

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 389–403, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Socially-Enriched Semantic Mashup of Web APIs

Jooik Jung and Kyong-Ho Lee

Department of Computer Science
Yonsei University

Seoul, Republic of Korea
jijung@icl.yonsei.ac.kr, khlee@cs.yonsei.ac.kr

Abstract. As Web mashups are becoming one of the salient tools for providing
composite services that satisfy users’ requests, there have been many endeavors
to enhance the process of recommending the most adequate mashup to users.
However, previous approaches show numerous pitfalls such as the problem of
cold-start, and the lack of utilization of social information as well as functional
properties of Web APIs and mashups. All these factors undoubtedly hinder the
proliferation of mashup users as locating the most appropriate mashup becomes
a cumbersome task. In order to resolve the issues, we propose an efficient me-
thod of recommending mashups based on the functional and social features of
Web APIs. Specifically, the proposed method utilizes the social and functional
relationships among Web APIs to produce and recommend the chains of candi-
date mashups. Experimental results with a real world data set show a precision
of 86.9% and a recall of 75.2% on average, which validates that the proposed
method performs more efficiently for various kinds of user requests as com-
pared to a previous work.

Keywords: Web api, mashup recommendation, functional semantics, social
relationship.

1 Introduction

In the past few years, Web mashups have attracted tremendous interest from both
service developers and end-users. These applications exhibit the ability to combine
existing service functionalities with a minimal development effort and thus making
them a powerful tool for providing composite services that satisfy users’ requests [5].
However, the explosive growth of Web APIs (hereafter, when we use the term “API”,
it refers to a “Web API”) raises challenging problems of how to enforce the adequacy
of the mashups and the ways to accelerate the discovery of the component APIs.
Moreover, current mashup composition methods manually search and select the com-
ponent services and thus aggravating the overall mashup generation process [1].
Hence, many of the researches have tried to exploit various social or functional fea-
tures of APIs as a solution to the aforementioned issues. Despite the effort, most of
the contemporary approaches utilize these social and semantic features separately or
exhibit the problem of cold-start where APIs that have no history of being selected for
mashup composition are never selected in future compositions.

390 J. Jung and K.-H. Lee

In this paper, we propose a novel technique for recommending mashups from natu-
ral language requests as well as exploiting both functional and social features of Web
APIs and their corresponding ontologies in the process. To elaborate, we first present
a systematic approach for extracting functional semantic descriptors from a user re-
quest, which are required to facilitate the discovery and composition processes of
APIs. We then represent the functional and social features of candidate APIs with
graph-based network models. Finally, the assessments of the candidate mashup chains
are computed for the purpose of recommendation. As for the social features, we ex-
ploit the popularity, collaboration and ratings of APIs to augment the social richness
of the proposed method. Furthermore, the executability of a candidate mashup is
computed by exploiting the connectivity between the input/output parameters of the
participating APIs.

To evaluate the performance of the proposed approach, 20 different natural lan-
guage requests, each with varying complexity, were used. The experimental results
showed a precision of 86.9% and a recall of 75.2% on average. Particularly, it is
worth mentioning that as the complexity of a natural language query increased, the
precision of the proposed algorithm on that specific request also depicted an increase.

The remaining sections are organized as follows. In Section 2, we present a brief
survey of related work. Section 3 describes, in detail, the proposed hybrid method for
recommending Web API mashups. The results and analysis of our experimentation
are presented in Section 4. We conclude this paper and discuss our plans for future
work in Section 5.

2 Related Work

Given the proliferation of Web-based services like Web APIs, there have been many
researches on how to compose them efficiently and accurately. The following papers
discuss various approaches for discovering and composing APIs, and recommending
the resulting mashups.

In [2, 3] a keyword-based search approach which integrates social information is
proposed for the purpose of selecting mashup components. First, the authors build an
API functional taxonomy, which is used to locate the APIs that match the desired
functionalities, using the descriptions of APIs. The description-based technique is
enhanced by combining social ranking measures to rank each API. However, the me-
thod neglects the functional features of APIs such as their input/output parameters and
thus the executability of the resulting mashup is not guaranteed.

