services. Second, the
highly sparse term vectors are a key impediment for applying many clustering
algorithms to generate high-quality clusters as sparse vectors are less likely to
share common terms.

3.1 Sparse Functional Representation

The above observation implies that a large and diverse term dictionary does
not provide a suitable representation for large-scale service clustering. Instead,
concepts with coarser granularity may be more instrumental to produce a com-
pact and cohesive service representation. Hence, we aim to seek a new service
representation that is economical to store, efficient to process, and intuitive to
interpret. This new representation will enable service clustering to scale to mas-
sive number of services. Inspired by recent advances in sparse coding [8,19], we
devise a novel sparse functional representation (SFR) strategy to discover a set
of so called “anchor services”. The anchor services are expected to capture the
high-level functionalities of services while significantly compressing the original
term vector space. More specifically, SFR seeks a matrix A = {a1, ...,ak}, where
each ai ∈ R

n denotes an anchor service and is a linear combination of a set of
term vectors (or columns of X):

A = {a1, ...,ak} = XW (1)

ai = Xwi =
m∑

j=1

Wijxj , ∀i = 1, ..., k (2)

where W = {w1, ...,wk} ∈ R
m×k is a weight matrix. Each entry Wij denotes

how much service sj contributes to anchor service ai. It is worth to note that Wij

may take a negative value, meaning that sj related information is removed from
ai. Hence, a negative entry in W serves as the “de-noise” purpose to generate
an anchor service with purer functionality or concept.

In practice, we have k � n. Hence, the anchor services provide a compact
way to represent large-scale services. The desired anchor services are expected
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to capture high-level concepts or functionalities of the service space. Thus, we
should be able to recover the original services by using the anchor services.
Meanwhile, as most services are designed with specific purposes, it is common for
a single service to provide focused and limited functionalities. In another word,
a service is expected to be only related to a small subset of anchor services that
cover its functionalities. Therefore, a desired anchor service set should optimize
the following objection function:

min
A,zi≥0

J0 =
m∑

i=1

‖xi − Azi‖2 + λ||zi||0 (3)

subject to ||aj ||2 ≤ c, ∀j = 1, ..., k

where zi ∈ R
k
+ is the coefficient vector with zi(j) signifying the correlation

between xi and anchor service aj . ||zi||0 is the L0 norm of zi that counts the
number of nonzero elements in si. Since each service is expected to correlate with
only a small subset of anchor services, zi with many nonzero elements will be
penalized and λ is the penalty parameter. Therefore, the second term of Eq. (3)
corresponds to a sparsity constraint on zi. The norm constraint on the size of
the anchor service, i.e., ||aj ||2 ≤ c, avoids arbitrarily large anchor services that
keep Azi unchanged while making zi arbitrarily close to zero.

It is worth to note that zi is non-negative, which allows more intuitive in-
terpretation of the proposed sparse functional representation. More specifically,
the functionality of each service is represented as an additive combination of
functionalities encoded by a small number of anchor services.

3.2 Relaxation of the Objective Function

It has been proved that finding A and si that optimize objective function in
Eq. (3) is NP-hard [19]. Therefore, instead of directly solving Eq. (3), we tackle
the following optimization problem with a relaxed constraint:

min
W,S≥0

J1 = ‖X− XWZ‖2
F + λ

m∑

i=1

||zi||1 (4)

subject to ||Xwj ||2 ≤ c, ∀j = 1, ..., k

where ||Y||F =
∑

ij

√
Yij stands for Frobenius norm; zi is the i-th column of

Z ∈ R
k×m; ||zi||1 =

∑k
j=1 |Zji| is the L1 norm of zi. We replace A and aj by

XW and Xwj , respectively, due to Equations (1) and (2).
The first term of J1 is equivalent to the first term of J0 reformulated in the

matrix form. The key difference between J0 and J1 is the change from the L0

norm of zi to the L1 norm. The relaxed optimization is in essence to minimize
a quadratic function with a L1 norm constraint on zi and a L2 norm constraint
on aj . The optimization problem in the form of Eq.(4) is commonly known as
basis pursuit, which has been demonstrated to be effective in finding sparse co-
efficient vectors (i.e., zi’s). Therefore, the solution of J1 is expected to provide a



474 Q. Yu

good approximation to the optimal solution of J0. Furthermore, the relaxed op-
timization problem is computational attractive, which can be efficiently tackled
by iteratively solving a L1 regularized least squares problem and L2 regularized
least square problem to obtain Z and W, respectively [8].

