
A Symbolic Framework for the Conformance

Checking of Value-Passing Choreographies�

Huu Nghia Nguyen1, Pascal Poizat1,2, and Fatiha Zäıdi1

1 LRI; Univ. Paris-Sud, CNRS, Orsay, France
2 Univ. Évry Val d’Essonne, Evry, France

{huu-nghia.nguyen,pascal.poizat,fatiha.zaidi}@lri.fr

Abstract. Checking choreography conformance aims at verifying
whether a set of distributed peers or local role specifications match a
global specification. This activity is central in both top-down and bottom-
up development processes for distributed systems. Such systems usually
collaborate through information exchange, thus requiring value-passing
choreography languages and models. However, most of the conformance
checking techniques abstract value-passing or bound the domains for
the exchanged data. As an alternative, we propose to rely on symbolic
models and an extension of the symbolic bisimulation equivalence. This
enables one to take into account value passing while avoiding state space
explosion issues. Our framework is fully tool supported.

Keywords: choreography, specification, conformance, symbolic transi-
tion systems, symbolic branching bisimulation, tools.

1 Introduction

Context and Issues. A choreography is the description with a global perspec-
tive of interactions between roles played by peers (services, organizations, hu-
mans) in some collaboration. One key issue in choreography-based development
is checking the conformance of a set of local descriptions wrt. the choreogra-
phy global specification. This issue naturally arises both in bottom-up and in
top-down development processes [1], and is also a cornerstone for realizability
checking. The definition of conformance should not be too strict. It should sup-
port choreography refinement, e.g., with peers and interactions being added in
the implementation by the service architect in order to enforce the specification.
Finally, entities in a distributed system usually exchange information, i.e., data,
while interacting. Consequently, data should be supported in choreography specifi-
cations, in the descriptions of the local entities, and in the conformance relation.

Related Work. In Table 1, we compare related conformance checking ap-
proaches. Columns 2 and 3 focus on data support. Some approaches [2–4] ab-
stract data away. This is known to yield over-approximation issues, e.g., false

� This work is supported by the PIMI project (ANR-2010-VERS-0014-03) of the
French National Agency for Research.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 525–532, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

526 H. Nghia Nguyen, P. Poizat, and F. Zäıdi

Table 1. Choreography conformance approaches

Data & Value-Passing Expressiveness Conformance
supported treatment loops assignment global relation (based on)

[2]

no -

yes no yes Trace equivalence
[3] yes no yes Weak bisimulation
[4] yes no yes Strong bisimulation

[5]

yes

closure yes yes no Weak bisimulation
[6] closure no yes yes Branching bisimulation
[7] bound data yes no yes Branching bisimulation
this paper symbolic yes limited yes Branching bisimulation

negatives in the verification process. Data can be supported by working on
closed implementation-level systems where sent messages contain only ground
data [5, 6]. In such a case, the state space explosion of the system model is
limited. However, this is not adequate when working on abstract specifications
where there are no such ground sent messages but only free variables and con-
straints on their values. Another solution is to bound data domains. The issue is
that conformance may not yield outside the bounds. Defining bounds in order to
avoid false positives in the verification process can be difficult. In our framework,
data is supported using a symbolic approach and conformance may be checked
for whole data domains.

Columns 4 and 5 are relative to choreography expressiveness. Having both
loops and assignments may yield state space explosion if one does not close the
system or bound data domains. In this work, we do support loops and a limited
form of assignment through message reception.

The last two columns are relative to the kind of conformance being supported
and the behavioural equivalence being used. Global conformance is important in
conformance checking since one wants not only to know if each peer is conform to
its role, i.e., local conformance, but also if the peers altogether have a behaviour
that is conform to the choreography. Local conformance does not implies global
conformance. Weak and branching bisimulations are able to support internal
actions and hiding (formally, τ actions). This is important, e.g., if one has to
deal with messages added to make some choreography realizable. Branching
bisimulation [8] has been preferred over weak bisimulation in the last years since
it is a congruence, hence supports compositional reasoning.

