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Abstract. The goal of single image deblurring is to recover both a latent
clear image and an underlying blur kernel from one input blurred image.
Recent works focus on exploiting natural image priors or additional im-
age observations for deblurring, but pay less attention to the influence
of image structures on estimating blur kernels. What is the useful image
structure and how can one select good regions for deblurring? We for-
mulate the problem of learning good regions for deblurring within the
Conditional Random Field framework. To better compare blur kernels,
we develop an effective similarity metric for labeling training samples.
The learned model is able to predict good regions from an input blurred
image for deblurring without user guidance. Qualitative and quantita-
tive evaluations demonstrate that good regions can be selected by the
proposed algorithms for effective image deblurring.

1 Introduction

Motion blur on an image often results from the relative motion between a camera
viewpoint and the scene (e.g., camera shake) at the exposure time. It causes
significant image degradation, especially in the low light conditions where longer
exposure time is required. Recovering the latent image from one single blurred
image has been studied extensively with a rich literature. Typically, the blurred
image formation process is modeled as a latent image convolved with a spatial-
invariant blur kernel (i.e., the point spread function). Hence, the deblurring
process is known as a 2D deconvolution problem. When the underlying blur
kernel is known or has been accurately estimated, the problem is reduced to
non-blind deconvolution. On the other hand, if the blur kernel is unknown, the
deblurring problem is known as blind deconvolution. The ill-posed nature of the
single image deblurring setting makes the problem rather difficult.

To deblur an image, it is shown that estimating the blur kernel first and then
solving a non-blind deconvolution problem with the estimated kernel renders
favorable results [1]. In this case, the performance of the blur kernel estimation
directly affects the performance of the deblurred results (i.e., the estimated latent
image). That is, one can recover the latent image well if the blur kernel can be
accurately estimated.

For the single image deblurring problem, it is usually advantageous to make
full use of the input blurred image. However, not all pixels of the input blurred
image are informative. Smooth regions, for example, do not contribute much for
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Fig. 1. Different regions lead to different kernel estimations and deblurred results. The
top left image is the input blurred image with three subwindows selected for estimating
kernels. The other three images are the recovered images and estimated kernels from
these three subwindows using [2].

estimating the blur kernel. In this paper, we ask “What kind of image features or
structures of a blurred image really help in kernel estimation?” By detecting good
image features for blur kernel estimation, an accurately estimated blur kernel can
then be used to recover a latent clear image with high visual quality. In [1, 2],
it is demonstrated that regions with strong edges tend to yield better deblurring
results. Some of the gradient-based methods favor salient edges with gradients
of specific patterns [3–5]. On the other hand, based on 1D signal examples, it is
demonstrated that edges of short length could adversely affect the deblurring re-
sults [5]. In other words, if the whole image is used for image deblurring without
deliberate selection of good features, negative impacts are likely to lead to infe-
rior results. For this reason and the computational efficiency issue, it is preferable
to determine a region, rather than the whole image, for estimating blur kernels.
Figure 1 illustrates that different regions may lead to completely different kernel
estimation results, and thereby different recovered images. This problem can of-
ten be partly alleviated by manual selection and visual inspection of the results.
However, this requires tedious human input for deblurring images. In addition,
the questions regarding which regions or what image structures are crucial for ac-
curate blur kernel estimation remain unanswered.

In this paper, we address these questions for effective and efficient image
deblurring. We first propose a metric that quantitatively measures the similarity
between kernels, which facilitates the process of labeling good estimated kernels.
Instead of determining good image structures from empirical understanding and
prior knowledge, we resort to learning for this task based on a collection of
labeled data with the proposed kernel similarity measure. We pose the learning
problem within the Conditional Random Field (CRF) [6] framework in order
to exploit contextual constraints among image regions. In addition, we explore
the contribution of different features with structured output. We construct a
dataset which covers large variability of image structure and blur kernel following
the technique described in [1] for evaluation, and apply the learned models to
select good image regions for deblurring. Experimental results demonstrate the
effectiveness and efficiency of our algorithms for selecting good regions to deblur.

