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Abstract. In this paper we present a novel approach for detection of indepen-
dently moving foreground objects in non-planar scenes captured by a moving
camera. We avoid the traditional assumptions that the stationary background of
the scene is planar, or that it can be approximated by dominant single or multiple
planes, or that the camera used to capture the video is orthographic. Instead we
utilize a multiframe monocular epipolar constraint of camera motion derived for
monocular moving cameras defined by an evolving epipolar plane between the
moving camera center and 3D scene points. This constraint is parameterized as
a polynomial function of time, and unlike repeated computations of inter-frame
fundamental matrix, requires the estimation of fewer unknowns, and provides a
more consistent separation between moving and static objects for different levels
of noise. This constraint allows us to segment out moving objects in a general
3D scene where other approaches fail because their initial assumptions do not
hold, and provides a natural way of fusing temporal information across multi-
ple frames. We use a combination of optical flow and particle advection to cap-
ture all motion in the video across a number of frames, in the form of particle
trajectories. We then apply the derived multi-frame epipolar constraint to these
trajectories to determine which trajectories violate it, thus segmenting out the in-
dependently moving objects. We show superior results on a number of moving
camera sequences observing non-planar scenes, where other methods fail.

1 Introduction

Moving object detection is a crucial stage in any automated surveillance system. If the
camera is stationary, a popular framework for tackling the problem is to generate a
model of the background of the static scene, and to treat moving objects as outliers to
that model, as in [1–8]. The models reflect a diverse range of sophistication depending
on problem domain and complexity of the scene. These methods can be extended in
a straight forward manner to the moving camera case by performing global motion
compensation prior to the generation of the background model, which is then utilized
in the same manner as in the static case on the registered frames, [9, 10].

The above approach suffers from the severe limitation that the algorithms employed
to compensate the motion of the camera, utilize an affine or homographic framework to
model the transformations between the images. It is well known, that the homography
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Fig. 1. Illustration of drawbacks of homography based detection approach, where of out of plane
objects (water tower) are incorrectly detected as moving objects. Left image shows original
frames, and right image overlays red detection masks over the images. Detection is performed
by image registration followed by background subtraction.

is a limited image transformation model, which in the case of general camera motion is
only valid when the observed scene is planar, or the camera is orthographic. If the scene
is non-planar, and the camera is perspective, then the homography is valid if the cam-
era motion is limited to rotation only. The homography is not valid when the camera
undergoes translational motion while observing a non-planar scene. Under these cir-
cumstances, homography will be valid only for some areas of the images, the areas for
which the homography is not valid will appear to “move” in the motion compensated
imagery, and will be falsely detected as moving objects (figure 1).

The purpose of our paper is to present a novel method for segmenting moving ob-
jects, in a video captured by a generally moving camera, observing a non-planar 3D
scene. We avoid performing homography based motion compensation, or background
subtraction, and instead capture all of the motion in the video by computing optical
flow, and then performing particle advection on that flow for a number of frames. The
resulting set of particle trajectories contains two subsets. In the first subset the motion
of the particles was induced purely by the motion of the camera (this is a set of particles
belonging to stationary background in the world). In the second subset, the trajectories
combine the motion of the camera, as well as the motion of independently moving ob-
jects. We separate the two sets using the constraint, defined by the proposed Multiframe
Monocular Fundamental Matrix (MMFM).

We define this constraint as the evolution of the camera model with time, relative to
some initial camera position. The evolving camera model defines an evolving epipolar
plane between the initial center of the camera, its subsequent centers, and the static
scene point. This multi-frame epipolar constraint can then be expressed as a dynam-
ically changing fundamental matrix. When we assume that the evolution of camera
parameters can be represented by polynomial functions of time, this monocular multi-
frame fundamental matrix can then also be represented as a polynomial function under
assumption that the inter-frame camera rotation is small. Thus, we can obtain the coeffi-
cients of this matrix for frame segments of length N and use them to determine whether
particle advection trajectories belong to moving or static objects.
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Fig. 2. A flow chart illustrating the different steps of the proposed framework

