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Abstract. Recently, two-dimensional principal component analysis (2D-
PCA) and its variants have been proposed by several researchers. In
this paper, we summarize their 2DPCA variants, show some equiva-
lence among them, and present a unified view in which the non-iterative
2DPCA variants are interpreted as the non-iterative approximate algo-
rithms for the iterative 2DPCA variants, i.e., the non-iterative 2DPCA
variants are derived as the first iterations of the iterative algorithm
started from different initial settings. Then we classify the non-iterative
2DPCA variants on the basis of their algorithmic patterns and propose
a new non-iterative 2DPCA algorithm based on the classification. The
effectiveness of the proposed algorithm is experimentally demonstrated
on three publicly accessible face image databases.

Keywords: Dimensionality reduction, Principal component analysis,
Two-dimensional principal component analysis.

1 Introduction

Principal component analysis (PCA) and linear discriminant analysis (LDA) are
well-known techniques for dimensionality reduction. Since they are based on vec-
tors, matrices such as 2D face images must be transformed into 1D image vectors
in advance. However, the resultant vectors usually lead to a high-dimensional
vector space, where it is difficult to solve the (generalized) eigenvalue problems
for PCA and LDA.

Recently, Yang and Yang [1] and Yang et al. [2] have proposed two-dimensional
PCA (2DPCA) which can handle matrices directly without vectorizing them.
However, 2DPCA is approximately equivalent to the conventional PCA operated
only on the row vectors of matrices [3–5], and needs many more coefficients for
image representation than PCA. To overcome this problem, several variants of
2DPCA have been proposed recently. Since they have been proposed almost
independently and simultaneously, the relationship among them is not clear.
Therefore, the systematization of them is desired for a deeper understanding of
2DPCA variants.
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In this paper, we summarize the variants of 2DPCA [2] and show some equiv-
alence among them. Moreover, we present a unified view of 2DPCA variants,
where the non-iterative 2DPCA variants are interpreted as the non-iterative ap-
proximate algorithms for the iterative ones, i.e., we show that the non-iterative
ones are derived as the first iterations of the iterative algorithm started from
different initial settings. Then we classify the non-iterative ones on the basis of
their algorithmic patterns and present a new non-iterative 2DPCA algorithm
based on the classification result.

The rest of this paper is organized as follows: Section 2 briefly surveys the
related work. Section 3 summarizes the original 2DPCA and its variants and
shows some equivalence among them. Section 4 presents a unified view of 2DPCA
variants and classifies the non-iterative 2DPCA variants on the basis of their al-
gorithmic patterns. From the classification result, a new non-iterative algorithm
is derived. Section 5 shows experimental results which demonstrate the effec-
tiveness of the derived algorithm compared with the conventional non-iterative
2DPCA variants. Section 6 concludes this paper.

2 Related Work

Yang and Yang [1] and Yang et al. [2] proposed two-dimensional principal com-
ponent analysis (2DPCA) which is based on 2D image matrices rather than
1D vectors so the image matrix does not need to be transformed into a vec-
tor prior to feature extraction. Ye et al. [6] proposed generalized PCA (GPCA)
which is formulated as an optimization problem and derived an iterative pro-
cedure for GPCA. Kong et al. [7] proposed a framework of generalized 2DPCA
to extend the original 2DPCA in two perspectives: a bilateral-projection-based
2DPCA (B2DPCA) and a kernel-based 2DPCA. Zhang and Zhou [8] proposed
two-directional 2DPCA, i.e., (2D)2PCA which combines 2DPCA and alterna-
tive 2DPCA. Zhang et al. [9] proposed a method for representing 2D image
matrices using eigenimages, which are 2D matrices with the same size as the
original images and can be directly computed from the original image matrices.
Benito and Peña [10] proposed a method for dimensionality reduction based on
the projection of images as matrices. Xu et al. [11] proposed complete 2DPCA
(C2DPCA) in which two image covariance matrices are constructed and their
eigenvectors are derived for image feature extraction. Xu et al. [12] proposed
a two-stage strategy, parallel image matrix compression (PIMC), to compress
the image matrix redundancy among both row vectors and column ones. Zuo et
al. [13] proposed bi-directional PCA (BDPCA) and an assembled matrix distance
metric to calculate the distance between two feature matrices. Wen and Shi [14]
proposed image PCA (IPCA) in which a family of projective feature vectors,
which is called the projective feature image, is obtained by 2DPCA and then
the transpose of the projective feature image is processed by 2DPCA again. Lu
et al. [15] proposed doubleside 2DPCA (D2DPCA) and the constructive method
for incrementally adding observation to the existing eigen-space model, called
incremental D2DPCA. Xi and Ramadge [16] proposed separable PCA (SPCA)
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and unified 2DPCA [2], BDPCA [13] and generalized low rank approximations
of matrices (GLRAM) [17]. Yang et al. [18] proposed Bi-2DPCA which performs
2DPCA [2] twice: the first one is in horizontal direction and the second is in
vertical direction.