Symbolic bisimulations, defined on Symbolic Transition Graphs (STGs), have
been introduced in [9] with both early and late semantics. In this work, we
use a late semantics. STGs have then been extended to STGs with assignments
(STGAs) in [10, 11]. These works mostly concentrate on strong and weak bisim-
ulation. Symbolic branching bisimulation has not yet received much attention.
As a consequence, there is tool support for symbolic strong bisimulation [12] but
not for symbolic branching bisimulation.

Contributions. Our contributions are the following. Based on process alge-
bras for choreography [2, 13], we propose a specification and description lan-
guage addressing both the global (choreography) and the local (peers description,
role requirements) perspective over distributed systems. Our language supports

Conformance Checking of Value-Passing Choreographies 527

Choreography
roles 1 . . .m (m ≤ n)

Model trans.

Local descr.1
. . .

Local descr.n

Model trans.
. . .

Model trans.

STG1

. . .

STGn

STG product STGI

STGC

Conformance

boolean formula ρ

Formula Checker

Z3 SMT Solver Verdict
(true, false, ρ, inconclusive)

Fig. 1. Architecture of our framework

information exchange and data-related constructs (conditional and loop con-
structs). We give a fully symbolic semantics to this language using a model trans-
formation into STGs, thus avoiding data abstraction and over-approximation,
restriction to manually bound data domains, and limitation to implementation-
level closed descriptions. Accordingly, we build on branching bisimulation [8] and
on a symbolic extension of weak bisimulation [11] to develop a specific symbolic
version of branching bisimulation dedicated at checking the conformance of a set
of local entities wrt. a choreography specification. Our equivalence enables one
to check conformance in presence of choreography refinement, i.e., where new
peers and/or interactions may be added wrt. the specification. Going further
than a true vs. false result for conformance, our approach supports the genera-
tion of the most general constraint over exchanged information in order to have
conformance. Finally, our framework is fully tool supported1.

In the sequel, we present the principles of our approach (technical detail can
be found in [14]) and we end with conclusions and perspectives of our work.

2 Architecture of the Framework

In this section, we introduce our framework for choreography conformance check-
ing. We also present some of the experiments we have made to evaluate it. The
architecture of our framework is given in Figure 1. We take as input a choreogra-
phy global specification C, with m roles. We also take an implementation descrip-
tion I, given as n≥m entity local descriptions. These may correspond either to
peer descriptions or to role requirements. The case when n>m denotes, e.g., an
implementation where some peers have been added to make a choreography real-
izable. All inputs are first transformed into STGs. The product of STGs and the
restriction to actions in C are used to retrieve a unique STG for I, thus yielding
two STGs to compare: one forC (C) and one for I (I). We then check if I conforms
to C, which generates the largest boolean formula ρ such that the initial states of I
and C are conformance related. Finally, this formula is analysed using the Z3 SMT
solver2 in order to reach a conformance verdict. This can be “always true” or “al-
ways false”, “always” meaning whatever the data values exchanged between peers
are. However, sometimes we can have conformance only for a subset of these val-
ues. Going further than pure true/false conformance, our framework thus allows

1 Our tool is freely available at http://www.lri.fr/~nhnghia/sbbc/
2 http://research.microsoft.com/en-us/um/redmond/projects/z3/

528 H. Nghia Nguyen, P. Poizat, and F. Zäıdi

to compute the largest constraint on data values, ρ, that would yield conformance.
Complex constraints may cause the solver to return a timeout. In such a case, we
emit inconclusiveness as a verdict.

A Language for Choreographies, Roles, and Peers. Since we are inter-
ested in an abstract, i.e., implementation independent, formal choreography lan-
guage, we choose an interaction-based model [15] and the usual τ actions can
be ignored [16]. Our specification language, inspired by [2, 13], is used to specify
distributed systems with a global perspective, i.e., choreographies, to define local
requirements, i.e., roles, and to describe the pieces of a distributed implemen-
tation, i.e., peers. Due to this multi-purpose objective, it is first presented in
terms of an abstract alphabet, A. We then explain how A can be realized for the
different purposes. The syntax of our specification language, L(A), is given by:

L ::= 1 | α | L;L | L+ L | L|L | L[>L | [φ] � L | [φ] ∗ L
A basic activity is either termination (1) or a regular activity α ∈ A. Structuring
is achieved using sequencing (;), non deterministic choice (+), parallelism (|),
and interruption ([>). Furthermore, we have data-based conditional constructs,
namely guards (�) and loops (∗), where φ is a boolean expression.