2 Related Work

A number of techniques have previously addressed the problem of moving object detec-
tion under conditions of non-planar scene, and general camera motion. One approach is
to assume that even though the scene itself is non-planar, it is nevertheless dominated
by a ground plane, which has several out of plane objects upon it. This is known as the
plane plus parallax model, and was utilized in [11–13]. When these assumptions hold,
and a robust registration method is utilized, a valid homography can be estimated for
pixels belonging to the ground plane. Since the homography does not hold for the out of
plane objects, they too are detected as ‘movers’ during background subtraction. Finally
detections are filtered as either moving or stationary out of plane by applying two or
three view geometric constraints. The issue with the above framework is that while it
is more general than the initial planar scene assumption, it is not sufficiently general to
deal with scenes that do not have a dominant plane, or scenes that are so cluttered with
out of plane objects as to prevent the correct estimation of homography. Additionally
the systems themselves are rather complex and involve a large number of steps.

In the case of video taken from an unmanned aerial vehicle (UAV), even more elabo-
rate systems have been proposed. In [14], out of plane objects are assumed to be build-
ings and trees, and are explicitly detected and segmented in every frame using wavelet
features and Bayesian segmentation. In [15], the 3D nature of the scene is dealt with, by
exploiting metadata associated with the imagery, to aid in stereo-like 3D reconstruction
of buildings present in the scene, as well as color, texture, and depth based classifica-
tion to detect vegetation. The 3D knowledge is exploited to suppress false detections
that appear on out of plane objects. The limitation here of course, is that this method
is not really applicable outside of aerial surveillance, and the metadata may not always
be available or accurate, and has to be refined via a complex geo-registration process.
Pollard and Mundy [16], essentially extend probabilistic modeling of background, to
the 3rd dimension. Rather than constructing probability distributions of background
appearance on a per pixel or per block level, they use metadata to reconstruct the 3D
structure of the scene as a series of probabilistic models of color within 3D voxels.
Moving objects are then detected by comparing their appearance against the probabilis-
tic models of the voxels of the static scene. While the work is original, the results are
unfortunately not very good, which is explained by issues with metadata errors, and the
selection of proper voxel granularity. Also in general we believe that full 3D reconstruc-
tion for object detection is overkill and should be avoided since it is a rather complex
problem in and of itself.

Another body of work exists on segmenting video into layers of motion, as seen in
[17–21]. This framework essentially attempts to segment the scene into regions that
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exhibit similar planar motion within themselves, which occurs due to different planes
in the scene, objects with high parallax, and moving objects. This approach, however is
non-trivial, since it requires some form of clustering of local planar transformations in
the video into similar groups. Which brings up a myriad of issues typically associated
with clustering, such as the space in which the data lies, the manual selection of the
number clusters (which implies knowing the number of layers that will be extracted
from the video a-priori), or the tuning of parameters, if the clustering method determines
the number of clusters automatically. On top of this, once the layers are generated one
has to determine which layers actually belong to moving objects, and not static scene
parts.

Recently [22] used a completely different approach to segment foreground moving
objects from background. The main idea of the work is that the motion of trajectories
of the static 3d points in the image frames is caused by camera motion only. Under
an orthographic camera assumption, the observation matrix composed of the point tra-
jectories has rank 3, and therefore, any static trajectory can be expressed by a linear
combination of 3 other trajectories. The authors exploit this fact to construct a projec-
tive subspace of background trajectories in a RANSAC framework. Trajectories cor-
responding to moving objects do not belong to the subspace, and can be detected by
computing the error by projecting them upon the subspace. The main limitation here
is the orthographic camera assumption, where performance of the method degrades as
the amount of depth variation in the scene increases, and the velocity of the objects
decreases.

In contrast to these techniques, our framework avoids assumptions of orthographic
camera or dominating planes, and solves the problem of object detection under moving
camera in general 3D scenes. We show that translating camera centers form a dynami-
cally evolving epipolar plane with a static 3D point, and by projecting particle trajecto-
ries onto this plane we can detect moving objects. Using the rigorous experiments with
the synthetic data, we justify the use of the dynamically evolving epipolar plane, be-
cause it provides a more consistent separation between moving and static objects than
the standard fundamental matrix. This is detailed in the following sections.