3.3 An Illustrating Example

In what follows, we use a simple example to further illustrate the key ideas of
SFR as presented above. We randomly choose six services from a real-world
service dataset, in which three services are from the travel domain and the
other three are from the medical domain. Processing the service descriptions
results in 12 distinct terms. Hence, a 12×6 service matrix X is constructed. The
transpose of X is given in Eq. (5) for the convenience of presentation, in which
each row denotes a service and each column denotes a distinct term. Each entry
corresponds to a term frequency and each row vector is further normalized to
have L2 norm equal to 1.

X′ =

⎛

⎜⎜⎜⎜⎜⎝

0.29 0.29 0.86 0.29 0.096 0 0 0 0 0 0 0
0.26 0.26 0.61 0.26 0.088 0.61 0.18 0 0 0 0 0
0.33 0.33 0.33 0.33 0.11 0 0 0.33 0.66 0 0 0
0 0 0 0 0.092 0 0 0 0 0.55 0.83 0
0 0 0 0 0.092 0 0 0 0 0.55 0 0.83
0 0 0 0 0.092 0 0 0 0 0.55 0 0.83

⎞

⎟⎟⎟⎟⎟⎠
(5)

It is clear from Eq. (5) that even for a small service set with just six services, the
service matrix X is already very sparse. There are around 60% (42 out of 72)
zero entries. The sparsity ratio will increase dramatically when the set scales to
a large number of services.

We set the number of anchor services as 4 (i.e., k = 4) and solve the relaxed
optimization problem in Eq. (4), which leads to:

W =

⎛

⎜⎜⎜⎜⎜⎝

−0.12 0.4 0.37 0.14
−0.13 0.39 0.35 0.15
−0.14 0.31 0.34 0.17
0.55 −0.17 0.26 0.098
0.32 −0.12 −0.19 0.44
0.3 −0.12 −0.2 0.44

⎞

⎟⎟⎟⎟⎟⎠
, Z =

⎛

⎜⎝

0 0 0 0.24 0.22 0.21
0.23 0.23 0.2 0 0 0
0.27 0.26 0.24 0.13 0.0087 0.0054
0.26 0.26 0.26 0.26 0.42 0.42

⎞

⎟⎠

(6)

The i-th column of Z (i.e., zi) corresponds to the new representation of the i-th
service (i.e., i-th row of X′ in Eq. (5)) in the anchor service space. As expected, Z
has a sparse structure, which justifies the effectiveness of L1 norm approximation
of the original optimization problem. The first three columns of Z imply that
the first three services are only relevant to the last three anchor services. In
contrast, the other three services, which correspond to the last three columns of
Z, are tightly coupled with the first and last anchor services (the third entries of
these three columns are close to zero). All entries in Z are non-negative, which
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allows functionality of each service to be represented as an additive combination
of functionalities encoded by a small number of relevant anchor services.

Some interesting observations are also revealed from the weight matrix W.
These observations demonstrate that the interplay between the weight matrix W
and the coefficient matrix Z helps achieve the effectiveness of SFR. For example,
the first three entries of w1 (i.e., the first column of W) take negative values.
These negative entries imply that information related to the first three services
are removed from the first anchor service a1. Therefore, a negative entry Wij has
the effect of “decoupling” the i-th service from j-th anchor service. In contrast,
a positive entry Wij signifies the “addition” of the i-th service’s functionality to
the j-th anchor service. The decoupling and addition mechanism helps discover
cohesive concepts or service functionalities that are captured by the anchor ser-
vices. It also leads to unambiguous service-to-anchor service relationships. For
example, zT

1 , the first row of the coefficient matrix Z, consists of three zero and
three nonzero entries. This implies that the first three services are completely
irrelevant to anchor service a1 whereas the last three are tightly coupled with
a1. In fact, the three zero entries are resulted from the first three entries in w1,
which decouple the first three services from a1. The three nonzero entries are
due to the last three entries of w1 that add the functionalities of the last three
service into a1. Similarly, the second row of Z shows that the first three services
are relevant to anchor service a2 while the last three service are irrelevant to it.

