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Abstract. How best to efficiently establish correspondence among a large set of
images or video frames is an interesting unanswered question. For large databases,
the high computational cost of performing pair-wise image matching is a ma-
jor problem. However, for many applications, images are inherently sparsely
connected, and so current techniques try to correctly estimate small potentially
matching subsets of databases upon which to perform expensive pair-wise match-
ing. Our contribution is to pose the identification of potential matches as a link
prediction problem in an image correspondence graph, and to propose an effec-
tive algorithm to solve this problem. Our algorithm facilitates incremental image
matching: initially, the match graph is very sparse, but it becomes dense as we al-
ternate between link prediction and verification. We demonstrate the effectiveness
of our algorithm by comparing it with several existing alternatives on large-scale
databases. Our resulting match graph is useful for many different applications.
As an example, we show the benefits of our graph construction method to a label
propagation application which propagates user-provided sparse object labels to
other instances of that object in large image collections.
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1 Introduction

The widespread use of digital still and video cameras and the success of social Web
services such as Facebook, Flickr, and YouTube has resulted in an enormous amount
of publicly available image and video data. Organizing and browsing such large-scale
visual data (100,000+ images) is more than ever a pertinent problem in computer vision
and data mining research. While there have been remarkable developments in the last
ten years [1–6], structuring large-scale visual data is still an active research area and
any improvements would have wide applicability.

The first step required to organize, annotate, and retrieve from large image and video
collections is to establish correspondences among individual images and video frames.
This is not only an interesting problem by itself [3], but is also a key component to many
potential applications including 3D reconstruction [1, 7, 8], graphical navigation [3, 2],
and content-based retrieval [9]. Establishing image correspondence in unconstrained
databases is very challenging because of significant variations in the appearances of
objects. We focus on the specific case where images are connected by static objects
appearing therein, e.g., landmarks and buildings, and this is assumed in most previous
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work [1, 7, 3, 2]. This allows us to exploit well-established 3D geometry-based image
matching techniques [10]. However, our graph construction technique is general and
does not depend on any particular matching technique or data content.

A significant problem with 3D geometry-based matching techniques (as well as other
accurate image matching techniques) is that they are computationally expensive and
cannot feasibly be applied brute force to large-scale data. Fortunately, for the appli-
cations we foresee, our data are inherently sparsely connected. Typically, an image
matches only a small subset of the entire database as, for example, photos of city land-
marks are naturally geographically separated. We take advantage of this sparsity to
quickly estimate a small subset of potential matches and then only verify these with
an expensive matching procedure. This saves a significant amount of time versus per-
forming an exhaustive pair-wise matching for a large-scale graph. Further, for many
applications, it is useful that our iterative approach produces intermediate results (i.e.,
only a subset of the entire set of potential matches are identified), allowing services to
be provided before computation is complete. Our algorithm is especially useful in this
case since it maximizes the number of verified matches given a limited amount of time
and computational resources.

Our main contribution is an algorithm which predicts the existence of links among a
large set of potential matching candidates. We regard the process of matching as a graph
construction where an edge between two nodes (a pair of images) indicates a success-
ful image match. Our system incrementally constructs a graph by iterating between the
estimation of potential links and their verification. In our experiments, we demonstrate
that our algorithm well-predicts the existence of links and so enables very efficient use
of computational resources in the matching stage. This avoids the tremendous task of
matching all pairs of images a priori. We also demonstrate that our approach outper-
forms existing methods on two real-world databases.

Finally, we show how our graph construction can benefit an example application.
Here, we choose label propagation: The labels (or annotations) are provided by users
for some objects in some images. These labels are typically extremely sparse: as ex-
tensive object labeling across an image or video collection is often infeasible, a user
may label an object (e.g., ‘London Eye’) in only a few keyframes in one video. Our
algorithm automatically propagates sparse user-provided label data to large unstruc-
tured image and video collections. The resulting algorithm enables users to easily share
labels between visual data, i.e., to automatically assign labels to as many objects oc-
currences as possible. Our label propagation framework also includes (semi-automatic)
error correction, active label acquisition, and image-based query processing.