3 Derivation of a Multiframe Monocular Epipolar Constraint

We begin by deriving our multiframe epipolar constraint for a single moving camera.
Assume that a point X, is a 3D point in the world, and point x, is a point in the camera
coordinate system, which in the case of a stationary camera is obtained as,

x = RX + T, (1)

where R is the rotation of the camera, and T is the translation. If the camera is moving
in a static scene, then the rotation R and translation T will be different at different time
instances. Hence the camera coordinates of the world point X, at a time t is given by,

x(t) = R(t)X + T(t). (2)
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Fig. 3. This figure shows a single moving camera, and the epipolar planes that are formed between
its initial center C(0), centers at time t C(t) and a static point X

If the center of the camera at time t is written as C(t), following the coplanarity con-
straint, we can write,

(
X − C(t)

)�(
C(t)− C(0)

)
×
(

X − C(0)
)
= 0, (3)

and form a plane at each time instant, by taking the cross product between vectors
C(t) − C(0), and X − C(0). If the camera center in the first frame is chosen to be the
origin, i.e., C(0) = [0 0 0 1]�, then equation 3 transforms to,

(
X − C(t)

)�
C(t)× X = 0. (4)

Figure 3 illustrates the above equation for two planes in a monocular moving camera
sequence, and the plane at t = 1 is shown in green, and the one at t = 2 in yellow. The
point X−C(t) is simply the world point X shifted along the plane. We can use equation
2, to express world point X in terms of it’s camera coordinates x(t) as,

X = R(t)�
(

x(t)− T(t)
)

(5)

Combining equations 4 and 5, and the fact that the first frame of the camera is the
reference, i.e., x(0) = X, we obtain,

(
R(t)� (x(t)− T(t))− C(t)

)�
C(t)× x(0) = 0, (6)

and since −R(t)�T(t) = C(t), the equation can be simplified as follows:

(
x(t)�R(t)

)
C(t)× x(0) = 0

(
x(t)�R(t)

)(
− R�(t)T(t)

)
× x(0) = 0

(
x(t)�R(t)

)
S(t)x(0) = 0, (7)
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where S(t) is the skew-symmetric matrix of vector −R�(t)T(t). The multiframe Es-
sential matrix for the single moving camera is therefore obtained as,

x(t)�E(t)x(0) = 0. (8)

Finally assuming that the focal length of the camera remains constant during the cap-
ture, we derive the Multiframe Monocular Fundamental Matrix (MMFM) constraint for
a moving camera as,

x(t)�K−�E(t)K−1x(0) = 0

x′(t)�F(t)x′(0) = 0, (9)

where x′(t) = [x(t) y(t)]
� are image coordinates of the world point, at time t.

We define the rotational and translational velocities of the camera at each time in-
stance as Ω(t), and Θ(t), respectively.

Ω(t) =

⎡
⎣

1 −ωz(t) −ωy(t)
ωz(t) 1 −ωx(t)
−ωy(t) ωx(t) 1

⎤
⎦ ,Θ(t) =

⎡
⎣
θx(t)
θy(t)
θz(t)

⎤
⎦ (10)

Then equation 2 becomes,

x(t) =
t∏

i=0

{Ω(i)}R(0)X +

t∑
i=0

{Θ(i) + T(0)} (11)

Since we defined world coordinate system in terms of position and orientation of the
first instance of the camera center, rotation R(0) = I3×3, and T(0) is the zero vector,
and equation 11 becomes,

x(t) =
t∏

i=0

{Ω(i)}X +

t∑
i=0

{Θ(i)}. (12)