2 Related Work

Image deblurring has been studied extensively and numerous algorithms have
been proposed. Here we briefly discuss the most related algorithms and put this
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work in proper context. Since blind deconvolution is an ill-posed problem, prior
knowledge or additional information are often required for effective solutions. In
the image deblurring literature, two types of additional information are often
used: natural image priors and additional image observations.

One line of research focuses on exploring image priors for deblurring. In [2],
the heavy-tailed gradient distribution of natural images are exploited as prior
information. The mixture of Gaussian approximation is constrained to fit the dis-
tribution of gradient magnitudes of natural images. The sparse gradient prior is
also used to search for blur kernels in [7]. In [8], a method is presented to exploit
the underlying relation between the motion blur and blurry object boundary,
which is shown to facilitate better kernel estimation. In [9], a deblurring algo-
rithm is proposed in which prior knowledge regarding gradients of natural images
is used with additional constraints on consistence of local smooth region before
and after blurring. The consistency constraints are shown to be effective in sup-
pressing ringing effects. A method that uses sparsity constraints for both blur
kernel and latent image in the wavelet domain is presented in [10]. In contrast to
existing works that exploit heavy-tailed gradient distribution of natural images,
an image restoration algorithm that applies adaptive priors based on texture
contents is proposed in [4]. Experimental results on denoising and deblurring
show that adaptive priors are important for deblurring results when patches at
different image locations are manually selected.

Another line of research tackles image deblurring by leveraging additional
image observations. With both low-resolution video camera and high-resolution
digital camera, an algorithm that utilizes both spatial and temporal information
is proposed [11] for effective image deblurring. On the other hand, noisy images
also provide useful information for image deblurring. When a pair of blurred and
noisy images of the same scene are available, it has been shown that blur kernel
can be estimated using the sharp image structures in the noisy image [12].

Numerous studies focus on exploiting additional information to facilitate im-
age deblurring. Considerably less attention has been paid to exploit image struc-
ture for kernel estimation and deblurring. In this paper, we aim to determine
useful image structures for kernel estimation and image deblurring.

3 Kernel Similarity

Existing methods mostly resort to visual quality of deblurred images for empir-
ical evaluation. While it is important to recover high visual quality images, it is
neither reliable nor effective to evaluate recovered results visually since human
vision is sensitive to noise and ineffective in telling minute difference. As sug-
gested in [1], it is preferable to separate the image deblurring problem into two
steps: 1) blur kernel estimation and 2) non-blind deconvolution. If the blur kernel
can be accurately estimated, then the deblurred image can be easily recovered
with non-blind deconvolution algorithms. Therefore, the ensuing question is how
to identify kernels effectively.

The difficulty of comparing kernels arises when kernels vary in terms of shift
and scale (i.e., the size of the kernel). Two kernels K1 and K2 are considered
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(a) (b) (c) (d)

Fig. 2. RMSE and kernel similarity (KS). (a) the ground truth blur kernel; (b) the
smooth estimated kernel, with RMSE 0.0013 and KS 0.8178 compared with (a); (c) the
estimated kernel has an extra part, with RMSE 0.0016 and KS 0.8791; (d) the estimated
kernel misses some parts, with RMSE 0.0012 and KS 0.8106. While kernels in (b) and
(d) have smaller RMSEs, the kernel in (c), with higher KS, is closest to the one in (a).

shift and scale invariant if the dominant (i.e., non-zero) parts of them are the
same, regardless of differences in locations and sizes of the kernel windows. Thus,
a good metric for kernel similarity should be shift and scale invariant.