3.4 Clustering in Anchor Service Space

By optimizing objection function J0 or its relaxed version J1, we aim to find an
anchor service set A and a new sparse representation zi to best approximate xi:

xi ≈ Azi =
k∑

j=1

ajZji (7)

Therefore, the new representation zi can be regarded as the projection of xi

onto the anchor service space A = {a1, ...,ak}. The coefficient vector zi cap-
tures the relevance between the i-th service and all the k anchor services. The
sparsity constraint on zi leads to clear-cut relationships between a service and
anchor services. Hence, services can be easily separated based on their distinct
relationships with the anchor services using sparse functional representation.

Figure 1 provides a schematic view of service clustering in the anchor service
space. Since each service is only related to a small subset of anchor services, the
similarity between two services can be easily computed based on how they are
related to the anchor services. More specifically, two services are similar if they
are related to a similar set of anchor services. Therefore, the anchor services serve
as a bridge to relate different services. Since the anchor services capture the high-
level concepts of the services, projection onto the anchor service space provides
a better way to assess the similarity between services than using terms. The
sparsity constraint on the coefficient vectors provides a clear separation between
services, which significantly facilitates service clustering. Any simple clustering
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Fig. 1. Clustering in Anchor Service Space

algorithms, such as K-means, may be directly applied to the coefficient matrix
Z to generate service clusters. Meanwhile, the anchor service space has a much
low dimensionality than the term vector space (i.e., k � n), clustering in the
anchor service space can easily scale to a massive number of services.

3.5 Term Vector and Anchor Service Integration
Sparse functional representation is formed by projecting term vectors xi’s onto
an anchor service space. Service clustering is then performed on the projected
representation, which is independent on the original term vector space. In this
section, we present a new clustering scheme that integrates information from
both the anchor service space and the term vector space.

One piece of information in the term vector space that can be leveraged is the
term vectors that share a decent number of distinct terms. If two term vectors
have a reasonable number of common terms, it means that they share similar
high-level concept and hence should be clustered together. This useful infor-
mation can be incorporated into anchor space clustering in a semi-supervisory
manner to improve the overall clustering quality. More specifically, we construct
a neighborhood graph G, in which each vertex corresponds to a term vector
xi ∈ X. Two vertices xi and xj are connected in G if the similarity between xi

and xj is no less than a threshold value. The similarity can be simply computed
by using cosine similarity. Assume that B is the incidence matrix of G. There-
fore, Bij = 1 if xi and xj are connected in G (i.e., similar to each other) and 0
otherwise. We expect B to be sparse as it is less likely for most term vectors to
share many common terms.

Consider any pair of term vectors xi and xj and their corresponding sparse
functional representations zi and zj . If xi and xj are similar, we expect zi and
zj to be similar as well. In contrast, if zi and zj significantly deviate from each
other, ||zi − zj ||2Bij will be large as Bij = 1 when xi and xj are close in the
term vector space. Therefore, we can use ||zi − zj ||2Bij as a penalty term and
incorporate it into objection function J1, which leads to

min
W,S≥0

J2 = ‖X − XWZ‖2
F + λ

m∑

i=1

||zi||1 + γ

m∑

i=1

m∑

j=1

||zi − zj ||2Bij (8)

subject to ||Xwj ||2 ≤ c, ∀j = 1, ..., k
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where γ is the penalty parameter. It is worth to note that if xi and xj are not
evaluated to be similar, we have Bij = 0. In this case, the term ||zi − zj ||2Bij is
set to 0 and will not affect the objective function J2.