In this case, the multiframe Essential matrix becomes E(t) = (
∏t

i=0{Ω(i)})S(t),
where S(t), is the skew symmetric matrix of (−(

∏t
i=0{Ω(i)})�∑t

i=0{Θ(i)}).
Note that this result is similar to the case of intercamera action matching by relating

two moving cameras via the ‘Temporal Fundamental Matrix’ described in [23], where it
was shown that under assumptions of small camera motion, and polynomial individual
components of rotation matrices, and translation vectors, the Temporal Fundamental
Matrix itself is a polynomial function. The first assumption is necessary to prevent the
order of the final polynomial from exploding when multiplying rotation matrices made
up of polynomial functions. Our final result is obtained with fewer matrix multiplica-
tions, hence our constraint is more robust to violations of the first assumption, and we
can keep the order of the polynomial at a reasonable level. Holding on to the same
assumptions, our monocular epipolar constraint becomes,

x′(t)�
(

k∑
i=0

Fit
i

)
x′(0) = 0, (13)
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where each Fi is a 3 × 3 matrix of coefficients. The above equation is only valid for
images of points that belong to the static scene. Hence, once the coefficients of the
Multiframe Monocular Fundamental matrix are computed, using the assumption that
the static non-planar scene dominates the frame, trajectories belonging to moving ob-
jects can be filtered out. If the point X belongs to a static object or the background in
the world, then equation 4 can now be written as,

(
X(t)− C(t)

)�
C(t)× X(0) = 0, (14)

where, the position of the 3D point is now a function of time, albeit constant. Notice
that there is a degenerate case, where this equation holds even for a moving point, which
is possible if the point is moving along the epipolar plane defined by C(t) × X(0).
Although a moving object cannot be detected under these circumstances, in practice,
this scenario is unlikely to be encountered.

In order to estimate the coefficients, we set the degree k, of the polynomial equal to
3, and rewrite equation 13 in the form of a linear system,

Of = 0, (15)

with observation matrix O, and unknown vector f, where O =
[
O�

1 ,O�
2 , . . . ,O�

p

]�
,

is a p × (3 · 3 · (k + 1)) matrix of p correspondences. Each Oi is generated from one
correspondence and is given as,

Oi =
[
ri rit rit2 rit3

]
, (16)

and

ri = [ xi(0)xi(t) xi(0)yi(t) xi(0) . . .
yi(0)xi(t) yi(0)yi(t) yi(0) . . .

xi(t) yi(t) 1 ]
(17)

while the vector of unknowns f is a (3 · 3 · (k + 1)) × 1 vector of the Multiframe
Monocular Fundamental matrix coefficients,

f = [ F0,1 | F0,2 | F0,3 | . . .
F1,1 | F1,2 | F1,3 | . . .
F2,1 | F2,2 | F2,3 | . . .
F3,1 | F3,2 | F3,3 ]�,

(18)

where Fi,j refers to the ith coefficient matrix and jth row.
Here O is a rank deficient matrix of rank 35, i.e., at least 35 point correspondences

are required to find a solution for f, which is the unit eigenvector of the covariance
matrix O�O corresponding to the smallest eigenvalue.
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Input: Set of P , N points long trajectories, {Λ1, . . . ,ΛP }.
Output: Set of pixels, D, classified as foreground.

� Compute set of correspondences, {Φ1, . . . ,Φp, }
� Compute set of observation vectors, {Ot

i}, 1 ≤ i ≤
p(N − 1), 2 ≤ t ≤ N .

� D← ∅
� q ← 1, repeat while q ≤ Q:

• Os ← ∅
• t← 2, repeat while t < N :

� Randomly choose 3 vectors, {Ot
z1 , . . . ,Ot

z3}
� Os ← Os

⋃ {Ot
z1 , . . . ,Ot

z3}
� t← t+ 1

• Compute fj using observation Os (eq. 15)
• Compute error eq for all Φ, (eq. 20)
• q ← q + 1

� Compute Σ, using eq. 21

� p← 1, repeat while p ≤ P :

• Compute εp, using eq. 22
• If εp > τ , D← D

⋃{p}
• p← p+ 1

Fig. 4. Algorithmic overview of the proposed framework. See text for details.