2 Related Work

Our proposed graph construction algorithm is influenced by many techniques from dif-
ferent disciplines. As such, in the first part of this section we focus only on reviewing
work related to organizing images, and we leave a review of data mining research for
Sec. 3.2. The second part of this section focuses on reviewing related label propagation
algorithms, as we use this application as an example of where our graph construction
can benefit.
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Graph Construction for Images. Many aspects of image and video organization are
based on a graph structure which encodes the match relations among a given set of
images [3, 2, 7, 11]. While there are various choices of algorithm for matching pairs
of images, 3D geometry-based matching is particularly relevant when a high level of
accuracy is required. To deal with the high computational complexity of 3D geometry-
based matching techniques, existing works typically adopt a pre-processing stage to
quickly identify a small set of candidates which are later refined with geometry-based
matching [3, 11, 7]. For large-scale image collections depicting heterogeneous regions,
this approach by itself may not be sufficient as it sacrifices precision to guarantee recall.

Recently, authors have proposed incremental graph construction [3, 7]: First, a sparse
graph (i.e., few edges) is built. Second, by exploiting the context of relevant matches,
the graph is made dense. By predicting potential edges, a certain measure of graph
connectivity (e.g., algebraic graph connectivity [3]) can potentially be maximized.

Our framework improves upon existing incremental graph construction algorithms
by focusing directly on increasing the graph connectivity for choosing potential can-
didates (i.e., to predict edges which are likely to be actual edges). In addition to ex-
perimental comparison, we provide a detailed discussion comparing Agarwal et al.’s
algorithm [7], Heath et al.’s algorithm [3] and our algorithm in Sec. 3.

Content-Based Retrieval and Annotation as Applications. Closely related to our
algorithm, especially to our label propagation application, are previous methods for
retrieving and annotating geographic locations (or spatial landmarks). For instance,
Kennedy and Naaman [6] used visual features, user tags, and other metadata for clus-
tering and annotating photographs. They exploit metadata and user tags to quickly gen-
erate a set of candidate image matches and then refine the results using visual features.
Based on cluster coherence and connectivity, representative photographs are identi-
fied and are presented as a summary for a location [12]. Zheng et al. [5] proposed a
Web-scale landmark recognition engine. The system automatically discovers landmarks
by exploiting GPS-tagged photographs and travel guide articles. Then, a large image
database is clustered into potential landmarks based on local feature point matching.

Gammeter et al. [4] further developed this idea such that Web-scale annotation is au-
tomatically performed at the level of individual objects appearing within images. First,
they automatically identify important objects and cluster images based on geo-tagged
photos obtained from Flickr. Then, each query image is matched against each cluster,
and object bounding boxes are found through connectivity analysis . Other related work
in image retrieval and geo-annotation can be found in [13–16].

One important difference between existing content-based annotation work and our
label propagation algorithm is that our objective is not to pre-cluster images or to iden-
tify important objects (i.e., landmarks) – this is not the goal of label propagation and
such services can be built on top of our graph structure. We believe the primary goal of
label propagation is to correctly connect as many images as possible such that any label
on any object can be propagated, not just the most popular ones.

Video Google [9] was one of the first systems to enabled retrieval of video data. This
system quickly identifies regions of interest, each adapted based on the local contexts
of images, such that the resulting feature descriptors represent objects in a viewpoint
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invariant way. Our approach is complementary to these ‘retrieval’-based approaches
since our goal is to connect all pairs of images which contain the same objects. In
principle, Video Google could be adopted as a component of our algorithm to quickly
generate candidates for more costly 3D geometry-based image matching (cf. Sec. 3).

3 Our Graph Construction Algorithm

Our system incrementally constructs a graph by iterating between the estimation of po-
tential links and their verification. To help in this task when connecting large databases
of images, our algorithm predicts the existence of links among a large set of potential
matching candidates. The remainder of section explains the steps necessary to build
the graph and discuss their general properties. While our graph construction algorithm
is independent of any specific image matching technique, we exemplify it with 3D
geometry-based matching at the end of this section. These techniques will subsequently
be used in our label propagation application.