The above 2DPCA variants proposed almost independently and simultane-
ously. Therefore, the theoretical relationship among them is not clear. In the
following, we will discuss the relationship theoretically.

3 2DPCA and Its Variants

In this section, we summarize the original 2DPCA [2] and its variants which are
roughly divided into two categories: iterative and non-iterative algorithms, and
present some equivalence among them.

3.1 2DPCA

Suppose that there are M training image samples, the kth training image is
denoted by anm×n matrix Ak ∈ �m×n where � denotes the set of real numbers,
and the average image of all training samples is denoted by Ā = 1

M

∑M
k=1 Ak.

Then the image covariance (scatter) matrix [2] is defined by

G =
1

M

M∑

k=1

(
Ak − Ā

)T (
Ak − Ā

) ∈ �n×n, (1)

where T denotes the transpose of a matrix, and the generalized total scatter
criterion [2] is expressed by

J(X) = tr
(
XTGX

)
, (2)

where tr denotes the matrix trace and X ∈ �n×ñ for ñ < n is subject to
XTX = Iñ where Iñ is the ñ× ñ identity matrix. The optimal X that maximize
J(X) is obtained by X = [x1, . . . , xñ] where xj (j = 1, . . . , ñ) denotes the
eigenvector of G corresponding to the jth largest eigenvalue. Finally, each Ak is
transformed into

Bk = AkX ∈ �m×ñ. (3)

Although the above 2DPCA can reduce the number of columns from n to ñ in
(3), the number of rows, m, is unchanged. Therefore, 2DPCA needs many more
coefficients for image representation than PCA [2, 9]. To overcome this problem,
several variants of 2DPCA have been proposed recently. They can be classified
into two categories: iterative and non-iterative algorithms.

3.2 Non-iterative 2DPCA Variants

In this subsection, we summarize the non-iterative 2DPCA variants, which are
further divided into two sub-categories: parallel and serial methods.
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Parallel Method. Instead of the image covariance (scatter) matrix in (1),
another one can be defined as follows:

G̃ =
1

M

M∑

k=1

(
Ak − Ā

) (
Ak − Ā

)T ∈ �m×m, (4)

from which another criterion is obtained by

J̃(Y ) = tr
(
Y T G̃Y

)
, (5)

where Y ∈ �m×m̃ for m̃ < m is subject to Y TY = Im̃. The optimal Y that max-
imize J̃(Y ) is obtained by Y = [y1, . . . , ym̃] where yi (i = 1, . . . , m̃) denotes the
eigenvector of G̃ corresponding to the ith largest eigenvalue. Zhang and Zhou [8]
called this method the alternative 2DPCA. Finally, each Ak is transformed into

B̃k = Y TAkX ∈ �m̃×ñ. (6)

We call this type of 2DPCA variant the parallel method because X and Y
are calculated in a parallel manner. Essentially, (2D)2PCA [8], eigenimages [9],
C2DPCA [11], BDPCA [13], and D2DPCA [15] are equivalent to this parallel
method.