4 Experimental Study

We apply the proposed SFR to two real-world service datasets. To evaluate its
effectiveness in service clustering, we will compare our approach with a set com-
petitive service clustering algorithms. As both clustering quality and efficiency
are important evaluation metrics, we will report both clustering accuracy and
CPU times in our experimental results.

4.1 Service Dataset Description

We include two real-world service datasets: one middle scale dataset with 452
services [7] and one large-scale dataset with 3,738 services [18]. We describe the
properties of each dataset in what follows:

– Dataset_1: The first service dataset consists of 452 WSDL descriptions of
services from 7 different application domains. More specifically, the services
are distributed as follows: communication (42), education (139), economy
(83), food (23), medical (45), travel (90), and weapon (30). The domain
information provides labels of the service clusters, which will be used to
evaluate the accuracy of the clustering algorithms in our experiments.

– Dataset_2: The second service dataset consists of WSDL descriptions of
3,738 services located in more than 20 countries. The services are more di-
verse and complicated, coming from a large number of domains varying from
government to academia and industry. Unlike Dataset_1, no cluster labels
are available in this dataset.

4.2 Metrics for Clustering Quality

For Dataset_1, the service domains will serve as the ground truth to evaluate
the clustering quality. More specifically, we adopt two metrics to measure the
service clustering quality: ACcuracy (i.e., AC) and Mutual Information (i.e.,
MI). Both AC and MI are widely used metrics to assess the performance of
clustering algorithms [15,2]. For Dataset_2, since no true service cluster labels
are available, we cannot use the above two metrics to evaluate clustering quality.
Instead, we choose to use the Silhouette Value (i.e., SV ), which is a commonly
used metric for clustering quality evaluation when no ground truth is available.

– Accuracy: For a given service si, assume that its cluster label is ci and
its domain label is di based on the domain information. The AC metric is
defined as follows:

AC =
∑m

i=1 δ(di, map(ci))
m

(9)
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where m is the total number of Web services in the service dataset. δ(x, y)
is the delta function that equals to one if x = y and equals to zero if other-
wise. map(ci) is the permutation mapping function that maps each assigned
cluster label to the equivalent domain label. The best mapping between the
two sets of labels is achieved by the Kuhn-Munkres algorithm [11].

– Mutual Information: Let D be the set of application domains obtained
from the service dataset and C be the service clusters obtained a service
clustering algorithm. The mutual information metric MI(D, C) is defined as
follows:

MI(D, C) =
∑

di∈D,cj∈C
p(di, cj) log2

p(di, cj)
p(di)p(cj)

(10)

where p(di) and p(cj) are the probabilities that a randomly selected service
from the service set belongs to domain di and cluster cj , respectively. p(di, cj)
is the joint probability that the randomly selected service belongs to both
domain di and cluster cj .

– Silhouette Value: The silhouette value for service si measures how similar
that si is to the services in its own cluster compared to services in other
clusters, and ranges from -1 to +1. More specifically, SV is defined as the
average over the silhouette values of all services:

SV =
∑m

i=1 SVi

m
(11)

SVi =
(bi − ai)

max(ai, bi)
(12)

where SVi is the silhouette value for the i-th service si; ai is the average
distance from si to the other services in the same cluster as si, and bi is the
minimum average distance from si to services in a different cluster, mini-
mized over clusters. Therefore, SV essentially measures the “cohesiveness”
of the clusters.

4.3 Clustering on Dataset_1

Before running any service clustering algorithms, we need to preprocess the ser-
vice descriptions in Dataset_1. We apply a standard text processing procedure
that includes tokenization, stopword removal, and stemming to extract distinct
terms from the service descriptions. As a result, 803 distinct terms are extracted.
Thus, a 803 × 452 service matrix X is constructed. We compare the proposed
SFR based clustering with the following service clustering algorithms:

– NMTF: Non-negative matrix tri-factorization based approach to simulta-
neously cluster services and operations offered by the services [4].