The basis of an interaction-model choreography description is the interaction.
Let us denote an interaction c from role a to role b by c[a,b].x, where x is a variable
that represents the information exchanged during interaction (x is omitted when
there is none). We stress out that x can be structured, e.g., to denote a multiple
data exchange as done in Web services with XML message types. A choreography
specification for a set of roles R, a set of interactions Ch, and a set of variables V ,
is an element of L(A) with A = {c[a,b].x | c ∈ Ch∧a ∈ R∧b ∈ R∧a �= b∧x ∈ V }.

The events of a local entity a (peer or role) can be abstracted as sending
and reception events, denoted respectively with c[a,b]!x and c[b,a]?x, where b is
another entity, i.e., a �= b, and x is the information exchanged during interaction
(x is omitted when there is none). An entity description for an entity a, a set
of roles R with a ∈ R, a set of interactions Ch, and a set of variables V , is an
element of L(A) with A = {c[a,b]!x, c[b,a]?x | c ∈ Ch ∧ b ∈ R ∧ a �= b ∧ x ∈ V }.
Example 1. Let us suppose a shipping choreography between two roles: c (client)
and s (shipper). The client first requests shipping by providing the weight of
goods to be sent. If this is less than 5 kgs then the goods will be sent for free.
Otherwise, the shipping has to be paid. This can be described as follows:

Shipping ::= Request[c,s].x1; ([x1 < 5] � FreeShip[s,c] + [x1 ≥ 5] �PayShip[s,c])

A tentative to implement the shipping choreography is that the client sends the
weight to the shipper and then waits for either free or paid shipping, while it is
the shipper that checks the weight in order to decide which shipping is used:

Client c ::= Request[c,s]!y1; (FreeShip
[s,c]? +PayShip[s,c]?)

Shipper s ::= Request[c,s]?z1; ([z1 < 5] � FreeShip[s,c]! + [z1 ≥ 5] �PayShip[s,c]!)

Symbolic Transition Graph. An STG [9] is a transition system where a set of
variables, possibly empty, is associated to each state and where each transition

Conformance Checking of Value-Passing Choreographies 529

1

{}
2

{x1}
3

{}
4

{}

Request[c,s].x1

[x1<5]FreeShip[s,c]

[x1≥5]PayShip[s,c]

�

(a) Shipping choreography

1

{y1}
2

{}
3

{}
4

{}

Request[c,s]!y1
FreeShip[s,c]?

PayShip[s,c]?

�

(b) Implementation of Client

1

{}
2

{z1}
3

{}
4

{}

Request[c,s]?z1
[z1 < 5]FreeShip[s,c]!

[z1 ≥ 5]PayShip[s,c]!

�

(c) Implementation of Shipper

1,1

{}
2,2

{y1}
3,3

{}
4,4

{}

Request[c,s].y1
[y1<5]FreeShip[s,c]

[y1≥5]PayShip[s,c]

�

(d) Composition of (b) and (c)

Fig. 2. STGs for Example 1

may be guarded by a boolean expression φ that determines if the transition can
be fired or not. Actions labelling transitions will correspond in our work to the
elements of the alphabets we have seen earlier on. We also add a specific event,�,
to denote activity termination. A transition from state s to s′ with a guard φ

and labeled by an action α takes the form s
[φ] α−−−→ s′. We use STGs as a formal

model to give semantics to our language. The product of STGs is used to give a
semantics to a set of interacting local entities. We assume that the STGs use
disjoint sets of variables which can be achieved using, e.g., indexing by the name
of the entity. The rule-based of model transformations and our algorithm for the
product of STGs can be found in a technical report extension of this paper [14].

Example 2. The STGs for the choreography, the client and shipper in Example 1
are shown in Figure 2(a-c). Figure 2(d) presents the product of the STGs in
Figure 2(b) and Figure 2(c). The free variables of the states are given below
them, e.g., {x1} for state 2 in the choreography STG.