The authors in [4] propose a mechanism to specify the functional semantics of
Web services based on action and data ontologies. Composite Web services are
represented by a graph which describes the relations among the component services in
terms of input and output parameters and their functional semantics. We concur with
this approach of assigning each Web service, or API in our case, with its correspond-
ing functional semantics to accelerate the service discovery process. However, this
particular work lacks the utilization of social information which has the potential to
enhance the mashup formation process.

 Socially-Enriched Semantic Mashup of Web APIs 391

In [21] a method which combines semantics and collective knowledge to assign
component descriptors to each Web API is introduced. The author states that this
hybrid technique ultimately accelerates the speed of API selection process by manipu-
lating these component descriptors. Here, the technique does not exploit any of the
past historical information of APIs.

The majority of works in the area of mashup composition have utilized the tags of
mashups and APIs for the purpose of recommendation. In [6] the authors propose a
social technique to mine the tags of mashups and APIs for recommendation purposes.
However, there is a pitfall to this approach since API developers do not necessarily
reuse the same tags to describe APIs. In [7, 8] tag-based clustering approaches are pro-
posed for computing the similarity between tag clouds, where the services correspond-
ing to a specific tag are grouped together. In these researches, the usefulness of mining
tags in discovering candidate APIs cannot be judged due to insufficient experiments.

In [9] a faceted classification of Web APIs and an algorithm which ranks those
APIs are proposed. By using this approach, the authors argue that the API retrieval
process can be improved. Although the technique provides a coarse-grain mechanism
for API discovery, the semantic descriptions of APIs are not taken into consideration.

Some of the works [10, 11, 12, 13] are launched to exploit the social networks of
mashup developers for constructing mashups. To improve the composition process,
the authors in [10] suggest that developers should consider the social networks or
collaborative environments of users. Some of the information extractable from social
networks are users’ past experiences [11, 13] related to the services that they have
used. By exploiting the social networks and this “extra” information, the authors in
[12] propose that the recommendation of component services is possible from the
perspectives of mashup developers.

We strongly believe that the exploitation of social networks has the potential to
impact the discovery and composition process of Web APIs and thus we aim to inte-
grate this feature with our approach. ProgrammableWeb1 is a popular online reposito-
ry of APIs and mashups [14, 15]. In our work, we utilize this repository for building
our data set, which are to be exploited for discovering APIs and constructing their
corresponding social and connectivity graphs.

3 The Proposed Mashup Recommendation Algorithm

In this section, we present the proposed mechanism to combine the Web API discov-
ery via functional semantics and the corresponding mashup chain composition based
on the social elements and input/output connectivity of candidate APIs. The mechan-
ism consists of the following four major phases: (3.1) extraction phase, (3.2) discov-
ery phase, (3.3) chaining phase, and (3.4) selection phase. Furthermore, the chaining
phase is divided into two sub-phases: chaining based on input/output connectivity
graph and chaining based on social graph, and the selection phase is also composed of
two sub-phases: connectivity analysis and social analysis. The general overview of
our approach is illustrated in Figure 1.

1 http://www.programmableweb.com/

392 J. Jung and K.-H. Le

Fig.

3.1 Extraction Phase

In the extraction phase, we
semantics and user inputs
which are to be utilized in
begin by extracting the fun
request as shown in Figure
in the form of a natural lan
be sufficient for ontology m

Before digging into the
functional semantics and us
action and object. These tw
particular mashup service of
movie}, rent and movie cor
User inputs represent variou
shup service. Unlike the W
provide their functional sem
input/output parameters do
noting that our dataset of W
by our team through analysi

ee

. 1. Overview of the proposed approach

e gather the necessary information, namely the functio
of the requested mashup operations from a user requ

n the next phase. In order to demonstrate this process,
nctional semantics and user inputs from a natural langu
2. We have particularly selected our input language to

nguage request from all other possible choices, as it wo
mapping.

details of the proposed method, we first define the ter
ser inputs. Functional semantics consist of two compone
wo elements combined describe the kinds of services th
ffers. As an example, for a functional semantic pair {r
rrespond to the action and object components respectiv
us input parameters exploitable by the operations of the m

Web services discussed in [4], the current Web APIs do
mantics explicitly, and the descriptions of their operations

not follow any form of a rigid guideline. Thus, it is wo
Web APIs and proposed ontologies are constructed manu
is of APIs available from the ProgrammableWeb directory

onal
uest,

we
uage
o be
ould

rms:
ents,
at a

rent,
vely.
ma-
not
and
orth
ally
y.