The commonly used root-mean-square-error (RMSE) metric is not effective
in computing the similarity between two kernels. Typically, smooth kernels are
favored by RMSE, due to its 2-norm form and the fact that the entries of blur
kernel sum up to one. To deal with the above-mentioned problems, we propose a
kernel similarity metric to effectively compare estimated kernels with the ground
truth. We utilize the maximum response of normalized cross-correlation to rep-
resent the blur kernel similarity S(K, K̂) of two kernels, K and K̂,

S(K, K̂) = max
γ

ρ(K, K̂, γ), (1)

where ρ(·) is the normalized cross-correlation function and γ is the possible shift
between the two kernels. Let τ represent element coordinates, ρ(·) is given by

ρ(K, K̂, γ) =

∑
τ K(τ) · K̂(τ + γ)

‖ K ‖ · ‖ K̂ ‖ , (2)

where ‖ · ‖ is 2-norm, K(τ) and K̂(τ) are zeros when τ is out of the kernel
range. The maximum response of the normalized cross-correlation, similar in
nature to the convolution, can handle the shift and scale problems mentioned
above. With this metric, the larger kernel similarity values reflect more accurate
kernel estimation results. One example that demonstrates the effectiveness of the
kernel similarity is shown in Figure 2. We note that the estimated kernels with
low RMSEs do not necessarily lead to good results, while estimated kernels with
slightly higher RMSEs in fact match better with ground truth kernels. Instead,
the kernel similarity is a better metric for comparing kernels. More results can
be found in the supplementary material.

4 Learning Good Regions

Existing deblurring works discuss some potential features that may be useful for
kernel estimation mainly based on empirical experimental results. In this paper,
we address this problem by learning good image regions for deblurring.
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4.1 Learning Framework

To determine the good image regions for deblurring, we analyze the image struc-
ture by small subwindows. The subwindows within the image, in the context of
kernel estimation and recovered image, are spatially dependent. Two closely over-
lapping subwindows (e.g., shifted by a few pixels in either directions) share similar
image structures. In addition, it is reasonable to expect that other subwindows,
nearby a potential good subwindow for kernel estimation, contain useful image
structures for deblurring. Consequently, the deblurred results for these subwin-
dows should be similar, which are also observed empirically in image deblurring
results. Figure 3 shows one example where we estimate a blur kernel from each
subwindow of size 200× 200 and apply it to recover the whole image. With all the
estimated kernels from subwindows and recovered images, we construct an image
reconstruction error map (Figure 3(b)) and a kernel similarity map (Figure 3(c))
by comparing with ground truth clear image and blur kernel. The value at each
pixel of these maps is computed by averaging the reconstruction errors or kernel
similarity values from all the subwindows containing it. The image reconstruction
map illustrates that deblurred results using subwindows for kernel estimation are
spatially correlated. In themeanwhile, high kernel similarity values well match low
image reconstruction errors which demonstrates the effectiveness of kernel sim-
ilarity as a metric for evaluating deblurred results. Thus, we pose the problem
of learning good regions within the CRF framework [6] as it encourages spatial
correlation and label the training data using kernel similarity.

Let S and i represent the set of nodes and node index. Given the labels y and
the observations x, the conditional distribution P (y|x) is

P (y|x) = 1

Z
exp (E(y|x)) , (3)

where Z is a normalization term also known as the partition function. The energy
E is

E(y|x) =
∑

i∈S

Ai(yi,x) +
∑

i∈S

∑

j∈Ni

Iij(yi, yj,x), (4)

(a) (b) (c)

Fig. 3. Spatial correlation. (a) input blurry image; (b) image reconstruction error map
built upon the estimated kernels from shifting subwindows (blue to red pixels indicate
low to high reconstruction errors compared with the ground truth image); (c) kernel
similarity map (blue to red pixels indicate high to low kernel similarity compared with
the ground truth kernel).
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where Ai and Iij denote the association and interaction potentials, respectively.
The association potential Ai(yi,x) measures how likely the node of index i
would be labeled yi given the observation x. Meanwhile, the interaction po-
tential Iij(yi, yj,x) determines how the label yj at node j affects the one yi at
node i. Here Ni represents the neighborhood of node i.