We begin with definitions: For a given image database I = {I1, . . . , Il}, two images
Ii and Ij are linked if there is an established correspondence. This can be naturally
represented as a match graph G where nodes and edges represent images and links
respectively. We refer to the process of identifying links as matching or verification.

Naively pair-wise matching all images may be computationally prohibitive even on
medium size databases (106 images) when we require computationally expensive match
verification. Introducing a filtering phase (as in [7]) may still not be sufficient for very
large databases as the number of candidate images to be verified afterward will be pro-
hibitively large. To ease this problem, we propose a two-phase graph construction:

1) Filtering phase For each image, we quickly generates a relatively small set of can-
didate images upon which to invoke expensive matching. Typically, this phase relies
on the vector space structure of image features.

2) Incremental graph construction phase We approximate the final match graph G
with a very sparse graph G0 (i.e., # edges in G0 � # edges in G) which we then
incrementally densify. G0 could be obtained either by randomly verifying a small
number of image pairs or by relying on domain knowledge (e.g., geo-tagging meta-
data). Given G0, we iterate the prediction of potential links and their verification:
Prediction: At each step t, for each unverified link, we estimate the confidence of

that potential link being a real link with the measure in Sec. 3.1.
Verification: The first m candidates corresponding to the m highest confidence

values are verified and Gt is updated before the (t+1)-th step.
We can run a random selection process in parallel to guarantee that all potential
links eventually undergo verification (as t→∞) when using a sub-100%-accurate
confidence measure (for instance, with disconnected subgraphs, see Sec. 5).

3.1 Link Confidence Measure

To predict good potential links at step t, we need a measure of confidence that a po-
tential link is a real link. For this, we exploit the global connectivity of Gt. Throughout
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Fig. 1. A schematic diagram of regu-
larization based on similarity relation:
the solid and dashed lines indicate ver-
ified and unverified links, respectively,
while the blue and red lines show pos-
itive and negative entries, respectively

iterative graph construction, we maintain a matrix T which contains accumulated link
verification results between all pairs of images. A positive entry in T implies that the
image pair is similar (e.g., that they contain common feature points). A negative entry in
T indicates that the image pair has been verified but was dissimilar (i.e., failed match).
A null entry in T shows that no information has been gained so far for that image pair.

A graph Laplacian L is built with the similarity information and is used to regularize
the link structure of Gt (both similarity and dissimilarity; T ) based on the paths con-
nected by a similarity relation. We do not use the verified dissimilarity (i.e., the negative
entries of T ) in L since dissimilarity is not transitive (the intuitive notion of transitivity,
rather than the mathematical one).1

Figure 1 explains this with examples. Suppose we have six images A to F :

Example 1: If we know that (A and B) and (A and C) are similar, we expect (B and
C) to be similar. However, if (A and D) and (A and E) are dissimilar, then this
tells us little about the (dis-)similarity of (D and E). In fact, D and E could be
identical.

Example 2: We expect that, for images A, B, and F , the similarity of (A and B) and
the dissimilarity of (B and F ) suggests the dissimilarity of (A and F ).

These examples indicate that both similarity and dissimilarity should be regularized
through an edge connected by a similarity relation. That is, the differences of the vari-
ables TAC and TBC should be penalized if they are connected by an edge joining A and
B and existing in Gt.

Formally, for our confidence measure, we use the minimizer of the cost functional:

O(F ) =
1

2

(
λtr[F�LF ] +

1

l
‖F − T ‖2F

)
, (1)

where λ is a regularization parameter, F (l × l) is the variable matrix whose estimated
entries will provide confidences, ‖ · ‖F is the Frobenius norm, tr[·] computes the trace,
and L (l× l) is the graph Laplacian constructed from the similarity matrix W :

Wij =

{
Tij if Tij > 0
0 otherwise.

(2)

The matrix T contains accumulated link verification results up to (t− 1):

Tij =

⎧⎨
⎩

k(Ii, Ij) if k(Ii, Ij) > 0
−1 if k(Ii, Ij) = 0
0 if (Ii, Ij) has not been verified.