Fig. 2. An example of a n

To initiate the extraction
request into sentence block
sentence blocks are then p
RASP system [17]. Specifi
which may represent the
tracted, and nouns, which
mantic and possibly user in
the result from applying a n
tion illustrated on the top l
nents of the functional sema
are depicted by bolded texts

In order to finalize the
tracted and categorized int
nouns are classified as fun
are categorized as user inpu
in the bottom left hand side

3.2 Discovery Phase

Once functional semantic p
tained, the discovery phase
whose functional semantic

Socially-Enriched Semantic Mashup of Web APIs

natural language request and the proposed extraction method

n phase, the proposed method divides a natural langu
ks similar to the work of Lim and Lee [16]. Each of th
processed by a natural language processor known as
ically, a natural language query is checked for main ver
action component of the functional semantics to be
may describe the object component of the functional

nputs. The diagram on the right hand side of Figure 2 sho
natural language processor to the natural language desc
left hand side of the figure. The action and object com
antics are indicated by underlined texts, and the user inp
s.
extraction process, the identified verbs and nouns are
to functional semantics and user inputs. Main verbs

nctional semantic pairs whereas auxiliary verbs and no
uts. The final outcome of the extraction phase is illustra
e of Figure 2.

pairs have been extracted and user inputs have been
e initiates. The purpose of this phase is to locate all A
s conform to the functional semantics of a user’s natu

393

uage
hese

the
rbs,
ex-
se-

ows
rip-

mpo-
puts

ex-
and

ouns
ated

ob-
APIs
ural

394 J. Jung and K.-H. Lee

language request. It is worth mentioning that previous researches have assigned a
single pair of functional semantics to each Web API. This may yield inaccurate data
due to the imperfection of the object and action ontologies and the functional seman-
tic pair selection algorithm. Thus, we have assigned a functional semantic pair to each
service operation of a Web API and allocated the union of those pairs to the corres-
ponding API to discover additional APIs that may have been ignored otherwise. Once
this preparation ends, we commence the API discovery process by searching the repo-
sitory of APIs where the functional semantics of APIs are advertised along with the
ontologies that our team has constructed and reorganized. By doing so, we accelerate
the API discovery process tremendously as we mitigate the need for an entire API
database search for selecting candidate APIs.

To elaborate, we first scan the API repository using the functional semantic pairs
that we have acquired from the extraction phase. If there is a match between APIs’
advertised functional semantics and the functional semantic pairs from a user’s natural
language query, the corresponding API gets flagged as a candidate API. Here, we pro-
pose two types of matches: exact match and partial match. An exact match is where
any two functional semantic pairs have the same action and object components. For
this particular case, we can save much of the database access time as the inference via
object and action ontologies are not necessary for selecting candidate APIs. On the
other hand, if two concepts are not an exact match, their relationship must be inferred.
In this case, therefore, the action or object ontologies must be accessed for further veri-
fication.

For the partial match cases, (1) is revised from the work of Li et al. [18] to compute
a similarity value between two ontology concepts. The equation involves two key ele-
ments, the height of the matching parent, denoted as parHeight and distance to the
parent, denoted as d, which determine the similarity between two different ontology
concepts. The rationale behind this equation is that the similarity between two ontology
concepts must increase as the height of their intersecting parent concept increases and
as the distance to that parent from two concepts decreases. ݉݅ܵݐ݁ܿ݊ܥሺܥଵ, ଶሻܥ ൌ ,ଵܥሺݐ݄݃݅݁ܪݎܽ ଵሻܥଶሻሺ݀ሺܥ ݀ሺܥଶሻሻ 2⁄ ሺ1ሻ

where parHeight(C1,C2) = height of matching parent concept of concept C1 and C2 ,

d(Cn) = concept Cn’s distance to the matching parent concept

Here, we describe the process of mapping the concepts from object and action ontolo-
gies to the object and action components of the functional semantic pairs extracted
from the previous phase. This process is a revised version of the work of Klusch et al.
[19]. As mentioned earlier, this mapping process is targeted for the candidates which
fall into the partial match category as these APIs may still be selected if their values
from (1) are above a threshold. Continuing with our example of the natural language
request described previously, we have picked {reserve, hotel} for a demonstration.
Figure 3 illustrates the action and object ontologies for a Web API named TourCMS2

2 http://www.tourcms.com/

Fig. 3. An exampl

and how the functional sem
ponding ontology concepts
the threshold is adjustable b

3.3 Chaining Phase

The next step involves the
vious phase to yield mash
depends on the proposed I/
user inputs and the function
further pruning.