In this paper, the subwindows in the input blurred image are considered as
nodes in the CRF model similar to the formulation of discriminative random
field [13]. Hence, we formulate association potential with log-likelihood of local
discriminative model using the logistic function,

Ai(yi,x) = logP1(yi|hi(x))), (5)

where hi(·) denotes the feature vector of the local region at node i and the first
element is set as 1 to accommodate the bias term. The conditional probability
P1(yi|hi(x))) of class yi at node i is defined based on the logistic function:

P1(yi|hi(x)) = σ(yiw
�hi(x)), (6)

where w are parameters of the logistic function σ.
Similar to the association potential, the interaction potential is given by

I(yi, yj,x) = logP2(yi, yj |μij(x)), (7)

and
P2(yi, yj|μij(x)) = σ(yiyjv

�μij(x)), (8)

where v are the parameters of the logistic function and μij denotes the feature
vector for pair (i, j). We adopt the difference of feature vector f between node i
and j, with 1 as the first element, to express μij , μij(x) = [1, |hi(x) − hj(x)|]�.
Since we do not encourage negative interaction for two nodes of different appear-
ance or at image discontinuities, the term v�μij(x) is set to be non-negative.
That is, we use the value max(0,v�μij(x)) to substitute v�μij(x).

4.2 Image Feature

Numerous prior works have shown that smooth image regions do not provide
sufficient information for kernel estimation, and instead textured regions are
often selected. Nevertheless, the estimation results may still be poor even when
textured regions are used [4]. Indeed, regions full of repetitive edges sometimes
make no contributions to the problem when the blur movement occurs in the
similar direction as the edges (see an example in the supplementary material).

To estimate blur kernels, recent algorithms focus on the use of sharp edges or
edge distribution [3, 4]. Analogous to the problems with textured regions, sharp
edges can be of great value for image deblurring under proper assumptions. The
underlying assumption for effective use of sharp edges is that regions with high
contrast in the original image maintain informative structure after motion blur.
However, not all the sharp edges are effective for kernel estimation. Recently, it
has been shown in [5] that edges of smaller size than the blur kernel may have
adverse effect on kernel estimation, and consequently edge maps of sufficient size
are used for deblurring.
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Taking all these factors into consideration, we present a method to extract
features from regions for image deblurring. We use the responses of a Gabor filter
bank f(x) = [f1(x), f2(x), . . . , fn(x)] to represent the oriented textures of an im-
age region x. Here n denotes the bin number of Gabor filters and fi(x) represents
the proportion that the i-th orientation is the dominant direction within the ob-
servation x. The image gradient histogram g(x) = [hist(g1(x)), hist(g2(x))] is
used to capture the distribution of edges, where g1 (x) and g2 (x) are the first-
order derivatives of the image x along vertical and horizontal directions.

To rule out potential negative effects from small edges, we use the mask
M(x) = H(r(x) − τ) as [5], where H(·) is the Heaviside step function whose
value is zero for negative argument and otherwise one, and τ is the threshold.
For each pixel p ∈ x, r(p) measures the usefulness of gradients by

r(p) =
‖ ∑

q∈Ns(p)
∇x(q) ‖

∑
q∈Ns(p)

‖ ∇x(q) ‖ +0.5
, (9)

where Ns(p) is a s × s window centered at pixel p. The feature vector h(x) is
then formed by concatenating the above-mentioned local image features,

h(x) = [f(x), g(x), f(M(x)), g(M(x))], (10)

with varying parameters n, τ and s. We compare the proposed feature vectors
with some alternatives in the supplementary material.