(3)

1 This transitivity may often fail in practice. Accordingly, we use this notion only for regulariz-
ing the labeling process on the graph based on the graph Laplacian.
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where k(I, J) encodes the results of verification for a pair (I, J). k(·, ·) is 0 when ver-
ification fails and is positive otherwise: If verification of (I, J) produces a strength or
score, then k(I, J) is assigned with that specific value. Otherwise, 1 is assigned, indi-
cating successful verification. Section 3.3 shows an example of k(·, ·). If the candidate
pair (Ii, Ij) do not pass through the filtering phase, we assign−1 to Tij . The minimizer
of Eq. 1 can be easily found by solving a set of linear equations:

(λlL+ I)F = T. (4)

We obtain the final confidences by symmetrizing the results (i.e., F ← (F + F�)/2).

3.2 Discussion

Image Webs. The most related algorithm to our proposed incremental construction
method is Image Webs [3]. Similar to our algorithm, Image Webs builds a graph Lapla-
cian and assigns a corresponding score to each unverified edge. This score is used to
generate link candidates. Importantly, the Image Webs edge-ordering criterion is not
the likelihood of being a potential link, which is in explicit contrast with our algorithm:
In Image Webs, the objective of link prediction is to maximize algebraic connectivity.
Specifically, the score for an edge is calculated from the difference between correspond-
ing entries of the Fiedler vector for the nodes it joins. Since the Fiedler vector represents
a continuous approximation of the discrete cluster indices in spectral clustering, a large
difference in Fiedler vector entries indicates the possibility of entries being contained
in different clusters. As such, these edges are least supported by the context and are
unlikely to be real edges. This observation is further supported by our experiments (see
Sec. 4). While algebraic connectivity may be useful in analyzing the global structure of
the match graph [3], we believe it not desirable for the intuitive objective of establishing
as many relevant connections as possible between images.

Incremental Graph Construction Phase as Link Prediction. Our problem can be
regarded as a special instance of the more general link prediction problem where one
predicts existences and corresponding properties of links among a set of nodes. This
is one of the main problems in data mining research, especially in the context of web
connectivity analysis. The use of the graph Laplacian and related methods including
diffusion kernels, local random walks, etc.2 have already been demonstrated to be very
effective in this context [17–20]. Our algorithm is different from many of these algo-
rithms because our formulation directly uses the links as variables rather than indirectly
classifying (or clustering) nodes and inferring the properties of links based on the ho-
mogeneity of their joined nodes (Eq. 1). In this way, we can systematically exploit
dissimilarity as well as similarity information.

From this perspective, a closely related algorithm is proposed by Kunegis et al. [19].
They construct a signed Laplacian matrix which includes both similarity (positive en-
tries) and dissimilarity (negative entries) information:

L̃ = D̃ −A, (5)
2 As l → ∞, the graph Laplacian converges to the Laplacian-Beltrami operator which is the

generator of the diffusion process on a manifold.
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where A is the signed similarity matrix (which is equivalent to T in Eq. 1) which in-
cludes both positive and negative entries and D is the diagonal matrix given by:

D̃ii =
∑
j

|Tij |. (6)

Using this matrix, a positive definite kernel matrix K can be constructed:

K = (I + λLL̃)
−1, (7)

where λL is the regularization parameter such that Kij represents the similarity of the
i-th and j-th nodes. This can be used in predicting the existence of potential links: the
large value of Kij suggests the existence of a link between the i-th and j-th nodes,
similarly to the matrix F produced by our algorithm. The authors have demonstrated
that this algorithm is superior to several existing graph Laplacian-based link prediction
algorithms [19]. In the experiments (Sec. 4), we demonstrate that the performance of our
algorithm is superior to their signed graph Laplacian-based algorithm. Our algorithm is
generic and can also be applied to general link prediction problems.