Choreography Conformance. Since our semantic models are STGs, we de-
fine conformance over two STGs, I (implementation) and C (choreography). We
choose branching bisimulation [8] as a basis since it supports equivalence in
presence of τ actions that result from the hiding of interactions added in imple-
mentations wrt. specifications, i.e., refinement. However, branching bisimulation
is defined over ground terms (no variables), while STGs may contain free vari-
ables. In [6, 7], this issue is considered by introducing at each state an evaluation
function that maps variables to values, thus reducing open terms to ground ones.
This may lead to state space explosion when domains of the variables are big.
Alternatively, we base our work on (late) symbolic extensions of bisimulations,
introduced in [9–11], that directly support open terms.

To make implementation and specification comparable, we remind the reader
that we assume the two STGs have disjoint sets of variables which can be
achieved using, e.g., indexing. We also assume that a local entity has the same
identifier than the corresponding role in the choreography. This constraint could
be lifted using a mapping function. Additional interactions may have been in-
troduced in the implementation wrt. the specification during refinement, e.g.,
to make it realizable. In order to compare the STGs, we have to hide these
interactions.

530 H. Nghia Nguyen, P. Poizat, and F. Zäıdi

1

{}
2

{y1}
4

{}
5

{}

3

{y}

Request[c,s].y1

[y1<5]FreeShip[s,c]

[y1≥5]Tel[c,s].y [y≥10]PayShip
[s,c]

[y<10]�

�

(a)

1

{y}
2

{y, y1}
4

{}
5

{}

3

{y}

Request[c,s].y1

[y1 < 5]FreeShip[s,c]

[y1 ≥ 5]τ [y ≥ 10]PayShip
[s,c]

[y < 10]�

�

(b)

Fig. 3. A refinement (a) for the STG in Figure 2(d) and its restriction (b)

Example 3. We give a refinement example in Figure 3(a) where the client spec-
ifies the maximum (s)he agrees to pay for the shipping (y). This influences the
sequel of the implementation since the non-free shipping costs $10: if the user re-
quires to pay less, no shipping is done. The restriction of this STG to the set of ac-
tions used in the choreography specification, {Request[c,s], F reeShip[s,c], PayShip[s,c]},
yields the STG in Figure 3(b) where Tel has been hidden.

Conformance Computation. Our algorithm for the computation of the con-
formance relation between two STGs [14] is a modification and simplification
of the one proposed in [11] that computes symbolic weak bisimulation. Simpli-
fication was made possible since there may be τs in I (after hiding) but not
in C. The algorithm outputs a set of boolean formulas ρs1,s2 relative to pairs
of states (s1, s2), s1 being in I and s2 in C. ρs1,s2 denotes the conditions un-
der which s1 and s2 are conformance related. In the algorithm, these boolean
formulas are encoded as a Predicate Equation Systems (PES) [10], i.e., a set of
functions each of which contains a boolean expression, e.g., R(x) ::= (x ≥ 0).

Example 4. Applying the algorithm on the STGs in Figure 3(b) (implementa-
tion) and in Figure 2(a) (specification), we retrieve the following PES:
R1,1() ::= ∀Z0 R2,2(Z0, Z0)
R2,2(y1, x1) ::= (((x1≥5 ⇒ y1≥5 ∧R3,2(y1, x1)) ∧ (y1≥5 ⇒ x1≥5 ∧R3,2(y1, x1)))

∧((x1<5 ⇒ y1<5 ∧ R4,3) ∧ (y1<5 ⇒ x1<5 ∧R4,3))) ∧ (¬(y<10))
R3,2(y1, x1) ::= ((x1≥5 ⇒ y≥10 ∧R4,3) ∧ (y ≥ 10 ⇒ x1 ≥ 5 ∧R4,3))

∧((¬(y<10)) ∧ (¬(x1<5)))
R4,3() ::= true

Indeed, it can be simplified into {R1,1 ::= y ≥ 10, R2,2 ::= y ≥ 10, R3,2 ::= y ≥
10∧Z0≥5, R4,3 ::= true} but this demonstrates the need for an automatic PES
satisfiability checking procedure as defined below.