4.3 Parameter Learning and Inference

Let θ denote the set of parameters in the CRF model, θ = {w,v}. The maximum-
likelihood estimates of model parameters θ are computed with the pseudo-
likelihood to approximate the partition function Z,

θ̂ = argmax
θ

∏

m

∏

i∈Sm

P (ymi |xm,ym
Ni

, θ), (11)

wherem represents the index of the training image and Sm is the graph generated
from the m-th image. Based on this formulation, we have

P (yi|x,yNi , θ) =
1

zi
exp(Ai(yi,x) +

∑

j∈Ni

I(yi, yj ,x)), (12)

and the partition function can be written as

zi =
∑

yi∈{−1,1}
exp(Ai(yi,x) +

∑

j∈Ni

I(yi, yj ,x)). (13)

To balance the effect between association and interaction potentials, we add in
penalty term 1

2φ2v
�v, where the variable φ is pre-defined in this work. We solve

the optimization problem in the log pseudo-likelihood form,

θ̂ = argmax
θ

∑

m

∑

i∈Sm

[log σ(yiw
�hi(x))+

log
∑

j∈Ni

σ(yiyjv
�μij(x)) − log zi]− 1

2φ2
v�v.

(14)
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We use the BFGS method to solve the optimization problem and obtain param-
eter θ̂. The loopy belief propagation (LBP) is then utilized for inference.

4.4 Good Regions to Deblur

Given a high resolution blurred image (e.g., 4000 × 3000 pixels), it is rather
time consuming to apply deblurring algorithms with the whole image. Even
with the fast deblurring algorithm [14], it may not be the best choice to use
the whole image for kernel estimation for the reasons discussed in Section 4.2.
We will demonstrate in Section 6 that using a region of blurred image for kernel
estimation may render better deblurred result rather than using the whole image.
Clearly, one immediate solution for these problems is to select a region within the
input image to estimate blur kernel, and then apply a non-blind deconvolution
algorithm to the whole image.

In this work, we use principal component analysis to reduce the dimensional-
ity of the feature vectors for learning the model parameters, and LBP to classify
the subwindows as good regions or not for blur kernel estimation. The label of
each node (subwindow) in the training image is determined by comparing the es-
timated kernel and the ground truth kernel. The learning process is summarized
in the supplementary material. The reason we use LBP for inference instead of
graph cuts here is that we would like to obtain labels with confidence values so
that it is more convenient to develop a region selection strategy. We select the
top ranked subwindow to estimate kernel for simplicity although other weighted
approach may be used. Given the window size, the proposed method of selecting
good subwindow to deblur does not require manual selection which can be prob-
lematic and time-consuming. We show that the proposed method can effectively
select the optimal subwindow for deblurring in Section 6.

Moreover, this window selection method can also be applied to non-uniform
(spatially variant) blur cases which requires huge memory space and heavy com-
putation if the whole image is used to estimate the camera motion (e.g., [14]).
For instance, the non-uniform deblur algorithm [15] employs a RANSAC-based
scheme to select a set of patches for estimating local blur kernels and thus ren-
dering a good initialization. With our method, it would be easy and effective to
choose a set of good patches for local kernel estimation.

5 Contribution of Feature Components

Within the model presented in Section 4, we use a feature vector consisting of
several components. In this section, we determine the most important component
for image deblurring via their structured output. In addition, the approach we
use can also be extended to determine other effective features. We use a slightly
different energy function and consider each feature component independently.
That is, we decompose the associate potential Ai(yi,x) into a combination of
feature components:

Ai(yi|x) =
∑

c

αc logP
c
1 (yi|hc

i (x)), (15)
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where hc
i represents different components of the feature vector, e.g., f(x) and

f(M(x)), with weights α. The conditional probability P c
1 (yi|hc

i (x)) is defined
based on the same logistic function as Eqn. 6. Since we aim to determine
the weights of feature components rather than the parameters of the logistic
functions, the parameters of logistic functions are assumed to be known (e.g.,
learned with a linear support vector machine). For interaction potential, we use
I(yi, yj,x) = βδ(yi − yj) to encourage labeling smoothness, where β > 0 is the
weight and δ(·) denotes the Kronecker function.