The objective (Eq. 1) is sufficient for the classification setting, i.e., to classify each
link into one of two classes of ‘similar’ and ‘dissimilar’. For a general regression setting
(which we do not pursue in this paper), one has to modify the objective such that the
tentative assignments of properties (assigned to ‘0’) to unexamined links does not affect
the training error:

O(F ) =
1

2

(
λtr[F�LF ] +

1

l
‖I′. ∗ (F − T )‖2F

)
, (8)

where I
′ is a matrix with I

′
ij = 1 if the pair (Ii, Ij) is labeled and zero otherwise; and

.∗ represents an element-wise multiplication.

Application Specific Densification. While our criterion for densifying the graph is ob-
jective and measurable, it may have to be modified to specifically fit other applications.
For instance, in some cases, it might be more desirable to connect a pair of nodes which
have lower connectivity rather than nodes which already are strongly connected [3]. We
present such a modified algorithm for this case in the supplementary material.3

Exploiting Sparsity. Our algorithm can take advantage of sparsity, especially in con-
structing the graph Laplacian L. When the match graph is disconnected due to sparsity
either inherent in the database or caused by a lack of verified links, individual compo-
nents can be considered separately. In this case, the negative entries of T connecting
different partitions can be neglected: within a component, the results obtained by solv-
ing Eq. 4 are identical to those obtained by solving the corresponding system on the
entire graph. However, in practice, instead of solving each sub-system, we randomly
select one connected sub-graph and make predictions only within this graph.

3 We do not evaluate this algorithm since it is difficult to construct an objective criteria.
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One computational benefit of Eq. 4 is that its solution can be computed completely
independently for each column of T . As such, for large-scale partition cases, this can
be performed in multi-processor and multi-memory environments.

Error Identification. The function k(·, ·) in Eq. 3 may be erroneous in general. For
instance, 3D geometry-based matching (see Sec. 3.3) may fail, and so there are cases
where an incorrect link is mistakenly supported by a non-negligible number of feature
correspondences. The predicted link confidences can also be used to identify potential
matching mistakes that can subsequently be examined by human operators.

We use the confidence measure (Eq. 1) to re-assign the weights of existing links, i.e.,
to replace k(Ii, Ij) with Fij . The links with the largest decrease in link weight become
candidates for verification. Our preliminary experiments suggested that the best use of
this approach is to enumerate the nodes which have degree higher than a threshold Td

(which is fixed at 5) and to verify each such node in the first several candidates. The
details of this experimental setting are described in Sec. 4.

The graph construction step parameters are optimized by performing cross-validation
on a small data set. Table 1 summarizes the optimized parameters. See supplementary
material for more options for error correction.

3.3 Graph Construction with 3D Geometry-Based Matching

While our graph construction technique can be used with any type of image matching
algorithm, to demonstrate our approach we implement our two-phase graph construc-
tion specifically with 3D geometry-based matching, as follows:

1) Filtering phase Each frame is represented with a histogram of a bag of words [21].
For each image, the corresponding candidates are the images with distances smaller
than a given threshold TF . We use the spatial pyramid matching kernel [22] as an
inverse distance measure.

2) Incremental graph construction phase To match image pairs, we extract SIFT fea-
tures [21] from each image. Then, for a given pair of images, RANSAC estimates
feature correspondences that are most consistent according to the fundamental ma-
trix, similar to other related methods [10, 3, 2].

In Eq. 3, k(·, ·) ∈ [0, 1] is the normalized feature correspondence measure given as:

k(Ii, Ij) =
2|M(Ii, Ij)|
|S(Ii)|+ |S(Ij)| , (9)

where S(I) andM(I, J) are the set of features (SIFT descriptors) calculated from
image I and the set of features matches for images I and J , respectively. To ensure
that the numbers of SIFT descriptors extracted from any pair of images is compa-
rable, all images are scaled to identical heights (540 pixels).4 Intuitively, k(I, J) is
close to 1 when two images I and J contain common features and are similar.

4 Even though the SIFT detectors are theoretically scale invariant, the corresponding implemen-
tation is typically scale-dependent. It is common to limit the lowest scale of local extrema in
SIFT detection to make the algorithm robust against noise.
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Table 1. Parameters for experiments

TF Td λ λ (error identification)
1.5 5.0 1 · 10−1 0.5 · 10−3

3.4 Implementation Details

In feature point matching, we set the link weight k(Ii, Ij) to be zero (i.e., the link is re-
moved) if the number of feature point correspondences between Ii and Ij is smaller than
12. The regularization parameter λ in Eq. 1 is determined based on cross-validation. For
this, 2, 000 images are randomly selected from the data set A (see Sec. 4) and feature
matching is performed for every pair of images which pass through the filtering phase.