– NMTFS: Extending service descriptions by including semantically similar
terms to address the sparsity issue and then applying NMTF to the extended
service descriptions [16].
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Table 2. Clustering Results on Dataset_1

Algorithms Quality Performance
Accuracy (%) Mutual Information (%) Silhouette Value CPU time (s)

NMTF 51.1 48.0 0.28 17.9
NMTFS 56.6 46.5 0.28 19.0
KmeanS 42.7 21.2 -0.1 33.0
SVDC 45.3 36.3 0.22 0.9
SFR 60.4 56.6 0.7 19.1

– KmeanS: Applying K-means clustering to the semantically extended service
descriptions.

– SVDC: Applying Singular Value Decomposition (SVD) to co-cluster ser-
vices and operations they offers [17].

We set the number of anchor services as 30, i.e., k = 30. The two penalty
parameters λ and γ in objection function J2 are set to 1 and 0.1, respectively.
These will be used as default parameter values in our experiments unless specified
otherwise. It is worth to note that a wide range of values work reasonably well
for these parameters. We will investigate the impact of different parameters in
Section 4.5.

Table 2 reports both clustering quality and CPU times from all the algo-
rithms under comparison. The clustering quality is evaluated using all the three
evaluation metrics described in Section 4.2. SFR clearly outperforms all other
competitors in terms of clustering quality. It achieves 60.4% in clustering accu-
racy, which is 7% better than the second highest accuracy achieved by NMTFS.
In terms of mutual information, it is 17.9% better than second best, NMTF.
The results on silhouette value are pretty much consistent with those on accu-
racy and mutual information. SFR achieves a silhouette value at 0.7, which is
much higher than all other algorithms. This demonstrates that sparse functional
representation provides good separation between similar services and dissimi-
lar ones, which makes service clustering much easier. A higher silhouette value
signifies that the generated clusters are more cohesive.

In terms of performance, the CPU time used by SFR is similar to other matrix
factorization based clustering algorithms, including NMTF and NMTFS. This
is reasonable for a middle scale service dataset especially when the number of
distinct terms are relatively small. It is worth to note that the time for SFR
includes both finding the anchor service set and performing clustering in the
anchor service space. In fact, most time is spent on former as clustering in
SFR is just applying K-means to a compact sparse functional representation of
the service space. SVDC achieves a very fast response time, which is only 0.9
second. This is because it computes a service-operation correlation matrix in
order to perform co-clustering. Since the number of operations is much less than
the number of terms, SVDC actually works on a much smaller matrix, which
justifies its fast performance. Nonetheless, the poor clustering quality of SVDC
implies that the service-operation correlation matrix does not provides a good
representation for service clustering.
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Table 3. Clustering Results on Dataset_2

Algorithms Quality CPU time (s)
Silhouette Value Construction Clustering

NMTF 0.05 - 359.9
PKmeans 0.31 - 3.97
Kmeans 0.21 - 3.23
SVDC NaN - 1131.3
SFR 0.38 367.3 2.7

4.4 Clustering on Dataset_2

We adopt the same standard text processing procedure to process the 3, 738 ser-
vice descriptions in Dataset_2, which results in 16, 884 distinct terms. There-
fore, a 16, 884 × 3, 738 service matrix X is constructed. Each term vector has
a dimensionality of 16, 884. Before applying any clustering algorithms on such
high dimensional data, a common practice is to first reduce the dimensionality.
Thus, we employ Principle Component Analysis (PCA) to reduce the dimen-
sionality to 64. It is also worth to note that algorithms, such as NMTFS and
KmeanS, require to perform semantic extensions on each distinct term. This will
lead to a huge term dictionary for a large service set, like Dataset_2. The re-
sultant service matrix will be several orders larger than X. To avoid prohibitive
computational cost, we are not including NMTFS and KmeanS for comparison.
Instead, we add another two algorithms into the mix:

– Kmeans: Directly applying Kmeans clustering to the terms vectors in X.
– PKmeans: Applying Kmeans after PCA dimensionality reduction.