4 Independently Moving Object Detection

The proposed method for detecting independently moving objects, by finding trajecto-
ries of points that are outliers to the previously derived Multiframe Monocular Epipolar
constraint consists of the following steps (see Fig. 2 for reference). Given a sequence
of frames we first compute optical flow between consecutive frames. Particle advection
is then employed to obtain a set of pixel-wise dense trajectories for a subsequence of
N frames Λi = [xi(0), xi(1), . . . , xi(N − 1)]. We normalize the positions of the points
within all trajectories to their mean within the entire subsequence. This step is similar
to the normalization performed in case of the standard 8-point algorithm [24]. Positions
within each trajectory Λi, provide a set of N − 1 correspondences, written as,

Φi =
[
(xi(0), xi(1)) , . . . , (xi(0), xi(N − 1))

]
. (19)

Each correspondence j from each trajectory Λi provides a single observation vector
Oi,j . All of these observation vectors are then assembled into the observation matrix O,
as described in section 3.
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Using this matrix we robustly determine which trajectories are outliers by employing
a RANSAC based framework. In our implementation we set N = 15, which results in
14 correspondences per trajectory. For the Multiframe Fundamental matrix of degree
3, 36 correspondences are sufficient. At each iteration of the algorithm, we randomly
select observation vectors corresponding to 3 correspondences from each time instant
resulting in 3×14 = 42 correspondences, for our subsequence of N frames. From these
observation vectors, we construct a sample observation matrix Os, where s is a vector of
indices. We then compute the coefficients of the Multiframe Monocular Fundamental
matrix (equation 15), fq, where q is the current iteration of RANSAC. We then compute
a vector of errors for all the correspondences eq given as,

eq = |Ofq|, (20)

where each element is the Epipolar distance of a single correspondence.
After Q, pre-selected number of iterations of the framework, we obtain the average

error vector,

Σ =
1

Q

Q∑
q=1

eq. (21)

Finally, for each trajectory Λi, we obtain its error εi, by taking the mean of the errors of
its correspondences, by indexing into its corresponding entries in the vector Σ, which
can be written as,

εi =
1

N − 1

N−1∑
l=1

Σ(l + (N − 1)i) (22)

The proposed framework is algorithmically described in figure 4.

5 Advantages over Fundamental Matrix

In theory, one can compute a regular fundamental matrix between some frame pairs,
compute the error of the points, and average the result for the trajectory. However, in
order for fundamental matrix to work properly, the frames must have a wide baseline.
Since the motion of the camera is unknown, it is not clear between which frames the
fundamental matrix should be computed. Any temporal distance that is selected be-
tween the frames will work for some pairs but not for others depending on the motion
of the camera. For example one can try to use a floating baseline by computing a fun-
damental matrix between frames (1, t), for all 2 ≤ t ≤ N , where N is the number
of frames. However, if the camera is accelerating from low initial velocity, the initial
frame pairs (1,2), (1,3), may have a baseline that is too narrow, resulting in poor matrix
estimation and motion segmentation. By contrast, the MMFM will properly capture the
evolution of the motion of the camera, and be able to correctly segment out the moving
objects.

This effect is illustrated in Figure 5. We used synthetic data for this experiment con-
sisting of 1000 static points and 10 randomly moving points. The points are randomly
distributed through space in front of a moving camera, they are imaged, and random
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noise is added to their image. We then fit a set of fundamental matrices to the static
points and compute the error of all points. We do the same for the proposed MMFM.
In Figure 5 (a) and (b) the camera is moving with a initial velocity, and then acceler-
ates or decelerates. As can be seen from the figure, when MMFM is used to model the
motion of the camera there is a clear separation between the errors of moving points,
and the errors of static points for a wide range of noise. By constrast, in the case of reg-
ular fundamental matrix, any given threshold works only for a narrow range of noise.
What’s worse, is that for some levels of noise the error of static points actually becomes
greater than the error of moving points making the separation impossible. Results for
other noise models, camera motions, and fundamental matrix computation schemes are
provided in the supplementary materials.