Chaining Based on Conne
Here, we exploit the user i
extraction phase to constru
a graph depicting the colla
tion level. In other words,
by the connectivity of their
mappings of the candidate
Moreover, Figure 4 shows
ing arbitrarily generated A
nodes and the enclosed no
Also, the direction of the e
That is, the operation wher

Socially-Enriched Semantic Mashup of Web APIs

le of mapping concepts using action/object ontologies

mantic pair, {reserve, hotel}, gets mapped to the corr
 in the case of a partial match. It is also worth noting t

by the users of this system.

composition of the candidate APIs obtained from the p
hup chains [20]. This mashup chain construction proc
/O connectivity graphs and social graphs. In addition,
nal semantic pairs from the extraction phase are utilized

ectivity Graph
nputs and the functional semantic pairs obtained from
ct an I/O connectivity graph. An I/O connectivity graph

aboration relationships between various APIs at the ope
this graph takes into account that APIs are in fact brid
r operations. The construction of the graph is based on
e APIs’ input/output parameters within the I/O ontolo
a simplified version of the I/O connectivity graph conta

APIs for illustration purposes. In this figure, the enclos
odes represent the APIs and their operations respectiv
edges between two enclosed nodes dictates the datafl
re the arrow points to can at least take one output of

395

res-
that

pre-
cess
the

d for

the
h is
era-

dged
the

ogy.
ain-
sing
ely.
ow.
the

396 J. Jung and K.-H. Le

Fig. 4. A simplif

Fig. 5. A

preceding operation as its i
tivity, denoted as degConn,݀݁݃݊݊ܥሺݑ ՜

where degConn

|ExactM

|PartialM

This equation is essentially
tion that are provided by th
target operation. Furthermo

ee

fied version of the proposed I/O connectivity graph

A simplified social graph version of Figure 4

input. The edge weight representing the degree of conn
 then becomes the following: ݒሻ ൌ |݄ܿݐܽܯݐܿܽݔܧ| ߙ · ݏݐݑ݊݅ ݏԢݒ ݂ ݎܾ݁݉ݑ݊ ݈ܽݐݐ |݄ܿݐܽܯ݈ܽ݅ݐݎܽܲ|

n(u→v) = degree of connectivity from operation u to v,

Match| = number of concepts matching exactly,

Match| = number of concepts matching partially,�
� = weight for partial match,

0 ≤ degConn(u→v) ≤ 1

y the ratio of the total number of inputs of the target ope
he preceding operation to the total number of inputs of
ore, it is worth mentioning that the value of the weight

nec-

ሺ2ሻ

era-
the
for

 Socially-Enriched Semantic Mashup of Web APIs 397

partial match can be selected by the users to alter the degree of emphasis on partial
match cases.

Once the I/O connectivity graph illustrating the candidate mashup chains is ob-
tained, we then try to reduce the search space even further. For this purpose, we dep-
loy two pruning methods which facilitate the successive reduction of the search space:
pruning via functional semantics and pruning via user inputs. First, we reduce the
search space by pruning the mashup chains whose combined functional semantics do
not contain all of the functional semantics extracted from a natural language descrip-
tion. This is due to the fact that any of the candidate chains may be connected simply
by their input/output parameters. If so, the resulting candidate mashup chains may be
inadequate for satisfying the user request and are removed as a consequence. After
that, we execute another pruning method which exploits the user inputs. That is, we
reduce the search space further by pruning the mashup chains whose APIs’ operations
do not utilize all of the user inputs as their operation parameters. In other words, the
operations of the APIs composing the mashup chains must take all of the user inputs
as their input parameters.