Since there are no cluster labels for Dataset_2, we only use silhouette value to
evaluate clustering quality. We set the number of clusters to 30. The number of
anchor services is set to 128 and all other parameters take their default values
for SFR.

Table 3 reports the clustering result on Dataset_2. In terms of clustering
quality, SFR achieves the highest silhouette value among all the algorithms.
This is consistent with the results from Dataset_1. It is also worth to note
that SVDC fails to converge after spending over 1, 000 seconds, so no silhouette
value is computed. For the CPU times, we record both the construction time
that is used to discover the anchor services and the clustering time for SFR.
Even though SFR uses relatively long time (which is similar to the clustering
time used by NMTF) for anchor service discovery, it achieves the best clustering
time. The fast clustering performance of SFR further justifies that sparse func-
tional representation indeed makes clustering easier. Once the anchor space is
discovered, it can be stored and reused. Therefore, for large-scale service clus-
tering, anchor services can be first discovered offline and then service clustering
can be performed in realtime to meet different user requirements on number of
clusters, distance metrics, clustering algorithms, and so on.
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Fig. 2. Impact of Parameters

4.5 Impact of Parameters

We investigate the impact of different parameters in this section, including the
number of anchor services (i.e., k), and the two penalty parameters (i.e., λ and
γ). We vary one of these three parameters while keeping the other two fixed at
their default values. Figure 2 shows how different parameters affect the clustering
quality in Dataset_1.

Accuracy and mutual information always vary in a similar way with the
changes of parameters. Both accuracy and mutual information reach their re-
spective highest values when k = 40, λ = 0.1, and γ = 1, respectively. The
silhouette value, on the other hand, varies differently with accuracy and mutual
information. First, the SV value decreases as k increases. Recall that in SFR,
services are clustered based on their relationships with the anchor services. The
sparsity constraint forces services to be only related to a small subset of the
anchor services. Therefore, when k is small, the sparse representation of a ser-
vice will “concentrate” on a small number of anchor services. This will lead to
very compact and cohesive clusters. Therefore, SV will decrease as k increases.
Similar explanation is applied to the impact of λ, which enforces the sparsity
constraint. Increasing λ will make zi’s more sparse, which has the effect of mov-
ing services closer to the relevant anchor services and further away from less
relevant ones. This will also produce more cohesive clusters. Therefore, SV in-
creases as λ increases. Instead of monotonically decreasing or increasing as with
the increase of k and λ, the SV value reaches it peak value when γ is 100 and
then decreases when γ increases further. In contrast, accuracy and mutual infor-
mation reach their peak values when γ = 1. The discrepancy may be due to that
the domain definition of the service set is not in line with the cohesiveness of the
service clusters. For example, some services may be cross-domain in nature but
assigned to a domain that is inconsistent with the clustering result.

The results on Dataset_2 show very similar patterns as those of Dataset_1
(in term of SV values because only SV values are reported for Dataset_2).
Therefore, we skip the presentation of the results to avoid repetition.

5 Conclusion and Future Directions

We present Sparse Functional Representation (SFR), a novel service represen-
tation scheme, which is economical to store, efficient to process, and intuitive
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to interpret. SFR projects long and sparse term vectors onto an anchor service
space, which consists of a small number of anchor services. The similarity be-
tween services is encoded by their proximity to the anchor services. The sparsity
constraints enforce that each service is only related to a small subset of anchor
services. This has the effect of moving services closer to the relevant anchor
services and further away from irrelevant ones. These key features significantly
facilitate large-scale service clustering. Comprehensive experiments on two real-
world service datasets clearly demonstrate the effectiveness of SFR and its ability
to scale to a large number of services. An interesting future direction is to further
improve the construction performance of SFR. We plan to apply the recently de-
veloped low-rank approximation techniques, such as Colibri [14], to filter nearly
duplicate or linearly dependent term vectors from the service matrix X. Low-
rank approximation allows SFR to work on a much smaller service matrix, from
which anchor services are expected to be discovered more efficiently.
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