We have also examined how well our proposed constraint separates the moving
points from the static points under degenerate conditions. In the first case, shown in
Figure (c), we examined the degeneracy caused by the points moving along the epipo-
lar plane. We computed the proposed constraint for the batch of 14 frames, and then
computed the error between the stationary and moving points. The x axis of the graph
indicates the level of degeneracy, where the numbers at the bottom correspond to the
number of frames (out of 14) for which moving points moved along the epipolar plane.
It can be seen from the figure that the sets of static and moving points are still sepa-
rable using a single threshold unless the points move along the epipolar plane for all
the frames used for the MMFM computation. Moreover, if the camera motion is poly-
nomial over time, the chances of a point moving along the epipolar plane for a long
time is very remote. The second degenerate case that we tested, (Figure 5 (d)) simulates
the scenario when camera is stationary for some of the frames. Once again, the x axis
captures the number of frames for which the camera remains stationary. For the simula-
tion of the above two degenerate cases we have used a small random noise (0.01). The
noise allows the moving and stationary objects to remain separable even in the case of
stationary camera.

6 Experiments and Results

To validate our proposed method we performed extensive set of experiments on a di-
verse set of video sequences captured from moving cameras (aerial, and hand held)
and in presence of large out of plane objects. We compared the performance of our
method with homography based background subtraction method, rank constraint tra-
jectory pruning method of Sheikh [22] et. al, and a method based on the regular funda-
mental matrix constraints. In the case of homography based motion compensation, in
order to perform a maximally fair comparison, we employed the same framework for
comparison, where we exploit optical flow based dense frame to frame correspondences
to compute homography between two frames. RANSAC is then used to compute the op-
timal homography matrix and the outliers of RANSAC are detected as moving objects.
We also tested the sequences using conventional [9] style homography based image
warping and background subtraction framework and similar results were obtained. In
order to detect motion based on the regular fundamental matrix we perform particle
advection for 13 frames, then we compute fundamental matrices between frames 1 to
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Fig. 5. This figure shows error values between moving points (dashed lines) and static points
(solid lines) for synthetic data, generated over different levels of noise. Sub-figures (a) and (b)
show the scenarios when camera accelerate and decelerate respectively. Sub-figures (c) and (d)
respectively illustrates the degenerate cases when points move along the epipolar plane and when
camera remains stationary. Red curves are for regular fundamental matrix, while blue curves are
for our proposed constraint. The dotted green line indicates an error threshold..
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Fig. 6. Qualitative comparison on Seq 1 (on the left), JHU cars6 (center), and Seq 4 (right).
Red indicates detections. (a) Homography, (b) rank constraint, (c) fundamental matrix, (d) our
method.
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7, 2 to 8 and so on to ensure sufficient translation. The matrices are fit using RANSAC,
where we accumulate errors for each particle over all iterations. A particles track is
selected as belonging to a moving objects if its cumulative error over all iterations of
RANSAC and all fundamental matrices in the frame range is above a threshold. We use
this particular RANSAC framework to make sure that the differences in performance
between the regular fundamental matrix and the proposed multi-frame constraint are
due to the geometric model and are not caused by differences in the implementation.
This particular RANSAC framework gave better, more consistent results for both meth-
ods. Figure 5 shows a qualitative comparison between the four methods. Even though
the sequence is aerial in leftmost Figure 5, the scene has a very large out of plane
object - the water tower, which causes the orthographic camera assumption to fail. Ad-
ditionally, parts of the ground-plane are obscured by uneven out-of-plane foliage. These
factors cause homography and the rank constraint to fail, resulting in false detections on
the out-of-plane tower. In the center and rightmost panels of Figure 5 there are multiple
planes present in the scene, and portions of background are at different depths, causing
problems for homography and rank constraint, when the camera undergoes translation.
As outlined in section 5, motion segmentation based on the fundamental matrix suffers
from stability problems related to baseline selection, noise, and motion of the camera.

For better illustration of the performance of our method, we provide quantitative
comparison of the results. First we obtained the ground truth for all sequences used
in our experiments by manually selecting a silhouette around each moving object of
each frame. We then compared the detection results of the methods mentioned above,
as well as the proposed method with the ground truth. In order to quantify the perfor-
mance, we used measures similar to VACE performance measures [25], which are area
based measures which penalize false detections as well as missed detections. Accu-
racy of detection, called frame detection accuracy (FDA), is estimated as: FDA(t) =

Overlap Ratio/N (t)
G , where Overlap Ratio is,

∑N
(t)
G

i=1 (|G(t)
i

⋂
D

(t)
i |)/(|G(t)

i

⋃
D

(t)
i |).