Serial Method. As opposed to the above parallel method, we can consider
the serial method as follows. First, 2DPCA [2] described in Subsection 3.1 is
conducted to obtain {Bk}Mk=1. Next, the image covariance (scatter) matrix is
constructed for the set of the transposed matrices {BT

k }Mk=1 as follows:

Ĝ =
1

M

M∑

k=1

(
BT

k − B̄T
)T (

BT
k − B̄T

) ∈ �m×m, (7)

where B̄ = 1
M

∑M
k=1 Bk. Then the total scatter criterion

Ĵ(Ŷ ) = tr
(
Ŷ T ĜŶ

)
(8)

for Ŷ ∈ �m×m̃ which is subject to Ŷ T Ŷ = Im̃ is maximized by Ŷ = [ŷ1, . . . , ŷm̃]
where ŷi (i = 1, . . . , m̃) denotes the eigenvector of Ĝ corresponding to the ith
largest eigenvalue. Each Ak is transformed into

B̂k = Ŷ TBk = Ŷ TAkX ∈ �m̃×ñ. (9)

Essentially, PIMC [12], IPCA [14], and Bi-2DPCA [18] are equivalent to this
serial method.



570 K. Inoue, K. Hara, and K. Urahama

3.3 Iterative 2DPCA Variants

In the above non-iterative 2DPCA variants, two matrices X and Y (or Ŷ ) are
derived from different criteria. On the other hand, the iterative 2DPCA variants
are formulated as an optimization of a single criterion as follows [19]:

max
X,Y

1

M

M∑

k=1

∥
∥
∥Y T ÃkX

∥
∥
∥
2

F
(10)

subj.to XTX = Iñ, Y
TY = Im̃, (11)

where Ãk = Ak − Ā. Let F (X,Y ) be the objective function in (10). Then the
Lagrange function for (10)-(11) is given by

L = F (X,Y )− tr
[
ΛX

(
XTX − Iñ

)]− tr
[
ΛY

(
Y TY − Im̃

)]
, (12)

where ΛX and ΛY are symmetric matrices of which the elements are the Lagrange
multipliers. From ∂L/∂X = 0 and ∂L/∂Y = 0, we have

GY X = XΛX , (13)

GXY = Y ΛY , (14)

respectively, where GY = 1
M

∑M
k=1 Ã

T
k Y Y T Ãk and GX = 1

M

∑M
k=1 ÃkXXT ÃT

k .
Hence, for a fixed Y , the optimal X is obtained by X = [x1, . . . , xñ] where
xj (j = 1, . . . , ñ) denotes the eigenvector of GY corresponding to the jth largest
eigenvalue, and similarly, for the obtained X , the optimal Y is obtained by Y =
[y1, . . . , ym̃] where yi (i = 1, . . . , m̃) denotes the eigenvector of GX corresponding
to the ith largest eigenvalue. This procedure is repeated until the convergence.
Essentially, GPCA [6], B2DPCA [7], Benito’s method [10], and SPCA [16] are
equivalent to this method.

4 A Unified View of 2DPCA Variants

In this section, we present a unified view of the 2DPCA variants described in the
above section. That is, we show that the non-iterative 2DPCA variants including
the original 2DPCA [2] can be interpreted as the non-iterative approximate
algorithms for the iterative algorithm in Subsection 3.3.

First, the original 2DPCA [2] is derived from the iterative algorithm in Sub-
section 3.3 as follows: if we initialize Y = Im, then F (X,Y ) becomes

F (X,Y ) = tr

[

XT

(
1

M

M∑

k=1

ÃT
k Y Y T Ãk

)

X

]

= tr
(
XTGX

)
= J(X). (15)

Therefore, X obtained by the first iteration coincides with that of 2DPCA [2].
On the other hand, if we initialize X = In, then we have F (X,Y ) = J̃(Y ).

Therefore, Y obtained by the first iteration in this setting coincides with that
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of the parallel method in Subsection 3.2. That is, the parallel method uses X
and Y obtained by the first iterations of the iterative algorithm started from
different initial settings: Y = Im and X = In, respectively.