Chaining Based on Social Graph
Once an I/O connectivity graph has been revised to yield various mashup chains satis-
fying a user request, a social graph for these finalized candidate mashup chains is
constructed. A social graph is a graph portraying the relationships between APIs by
capturing various social elements such as the rating and popularity of an API, and the
collaboration of two APIs. Figure 5 illustrates a simplified version of the social graph
for the APIs contained in the I/O graph generated from the previous section. This
graph is similar to the API collaboration network proposed in the work of Tapia et al.
[2], with the addition of API ratings to enhance the social richness of our approach. In
this figure, nodes and edges represent APIs and their collaborations in existing ma-
shups respectively. In addition, the popularity, denoted as pop, is the number of times
that a particular API is used in the formation of mashups. It is important to note that
the size of a node is dependent on its popularity value. The collaboration, denoted as
col, describes the number of times that two adjacent APIs are used concurrently in the
composition of mashups. This factor also indicates how thick the edges should be in a
social graph. Lastly, the rating, denoted as rate, is the averaged user rating value of a
particular API.

3.4 Selection Phase

In this section, we describe how an I/O connectivity graph and a social graph are ex-
ploited in recommending the finalized candidate mashup chains satisfying a user request.

Connectivity Analysis
For every I/O connectivity sub-graph corresponding to each of the finalized candidate
mashups, we calculate the connectivity rank using the degree of connectivity values.
Recall that the degree of connectivity, denoted as degConn, represents the ratio of how
many of the required inputs of a particular operation are satisfied by its preceding

398 J. Jung and K.-H. Lee

operation in their collaboration. To elaborate, the total degree of connectivity for a par-
ticular mashup signifies the executability of that mashup. By taking advantage of I/O
connectivity of APIs, the newly created APIs are given an opportunity to be utilized and
hence alleviating the cold-start problem. The following formula describes the connectiv-
ity rank calculation for a candidate mashup chain: ܴ݇݊ܽ݊ܥሺܫሻ ൌ ∑ ݑሺ݊݊ܥ݃݁݀ ՜ ሻ௨,௩ݒ ݍ ሺ3ሻ

where ConRank(I) = connectivity rank for mashup chain I,

degConn(u→v) = degree of connectivity from operation u to v,

q = total number of connectivity relationships in the mashup chain,

0 ≤ ConRank(I) ≤ 1

Social Analysis
Once all of the candidate mashup chains have been assigned with their corresponding
connectivity rank values, we then evaluate the social ranks of those chains. As men-
tioned above, we have three social factors in our social graph namely the popularity,
collaboration, and user rating, denoted as pop, col and rate respectively. To calculate
the social rank values of a candidate mashup, we use (4), which is based on the fact
that the popularity of a single Web API is greater than or equal to the total collabora-
tion of that API. Thus, the first segment of the equation computes how many of the
existing collaboration relationships are remaining in the newly constructed social
graph. As this number increases, the candidate mashup chain is assigned a higher
social rank value. Moreover, the second segment of (4) is simply normalizing the
ratings of the participating APIs. ܴܵ݇݊ܽܿሺܫሻ ൌ ∑ ∑ሺ݅ሻ݈ܿ ሺ݅ሻ · ∑ ݃݊݅ݐܴܽݔܽܯሺ݅ሻ݁ݐܽݎ · |݅| ሺ4ሻ

where SocRank(I) = social rank for mashup chain I,

col(i) = collaboration for API i,

pop(i) = popularity for API i,

rate(i) = rating for API i,

MaxRating = 5,

0 ≤ SocRank(I) ≤ 1.