PES Satisfiability and Conformance Verdict. The PES resulting from the
conformance computation algorithm has to be analyzed in order to reach a con-
formance verdict. We realize this step with the Z3 SMT Solver by translating
the PES into the Z3 input language as demonstrated in Listing 1.1 for the PES
in Example 4. Each predicate equation in the PES is translated as a boolean
function (using define-fun) and each free variable is translated as an integer
function (using declare-fun). We then check R1 1 in order to conclude on confor-
mance. For this, the check-sat Z3 command is run as following. If R1 1 asserted
false (as in Listing 1.1) yields an unsat response then there is no interpretation
such that R1,1 is false, hence we can conclude directly that conformance is true.
Otherwise, we have to retry with R1 1 asserted to true to reach a verdict. The
result may then be unsat, sat, or timeout corresponding respectively to the con-
formance being false, may be (ρ), or inconclusive.

Conformance Checking of Value-Passing Choreographies 531

Listing 1.1. Translation into the Z3 language of the PES in Example 4

1 (set -option :print-warning false)
2 (declare-fun y () Int)
3 (define -fun R4_3 () Bool true)
4 (define -fun R3_2 ((y_1 Int)(x_1 Int)) Bool (and (and (implies (>= x_1 5)

(and (>= y 10) R4_3)) (implies (>= y 10) (and (>= x_1 5) R4_3))) (and (
not (< y 10)) (not (< x_1 5)))))

5 (define -fun R2_2 ((y_1 Int)(x_1 Int)) Bool (and (and (and (implies (>=
x_1 5) (and (>= y_1 5) (R3_2 y_1 x_1))) (implies (>= y_1 5) (and (>=
x_1 5) (R3_2 y_1 x_1)))) (and (implies (< x_1 5) (and (< y_1 5) R4_3))
(implies (< y_1 5) (and (< x_1 5) R4_3)))) (not (< y 10))))

6 (define -fun R1_1 () Bool (forall ((Z_0 Int)) (R2_2 Z_0 Z_0)))
7 (assert (= R1_1 false)) ; uncomment for step 1, comment for step 2
8 ; (assert (= R1_1 true)) ; comment for step 1, uncomment for step 2
9 (check-sat)

Table 2. Experimental results

Id Name [Reference] #Peers/Roles
Implementation Specification Verdict Duration

#Int. #Trans./States #Int. #Trans./States Orig./Ours (seconds)

01 Shipping [n/a] 2/2 3 4/4 3 4/4 -/YES 0.069
2/2 4 5/5 3 4/4 -/YES 0.084

Example 4 → 2/2 4 6/5 3 4/4 -/ρ 0.102

04 Market [6] 4/4 8 9/10 8 10/10 YES/NO 0.118
8/4 16 27/26 8 10/10 YES/NO 0.201

06 RFQ [7] 3/3 6 8/7 6 8/8 NO/NO 0.078

07 Booking [4] 4/4 8 12/11 8 12/11 YES/YES 0.096

Experiments. We have experimented our framework, including on examples
from the literature (Tab. 2). For the implementations and the specifications, we
respectively give the numbers of peers, roles, interactions, and transitions and
states in the corresponding STGs. We also give the conformance verdicts in the
paper the example is taken from and with our approach. Finally, we give the
execution time (Mac Book Air with OS 10.7, 4 GB RAM, core i5 1.7 GHz)
for the process described in Figure 1 (but for the time to parse the input files).
Rows 1 to 3 correspond to the specification STG in Figure 2(a) and, respectively,
to the implementations STGs in Figures 2(d) (row 1), 3(a) (row 2), and 3(b)
(row 3). Rows 4 and 5 correspond to the example and mutation in [6]. The
difference in the verdict comes from the fact the we distinguish between an
STG ending with � (successful termination) or not, hence an implementation
deadlocking after achieving all interactions of a specification will not conform
to it: the specification may do � while the implementation may not. Row 6
corresponds to a negative example in [7] and row 7 to a positive one in [4].