The serial method in Subsection 3.2 can be derived by initializing Y = Im.
Since X obtained by the serial method coincides with that of 2DPCA [2], it can
be obtained by the first iteration. Next, the obtained X is used for computing
Y , i.e., we have

F (X,Y ) = tr

[

Y T

(
1

M

M∑

k=1

ÃkXXT ÃT
k

)

Y

]

= tr
(
Y T ĜY

)
. (16)

Therefore, Y obtained by the first iteration coincides with that of the serial
method; Y = Ŷ .

Thus, the conventional non-iterative 2DPCA variants can be derived as the
first iterations of the iterative algorithm started from different initial settings.
Furthermore, this viewpoint suggests the existence of the other non-iterative
variant, i.e., we can consider another (alternative) serial method which is ini-
tialized as X = In. Then we obtain a pair of Y and X̂ which is the solution to
maxX F (X,Y ). Finally, we can combine the two serial methods to obtain the
selective method as follows:

(X∗, Y ∗) = arg max
(X,Y )∈{(X,Ŷ ), (X̂,Y ), (X̂,Ŷ )}

F (X,Y ). (17)

Each Ak is transformed into

B∗
k = (Y ∗)T AkX

∗ ∈ �m̃×ñ. (18)

This method will achieve better performance than the conventional non-iterative
2DPCA variants because it is guaranteed that the objective function value ob-
tained by the selective method is greater than or equal to that of the serial
methods. The superiority of the proposed method to the other methods will be
experimentally demonstrated in the next section. Table 1 shows the classification
of the non-iterative 2DPCA variants. The proposed selective method in (17) fills
up the blank in Table 1.

Table 1. Classification of non-iterative 2DPCA variants

Renew X or Y Renew X and Y

Initialize X or Y (alternative) 2DPCA (alternative) serial
Initialize X and Y parallel selective (proposed)

5 Experimental Results

In this section, we show experimental results on the ORL face image database [20],
the Caltech Faces [21] and the UMIST face database [22]. The ORL database [20]
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Fig. 1. Difference of F for the ORL face image database [20]
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Fig. 2. Difference of F for the Caltech Faces [21]
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Fig. 3. Difference of F for the UMIST face database [22]

contains face images of 40 persons. For each person, there are 10 different
face images. In our experiment, we used the first 5 images per person, i.e.,
M = 5 × 40 = 200. The height and width of each image are m = 112 and
n = 92, respectively. Fig. 1 shows the differences of the objective function val-
ues: F (ξ, η)−F (X,Y ), where ξ = X, η = Ŷ for broken line (the serial method),
ξ = X̂, η = Y for dotted line (the alternative serial method) and ξ = X̂, η = Ŷ
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for solid line (the proposed selective method), and F (X,Y ) denotes the objective
function value for the parallel method, i.e., X and Y are obtained by maximizing
(2) and (5), respectively. The horizontal axis denotes m̃ (= ñ). Since all lines
lie in the positive region, it is clear that the serial, alternative serial and selec-
tive methods achieve higher objective function values than the parallel method.
Furthermore, among the three methods, the proposed selective method achieves
the highest objective function value.

Figs. 2 and 3 show the results for the Caltech Faces [21] and the UMIST face
database, respectively. In the Caltech Faces [21], we used 445 cropped face im-
ages. The height and width of each image arem = 165 and n = 122, respectively.
In the UMIST face database, we used 380 face images. The height and width of
each image are m = 112 and n = 92, respectively. Figs. 2 and 3 also demonstrate
the superiority of the proposed selective method to the other methods.

6 Conclusion

In this paper, we summarized the 2DPCA variants which have been proposed
by several researchers recently, and presented a unified view of the 2DPCA
variants. We discussed some equivalence of the 2DPCA variants and classi-
fied them on the basis of their algorithmic patterns. Then we proposed a new
non-iterative 2DPCA algorithm based on the classification result. The proposed
method achieved higher objective function value than the other non-iterative
2DPCA variants. Future work will include the summarization of the variants of
two-dimensional linear discriminant analysis.
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