To construct T and L, we randomly selected 5% of the established links plus 20% of
the image pairs with verified non-existence links. For each value of λ, we construct 10
sets of these experimental databases, in each of which 100 candidates with the highest
confidence values (F ) are compared with the link examination results. The number of
established links is counted among them. λ is then determined as the maximizer of
the sum of correct links. In general, the above-mentioned ‘link examination results’
may contain some errors (see Fig. 3 of the supplementary material for an example).
However, these errors very rarely occur and do not critically bias the selection of λ.

The λ for the error correction process is optimized similarly. For each randomly
selected node, we add an incorrect link and estimate the confidences of all links. In the
result, we count the occurrences of the case where the first candidate correctly identifies
the incorrect link.

The threshold TF for the filtering phase is set at 1.5. This value was decided as the
maximum value which did not result in the removal of any correct links in an experiment
with a small dataset of 300 images. On our database (set B; see Sec. 4), this value
resulted in reducing approximately 70% of candidates.

4 Experiments

We have tested our system on two databases consisting of 118,000 and 102,361 images.
In the first database (set A), the images were downloaded from Flickr by searching for
35 keywords of locations in London. In the second database (set B), the images are
obtained as frames selected from 249 videos, each up to 20 minutes in length, taken
at and between several locations in London. These videos include landmarks such as
Big Ben, the London Eye, and St Paul’s Cathedral. The footage also includes general
street footage between each landmark. The videos vary in location, time, foreground
objects, viewpoint, and camera model. In the following sections, first we evaluate the
performance of our main contribution of our graph construction algorithm. Then, we
provide an example application scenario of label propagation.

4.1 Evaluation of Incremental Graph Construction Performance

We performed matching on around 107 randomly selected candidate pairs which had
passed through the filtering phase. This resulted in approximately 400 non-trivial (i.e.,
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size larger than 1) subgraphs for set A, and 2000 for set B. Set B has a much higher
number of non-trivial subgraphs since the individual images are sampled densely from
videos and so it has high connectivity. Many of the images in set A do not correspond to
any spatial landmarks (e.g., someone’s face) and are not connected to any other images,
so set A is very sparse. The average size of non-trivial subgraphs was around 4 (set A)
and 15 (set B) while some subgraphs were several thousand large.

For a randomly selected connected sub-graph, 30 potential links with high confidence
values were verified and the graph was updated (see Sec. 3). During sub-graph selection,
we excluded those sub-graphs which have less than 20 nodes. This process was repeated
50 times and the average hit ratio is examined. The hit-ratio is defined as the number of
successfully verified links divided by the number of total verified links. For comparison,
we have implemented two existing algorithms for graph construction for images. Our
adaptation of the graph augmentation in Building Rome in a Day [7] uses a heuristic
based on the transitivity characteristic of the similarity discussed in Sec. 3: if an image
Ii links to another image Ij , and Ij is connected to Ik, then the pair (Ii, Ik) are verified.
Image Webs [3] extracts the Fiedler vector of the graph Laplacian L and assigns confi-
dence based on the pairwise differences of elements of the Fiedler vector (see Sec. 3). We
also compare with an established method for general link prediction: the signed graph
Laplacian [19] (see Sec. 3.2 for discussion). Table 2 summarizes these results.

Our proposed method was tested with two settings. In the first setting (denoted
‘sim. only’), only the positive entries of link verification are used. In the second setting,
both the positive and negative results are used. The results indicate that our method is
significantly better in terms of hit ratio than the heuristic of [7], than using the Fiedler
vector [3] or than using the signed graph Laplacian [19]. The improvement obtained
by using negative (dissimilarity) labels over the case of using positive labels is also no-
ticeable even though it is not as dramatic an improvement. Furthermore, even though
images are randomly sampled, in repeated experiments using negative examples pro-
duced a constant hit ratio improvement over using only positive examples.