3 Conclusion

In this paper, we have proposed a formal framework for checking the conformance
of a set of role requirements or peer descriptions with reference to a choreography
specification. Symbolic models and equivalences enable us to check conformance
in presence of data without suffering from state space explosion and without
bounding data domains. Going further than strict conformance, we are able to
give the most general constraint over data exchanged between peers in order to
achieve conformance. Our approach is fully tool supported1.

532 H. Nghia Nguyen, P. Poizat, and F. Zäıdi

We advocate that once a choreography projection function supporting data
is defined, then our framework could be used not only for conformance checking
but also for realizability checking. This is our first perspective. A second perspec-
tive is to extend our framework with non-limited assignment and asynchronous
communication. Our last perspective is to integrate the extensions of our tools
as a verification plugin for the BPMN 2.0 Eclipse editor. A BPMN 2.0 to STG
model transformation is ongoing, based on our BPMN to LTS (no data) one [17].

References

1. Poizat, P.: Formal Model-Based Approaches for the Development of Com-
posite Systems. Habilitation thesis, Université Paris Sud (November 2011),
http://www.lri.fr/~poizat/documents/hdr.pdf

2. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the Theoretical Foundation of Chore-
ography. In: Proc. of WWW 2007 (2007)

3. Basu, S., Bultan, T.: Choreography Conformance via Synchronizability. In: Proc.
of WWW 2011 (2011)

4. Salaün, G., Bultan, T.: Realizability of Choreographies Using Process Algebra
Encodings. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp.
167–182. Springer, Heidelberg (2009)

5. Li, J., Zhu, H., Pu, G.: Conformance Validation between Choreography and Or-
chestration. In: Proc. of TASE 2007 (2007)

6. Busi, N.,Gorrieri, R.,Guidi, C., Lucchi, R., Zavattaro,G.: Choreography andOrches-
trationConformance forSystemDesign. In:Ciancarini,P.,Wiklicky,H. (eds.)COOR-
DINATION2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

7. Kazhamiakin, R., Pistore, M.: Choreography Conformance Analysis: Asynchronous
Communications and InformationAlignment. In:Bravetti,M.,Núñez,M., Zavattaro,
G. (eds.)WS-FM2006. LNCS, vol. 4184, pp. 227–241. Springer, Heidelberg (2006)

8. Van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3) (1996)

9. Hennessy, M., Lin, H.: Symbolic Bisimulations. Theoretical Computer Sci-
ence 138(2), 353–389 (1995)

10. Lin, H.: Symbolic Transition Graph with Assignment. In: Sassone, V., Montanari,
U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 50–65. Springer, Heidelberg (1996)

11. Li, Z., Chen, H.: Computing Strong/Weak Bisimulation Equivalences and Observa-
tion Congruence for Value-Passing Processes. In: Cleaveland, W.R. (ed.) TACAS
1999. LNCS, vol. 1579, pp. 300–314. Springer, Heidelberg (1999)

12. Basu,S.,Mukund,M.,Ramakrishnan,C.R.,Ramakrishnan,I.V.,Verma,R.:Localand
SymbolicBisimulationUsingTabledConstraintLogicProgramming. In:Codognet,P.
(ed.) ICLP 2001. LNCS, vol. 2237, pp. 166–180. Springer, Heidelberg (2001)

13. Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography Con-
formance and Contract Compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC
2007. LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

14. Nguyen, H.N., Poizat, P., Zäıdi, F.: A Symbolic Framework for the Conformance
Checking of Value-Passing Choreographies. Long version, in P. Poizat Webpage

15. Decker, G., Kopp, O., Barros, A.P.: An Introduction to Service Choreographies.
Information Technology 50(2), 122–127 (2008)

16. Kopp, O., Leymann, F.: Do We Need Internal Behavior in Choreography Models?
In: Proc. of ZEUS 2009 (2009)

17. Poizat, P., Salaün, G.: Checking the Realizability of BPMN 2.0 Choreographies.
In: Proc of SAC 2012 (2012)

http://www.lri.fr/~poizat/documents/hdr.pdf

	A Symbolic Framework for the ConformanceChecking of Value-Passing Choreographies
	Introduction
	Architecture of the Framework
	Conclusion
	References