Once the connectivity and social ranks for every candidate mashup chain have been
obtained, we then determine the final assessment values of those chains. Here, we
refer to the final assessment as the recommendation assessment, denoted by recAs-
sess. The computation of recAssess value utilizes both the social rank and connectivi-
ty rank as described in (5). ݏݏ݁ݏݏܣܿ݁ݎሺܫሻ ൌ ߚ · ሻܫሺܴ݇݊ܽܿܵ ሺ1 െ ሻߚ · ሻ ሺ5ሻܫሺܴ݇݊ܽ݊ܥ

where recAssess(I) = recommendation assessment of mashup chain I, ߚ = weight,

0 ≤ recAssess(I) ≤ 1

 Socially-Enriched Semantic Mashup of Web APIs 399

Table 1. A Portion of the Natural Language Queries along with their Extracted Functional
Semantics and User Inputs

 Request17 Request10 Request8 Request3
 {reserve,flight ticket} {show,house} {search,menu} {search,car}

Extracted {rent,car} {search,person} {search,price} {rent,car}
functional {reserve,hotel} {inform,time} {inform,friend} {show,map}
semantics {search,restaurant}

{search,weather}
{compute,radius} {view,photo}

 departFrom(England) city(Vancouver) foodType(Japanese) minPrice(0)
 arriveAt(France) firstName(Sam) restaurantName(Guu) maxPrice(8500)

Extracted departDate(9/15) lastName(Lee) city(London) carType(SUV)
user arriveDate(9/18) longitude(123,06)

inputs madeBy(Honda) latitude(49,13)
 foodType(French)
 location(Paris)

4 Experimental Results

In order to evaluate the performance of our approach, we have manually built a Web
API repository based on a well-known real world API database, Programmable-
Web.com. To elaborate, we have extracted and parsed 614 APIs along with their data
such as name, popularity, rating, description, and category. Then, we have analyzed
APIs’ description manuals available on the Web to obtain all of their operations and
input/output parameters. As a result, we ended up with 777 operations and 7128 in-
put/output parameters. Thereafter, we have extracted the functional semantics from
each operation and also constructed action/object/input/output ontologies for those
APIs using Protege3, an open-source ontology editor.

Once our API database was established, 20 different natural language requests with
varying complexity were manually created for test purposes. Table 1 illustrates a
small portion of the natural language queries and the outcomes obtained from the
extraction phase. Moreover, a connectivity graph and a social graph were constructed
for each request, and various factors required for the computation of recommendation
assessment values were also calculated. Finally, the candidate mashup chains with
higher recommendation assessment values than the optimal threshold were selected
for recommendation.

To verify whether a candidate mashup chain is a valid one or not, we had our
teams of mashup experts compose mashup services for a comparison with the auto-
matically generated candidate mashup chains. If a particular mashup service executes
successfully and produces a sound outcome as expected by a given request, then that
mashup chain is considered to be valid.

As for the precisions of the resulting mashups from all 20 requests, the outcome
ranged from minimum of 77.8% precision to maximum of 93.6% precision. In addi-
tion, the values of recall ranged from 72.5% to 87.5%. Figure 6 illustrates the preci-
sion and recall values of final mashups recommended from all of the natural language
requests. Particularly, the natural language query described earlier in the paper,

3 http://protege.stanford.edu/

400 J. Jung and K.-H. Le

Fig. 6. A precision vs. recall
proposed approach

request17 from Table 1, yie
the experimental results dep
of 75.2%.

In addition, Figure 7 de
shups obtained using differ
the bottom represents the pr
ation (5), was set to be 1. B
social features of APIs and
ty of API operations. This
average precision of 53.1%
which exploited both the so

On the other hand, the m
ommended mashups, wher
graph represents the version
al features of APIs. For th
average. This value was stil
integrates both the functio
cluded, at the top, the preci
ure 6 in Figure 7 to facilit
particular graph line, we ha
precision after several expe

In comparison with the e
our algorithm exhibited a
experimental setup, Gomad
grammableWeb.com and te
age precision was found to
70%. These numbers indica
ments in the precision and r

Nevertheless, the propos
age for those 20 natural la

ee

graph of the Fig. 7. A precision graph for three differ
 versions of the proposed method

elded a precision of 86.7% and a recall of 68.4%. Over
picted an average precision of 86.9% and an average re

epicts three different precision graphs of the resulting m
rent versions of our proposed method. The first line fr
recision of the recommended mashups where ߚ, from E
By assigning so, the proposed method only considered
ignored the functional features such as the I/O connect

s particular version of the proposed method exhibited
% which was significantly lower than the proposed meth
ocial and functional features of APIs.
middle line in Figure 7 illustrates the precision of the r
re ߚ, from Equation (5), was set to be 0. This particu
n of our proposed method which only utilizes the functi
his approach, the precision was observed to be 70.7%
ll lower than the precision of the proposed approach wh