For all experiments, the number of examined candidate links for calculating the hit-
ratio is the same for all algorithms: For each state of evaluation, the graph is prepared
with the same setting and with exactly the same number of predictions made. To make
fair comparisons with this graph, Image Webs [3], the signed graph Laplacian [19], and
Building Rome in a Day [7] are not their original versions but are our own implemen-
tations as they use the filtering stage of our algorithm (however, our implementations
of the link prediction parts of these techniques are as written in their respective papers).
Accordingly, the hit ratio reported Table 2 reflects only the link prediction performance
of each algorithm. From an application perspective, a better performance criteria than
the hit-ratio would be the number of found edges normalized by the number of total
(potential) links in the graph – the absolute performance. However, this requires match-
ing every possible pair of images in the graph, which is computationally infeasible for
realistically large data sets such as our example data sets.

The time complexity of our algorithm is O(l3). However, as discussed in Sec. 3.2, our
algorithm takes advantage of sparsity and disconnectedness of the graph. Accordingly,
the time complexity reduces to O(p3), where p is the size of the largest connected sub-
graph. As such, this theoretical complexity of O(l3) almost never occurs in practice.
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Table 2. Hit ratios of different link prediction algorithms

Algorithm
Hit ratio

Set A Set B

Image Webs [3] 0.25 0.12
Random selection 0.32 0.17
Signed graph Laplacian [19] 0.35 0.46
Building Rome in a Day [7] 0.49 0.82
Proposed method (sim. only) 0.58 0.94
Proposed method 0.60 0.97

Table 3. Hit ratios of the first 3 candidates for link error identification

Candidates 1st 2nd 3rd

Cumulative hit ratio 0.94 0.99 1.00

In experiments, we have almost linear complexity since the individual sub-graphs are
sparse. Even for the largest sub-graph (order of thousands), our prediction algorithm
took on average 0.78 second The times taken for Image Webs and Building Rome in
a Day were 0.13 and 0.03 second, respectively. The prediction time of our algorithm
is longer than that of other algorithms; however, since currently the main bottleneck
of these algorithms is the matching stage, this is not a problem. Given that, our whole
algorithm achieves higher connectivity than other algorithms for a given fixed amount
of computation time.

We have also evaluated the performance of our link error identification. Since link
error is very rare, it is hard to evaluate performance systematically. To facilitate eval-
uation, we prepared a small dataset of 3, 000 images from set B and built a ground
truth link verification set by exhaustively performing pairwise matching. Then, for each
randomly selected 500 nodes, we randomly added an ‘incorrect’ link and computed the
hit-ratio within the first 3 candidates suggested by our algorithm. Numbers of candidates
ranged from 5 (the minimum degree which invokes the error identification process) to
hundreds, while the average number of candidates is 18.51. Table 3 summarizes the
results showing that we can very accurately identify erroneous links.

4.2 Application: Label Propagation in Images and Videos

In this section, we show the example application of label propagation (LP). This ap-
plication requires a graph structure to be constructed from an image database, and here
our algorithm provides this structure.

Our supplementary material contains additional information on 1) active label acqui-
sition and how we can provide label suggestions, 2) how new images can be added to
existing graphs in cases where the database is not fixed a priori, and 3) additional steps
required for processing videos instead of images.
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Labels. A provided label for an object of interest consists of a bounding box of the
object observed in an image and a corresponding tag. A tag can be an objective name
of a spatial landmark (e.g., ‘Big Ben’), a subjective description, or low-level machine
interpretable code (e.g., a GPS log, an index of a database entry, a link to a Wikipedia
entry or Google search result, etc.). In general, there can be multiple labels attached to
a single object. The result of LP on an image database I = {I1, . . . , Il} is represented
as a list of images in I containing the object, the corresponding bounding boxes, and
the tags. We refer to this result as the propagated labels.