N
(t)
G is the number of ground truthed objects in frame t, Gi(t) and Di(t) are the sets

of pixels belongs to the object number i of frame number t, in the ground truth and
computed detection respectively, where a set of connected pixels Dj of the detection,

referred to as a blob, is mapped to the ith ground truth object, if G(t)
i

⋂
D

(t)
j �= ∅. All

the detected blobs in a frame which cannot be mapped with any of the groundtruth ob-
jects are classified as false detections and a measure of per frame false detection called
Frame False Detection Ratio (FFDR) is computed as: FFDR(t) = FD(t)/TD(t),
where, FD(t) is the combined area of all false detections, and TD(t) is the combined
area of all detections.

It is therefore ensured thatFFDR always remains between 0 to 1 and depends on the
size of the false detection. For the whole sequence, the performance measures are sim-
ply calculated as Sequence Frame Detection Accuracy, SFDA =

∑N
t=1 FDA(t)/N,

and Sequence False Detection Ratio, SFFDR =
∑N

t=1 FFDR(t)/N
Quantitative results of comparison of our approach with Homography based detec-

tion, as well as [22] are reported in table 1. On sequences 1, 2, and 4 our method ob-
tained superior results both in terms of true detections, and false positives. In sequences
3 and 5, we achieve much better false positive rate, but our detection is slightly lower
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Table 1. Shows a comprehensive analysis of the performance of the four methods. SFDA is the
overall detection accuracy and SFFDR is the overall measure of false detection for a sequence.
Sequences 1, 2, and 5 are aerial from VIVID 3 and 2 datasets. Sequences 3 and 4 are hand-held
collected by us. The cars sequences are from the JHU155 dataset.

Frame Homography Rank Fundamental Our Method
Count [9] Constraint [22] Matrix

SFDA SFFDR SFDA SFFDR SFDA SFFDR SFDA SFFDR

Seq1 390 0.3844 0.0536 0.5627 0.0419 0.4262 0.0011 0.7611 0.00092
Seq2 650 0.5957 0.0477 0.6494 0.0610 0.7619 0.0212 0.8664 0.0339
Seq3 400 0.8184 0.2683 0.8425 0.1949 0.6557 0.0961 0.7202 0.0713
Seq4 280 0.3117 0.1433 0.3517 0.1224 0.3833 0.0640 0.5311 0.0594
Seq5 130 0.6738 0.08 0.4583 0.0545 0.4358 0.0553 0.6268 0.003
cars3 20 0.9122 0.0274 0.9412 0.0053 0.5414 0.0187 1.0 0.0042
cars4 54 0.8406 0.0332 0.6933 0.1556 0.6419 0.1626 0.8375 0.0323
cars5 37 0.8128 0.0110 0.9351 0.0191 0.7672 0.0376 0.9464 0.0081
cars6 31 1 0.0592 1 0.0049 1 0.0099 1 0.0023
cars7 25 1 0.0929 1 0.3550 0.7751 0.2785 1 0.0141
cars9 61 0.4452 0.0711 0.3603 0.0256 0.3137 0.0935 0.5165 0.0164

than homography in sequence 5, and both homography and rank in sequence 3. Per-
formance on the JHU 155 dataset is similar for all four methods. This is because the
sequences are very short, and the camera does not have enough time to undergo large
translation to cause severe parallax distortion.

7 Conclusion

We developed a novel method for detecting objects that are moving in a general 3D
scene, in video captured by a moving camera, while avoiding motion registration, as-
sumptions about the planarity of the scene, and the use of metadata. To do so we pro-
posed a monocular multi-frame epipolar constraint, which we derived from an evolv-
ing epipolar plane defined by the motion of the center of the camera, and a scene
point. We parameterized it as a polynomial function of time, in order to estimate fewer
unknowns. We showed comparative qualitative and quantitative results on real and
synthetic sequences, and analyzed the results.
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