onal and social features of Web APIs. Also, we have
ision graph of the original version of our method from F
tate easy comparison. It is worth mentioning that for
ave used 0.41, which was found to exhibit relatively h

eriments, for the value of ߚ.
experimental results from the work of Gomadam et al.
a significant improvement in performance. As for
dam et al. have also exploited the Web APIs from P
ested with 5 different user queries. In their work, the av
 be around 77% and the average recall was approximat
ate that our approach has shown 9.9% and 5.2% impro
recall respectively.
sed algorithm yielded 13.1% of erroneous results on av
nguage queries. From all of the recommended mashu

rent

rall,
ecall

ma-
rom

Equ-
the

tivi-
d an
hod

rec-
ular
ion-

% on
hich

in-
Fig-
this

high

[9],
the

Pro-
ver-
tely

ove-

ver-
ups,

 Socially-Enriched Semantic Mashup of Web APIs 401

13.1% of them were either not executable or did not satisfy the user requests due to
the following reasons. First, due to the fact that ontologies are human-constructed,
they may contain insufficient information required for concept mapping and inference
engines. For example, a functional semantic pair, {rent, Mustang}, extracted from a
user request may not be able to infer that Mustang is a car after ontology concept
mapping. Consequently, an incorrect service was discovered and regarded as a candi-
date API service.

Second, an error in the extraction of functional semantic pairs and user inputs from
the test queries was unavoidable. To elaborate, the proposed algorithm accepts a user
query that is composed in natural language. By forming the queries in natural language,
mashup users are able to diminish the formality of query generation compared to other
querying techniques. However, as these users gain more expressive power when con-
structing queries, it becomes harder for a natural language processor to capture all of
their intentions. As a consequence, the extracted functional semantic pairs and user
inputs may vary from what the users expect. In this case, the proposed approach se-
lected an incorrect service which is not consistent with the intention of our test queries.

5 Conclusions and Future Work

In this paper, we have presented a hybrid approach which combines both the social
and functional features of APIs to enhance the API discovery and composition
processes. Moreover, we have introduced new algorithms for computing the rankings
of the resulting candidate mashup chains to assist mashup users. We have first ex-
tracted the functional semantic pairs and user inputs from a natural language request.
Then, we have selected the corresponding Web APIs that match the extracted func-
tional semantic pairs. After that, a connectivity graph and a social graph between the
candidate APIs have been constructed based on ontology mapping. Finally, the candi-
date mashup chains have been examined in order to recommend the ones that are
adequate for satisfying a user’s request.

Overall, the proposed algorithm performed efficiently for a number of different
natural language queries, each with varying complexity. The experimental results
showed an average precision of 86.9% and an average recall of 75.2%, which implies
a significant improvement from a previous work. In addition, our experimental results
demonstrated that the combination of social and functional features exhibited a signif-
icantly better precision than these exploited separately.

Although our current database of Web APIs contains a sufficient amount of data to
conduct valid experiments, we believe that there is a necessity for an exhaustive expe-
riment with a more large volume of APIs. In addition, we are looking to adjust or
possibly move away from formatting our input in natural language form as this par-
ticular technique exhibits a fair amount of noise compared to other query techniques.
So, we will be researching on other various query techniques to enhance the quality of
our work. Furthermore, we strongly believe that the exploitation of wisdom of crowds
through crowdsourcing techniques is an area that has the potential to enhance the API
composition process as stated in Section 2. Therefore, we will also be investigating
different ways to leverage on this aspect for its integration with our approach.

402 J. Jung and K.-H. Lee

Acknowledgment. The research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2011-0026423).