Label propagation can be performed immediately after the match graph G is con-
structed.5 Each time a label is generated for an image, it is immediately transferred to
its neighbors in G. Those propagated labels are again transferred to their neighbors.
In this way, the depth of a label increases. This depth is defined to be zero for a user-
provided label. This potentially cyclical procedure can generate infinite instances of the
same labels (i.e., the same tag with potentially different bounding boxes) occurring even
in a single image. We resolve this by selecting and retaining only one bounding box per
tag with the minimum depth among them.

Transferring a label from one image to another uses feature point correspondences
from 3D scene geometry estimation. For each feature point within the label bounding
box, the corresponding feature is retrieved in the target image (if it exists). The prop-
agated label is obtained as the minimum bounding box containing all retrieved feature
points (Fig. 2a). In general, the result of this procedure is very conservative: the bound-
ing box may shrink as label depth increases (Fig. 2b). This can be attributed either to
the sparseness of feature point matches (Fig. 2a) or to the sparseness of the matching
graph (Fig. 2b). While we retain all bounding box information, in the user interface, the
labels are displayed at the center of the bounding box (Fig. 3). This avoids the rather
difficult problem of object segmentation in images. For many LP applications that we
foresee, the location of a part of an object is already sufficient.

During label transfer, the influence of erroneous feature matches is limited by re-
moving outlier correspondences: if the x and y coordinate values of a displacement vec-
tor corresponding to a point correspondence are larger than 4 times the corresponding
standard deviations computed on all correspondences, the correspondence is removed.
In preliminary experiments, this completely removed label transfer mistakes. However,
LP was slightly more conservative – we removed some correct feature correspondences.

5 Discussion

Our algorithm does not support connecting two disjoint graphs: Our algorithm uses the
graph Laplacian as a regularizer which, for disconnected graphs, does not penalizes
any differences in corresponding function assignments for different connected compo-
nents. Instead, to guarantee that all potential links joining different components of a
graph eventually undergo the verification process, we run a random selection process

5 In our application scenario, we provide LP immediately after the construction of the initial
match graph G0; we don’t have to wait until the incremental graph construction process stabi-
lizes. As such, our system performance will initially be poor, but it will quickly improve as the
match graph becomes denser.
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C 

(a) (b)

Fig. 2. A schematic diagram of label transfer: (a) The propagated label (the rectangle in the right
image) is obtained as the minimal bounding box of the feature points (green crosses) which have
the corresponding matching features contained in the provided label (the rectangle in the left
image); (b) Image B label is obtained from the user provided label in A propagated through C.
At a certain time step t, the link between A and B may yet have been established.

Fig. 3. Examples of label propagation: Left:
user-provided labels. Right: propagated labels.
Yellow rectangles and red circles show the
bounding boxes and the corresponding centers,
respectively. The last image shows that the ob-
ject of interest does not need to correspond to
any famous landmark – the tag is a subjective
annotation for a brasserie.

in parallel to our estimated confidence-based algorithm. We are not aware of any exist-
ing algorithm which is capable of solving this interesting problem. Image Webs shares
the same limitation since it is also based on the graph Laplacian: the eigenvectors of a
graph Laplacian corresponding to a graph consisting of several connected components
are essentially the same as the collection of eigenvectors of individual graph Laplacians
(with properly attached zeros to make two different sets of eigenvectors have the same
dimension). Future work should explore this direction.

There are other various different directions for future work. In graph construction,
matching performance should be significantly improved by exploiting GPS information
provided by modern cameras. Alternatives for the current image matching algorithm
(RANSAC-based feature point correspondence estimation) should also be explored.
Our graph construction algorithm is generic and can be used for non-image data. Ad-
ditional use cases for the basic algorithm could be explored. Additional discussion on
label propagation is provided in the accompanying supplementary material.

Conclusion. This paper presents an algorithm for efficient match graph construction on
large-scale image and video databases. Our algorithm straightforwardly exploits the in-
termediate match results and predicts potential matches, which turns out to be superior
to several existing algorithms in terms of hit ratio. This enables maximizing the connec-
tivity of the graph for limited computational resources. Our algorithm finds applications
in many contemporary problems in large media set processing, e.g., label propagation.
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