References

1. Elmeleegy, H., Ivan, A., Akkiraju, R., Goodwin, R.: Mashup advisor: a recommendation
tool for Mashup development. In: IEEE International Conference on Web Services, ICWS,
pp. 337–344 (2008)

2. Tapia, B., Torres, R., Astudillo, H.: Simplifying mahsup component selection with a com-
bined similarity- and social-based technique. In: 5th International Workshop on Web APIs
and Service Mashups, MASHUPS (2011)

3. Torres, R., Tapia, B., Astudillo, H.: Improving Web API Discovery by leveraging social
information. In: IEEE International Conference on Web Services, ICWS, pp. 744–745
(2011)

4. Shin, D.H., Lee, K.-H., Suda, T.: Automated generation of composite web services based
on functional semantics. Journal of Web Semantics 7(4), 332–343 (2009)

5. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A Domain-Specific Language for
Web APIs and Services Mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

6. Goarany, K., Kulczycki, G., Blake, M.B.: Mining social tags to predict mashup patterns.
In: 2nd International Workshop on Search and Mining User-Generated Contents, SMUC,
pp. 71–78 (2010)

7. Bouillet, E., Feblowitz, M., Feng, H., Liu, Z., Ranganathan, A., Riabov, A.: A folksono-
my-based model of web services for discovery and automatic composition. In: IEEE Inter-
national Conference on Services Computing, SCC, pp. 389–396 (2008)

8. Fernandez, A., Hayes, C., Loutas, N., Peristeras, V., Polleres, A., Tarabanis, K.: Closing
the Service Discovery Gap by Collaborative Tagging and Clustering Techniques. In: 7th
International Semantic Web Conference, ISWC, pp. 115–128 (2008)

9. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A faceted classifica-
tion based approach to search and rank web apis. In: IEEE International Conference on
Web Services, ICWS, pp. 177–184 (2008)

10. Schall, D., Truong, H.L., Dustdar, S.: Unifying Human and Software Serivces in Web-
Scale Collaborations. IEEE Internet Computing 12(3), 62–68 (2008)

11. Maaradji, A., Hacid, H., Daigremont, J.: Towards a Social Network Based Approach for
Services Composition. In: IEEE International Conference on Communications, ICC, pp.
1–5 (2010)

12. Maaradji, A., Hacid, H., Skraba, R.: Social Web Mashups Full Completion via Frequent
Sequence Mining. In: IEEE World Congress on Services, SERVICES, pp. 9–16 (2011)

13. Maaradji, A., Hacid, H., Skraba, R., Lateef, A., Daigremont, J., Crespi, N.: Social-based
Web services discovery and composition for step-by-step mashup completion. In: IEEE In-
ternational Conference on Web Services, ICWS, pp. 700–701 (2011)

14. Yu, S., Woodard, C.J.: Innovation in the Programmable Web: Characterizing the Mashup
Ecosystem. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp.
136–147. Springer, Heidelberg (2009)

15. Wang, J., Chen, H., Zhang, Y.: Mining user behavior pattern in mashup community. In:
10th IEEE International Conference on Information Reuse & Integration, IRI, pp. 126–131
(2009)

 Socially-Enriched Semantic Mashup of Web APIs 403

16. Lim, J.H., Lee, K.-H.: Constructing composite web services from natural language re-
quests. Journal of Web Semantics 8(1), 1–13 (2010)

17. Briscoe, T., Carroll, J., Watson, R.: The second release of the RASP system. In: Proc. of
the COLING/ACL Conference, pp. 77–80 (2006)

18. Li, Y., Bandar, Z.A., McLean, D.: An Approach for Measuring Semantic Similarity be-
tween Words Using Multiple Information Sources. IEEE Transactions on Knowledge and
Data Engineering 15(4), 871–882 (2003)

19. Klusch, M., Fries, B., Sycara, K.: OWLS-MX: A hybrid Semantic Web service mat-
chmaker for OWL-S services. Journal of Web Semantics 7(2), 121–133 (2009)

20. Roy Chowdhury, S., Daniel, F., Casati, F.: Efficient, Interactive Recommendation of Ma-
shup Composition Knowledge. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.)
ICSOC 2011. LNCS, vol. 7084, pp. 374–388. Springer, Heidelberg (2011)

21. Melchiori, M.: Hybrid Techniques for Web APIs Recommendation. In: 1st International
Workshop on Linked Web Data Management, LWDM, pp. 17–23 (2011)

	Socially-Enriched Semantic Mashup of Web APIs
	Introduction
	Related Work
	The Proposed Mashup Recommendation Algorithm
	Extraction Phase
	Discovery Phase
	Chaining Phase
	Selection Phase

	Experimental Results
	Conclusions and Future Work
	References