The objective here is to maximize the probability of labels. In the training
phase, we compute the weights Λ = (α, β) that assign the training labels ŷm

higher or equal probabilities than any other labels ym of training image m,

P (ŷm|xm) ≥ P (ym|xm), ∀ym �= ŷm. (16)

We can cancel the normalizer term Z from both sides of the constraints and
express the constraints in terms of energies,

E(ŷm|xm) ≥ E(ym|xm), ∀ym �= ŷm. (17)

We take a max-margin approach to compute the weights that satisfy the in-
equalities with the largest energy margin γ,

max
Λ:||Λ||=1

γ s. t. E(ŷm|xm)− E(ym|xm) ≥ γ, ∀ym �= ŷm. (18)

The weights Λ are constrained to have unity norm to prevent from growing
without bound. Similar to [16], we learn the weights Λ by adding slack variables
and iteratively finding the minimum energy labeling with graph cuts [17]. The
main steps of this algorithm are summarized in the supplementary material.

6 Experimental Results

We evaluate the inferred subwindows using three state-of-the-art deblurring algo-
rithms [2, 9, 14] and compare the performance using the error metric introduced
in [1]. This metric computes the difference between a recovered image Ir and the
known ground-truth sharp image Ig, over the difference between the deblurred
image Ikg with the ground truth kernel kg and the ground-truth sharp image as
||Ir − Ig||2/||Ikg − Ig||2. The cumulative histogram of reconstructed error ratio
(briefed as cumulative error histogram for convenience) is then used to evaluate
the efficiency of an algorithm. Since the dataset from [1] has limited variability
of image structure and blur kernel, we use the same technique to collect 400
blurred image using 20 sharp images (with image size around 450× 450 pixels)
and 20 blur kernels for training. These kernels are generated with different orien-
tation and shape to simulate possible blur processes. Furthermore, we construct
another set of 120 challenging blurred images using 10 sharp images and 12 blur
kernels for tests. Our experiments are carried out on a machine with 3.40 GHz
CPU and 16 GB RAM. To infer an image of 450 × 450 pixels, it takes around
5 seconds to process with our MATLAB implementation. The source codes and
data sets are available at http://faculty.ucmerced.edu/mhyang/code.
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6.1 Deblurring with Good Regions

With the CRF model described in Section 4, we learn the parameters using all
the 400 training images for inferring good regions to deblur. For each image, we
build the graph model with overlapping subwindows of 200×200 pixels as nodes
and shifts of 20 pixels. The size of subwindows is determined empirically as it is
large enough to estimate the kernel of size smaller than 29×29 pixels and all the
blur kernels in this data set are like that. In our experiments, there are at least
484 subwindows extracted from each image as the nodes for training. We collect
the estimated kernel from each subwindow using [2] as it is one of the best kernel
estimators [1]. With the estimated kernels and ground truth kernels, we label
node i to be 1 or −1 using the proposed kernel similarity S(Ki,K) between an
estimated kernel Ki and the ground truth kernel K with the threshold λ of 0.6
(empirically set for effectiveness), where Ki represents the estimated kernel for
node i. The feature parameters n, τ and s in this work are set to be 8, 0.6 to 0.9
with increment of 0.1, and 9 to 24 with increment of 4 respectively. During the
inference process, the size of subwindows is set proportional to the user-defined
kernel size. That is, for a larger blur kernel, the size of subwindows selected to
estimate the kernel should also be increased proportionally.

Comparison with User-Selected Region. To demonstrate that user selec-
tion can be replaced by our algorithm, we compare our top inferred subwindows
with user-selected regions. The users tend to choose regions with most salient
edges and variances as shown in Figure 5(b)(c) and Figure 6(b)(c). The user
selection strategy works well in some situations but usually requires several tri-
als to obtain a good result. On the contrary, our proposed method does not
require user guidance and the deblurred results by the inferred subwindows of
our algorithm outperform that using user-selected regions.

Comparison with Region Selection Algorithms. We compare the proposed
algorithm with two other region selection methods for deblurring [2, 5]. The
automatic subwindow selector by [2] searches for the regions with high variance
and low saturation for kernel estimation. We implement another subwindow
selection method by following the idea in [5] that the image deblurring process
may adversely degrade by the negative effect of small edges. In this selector, we
remove small edges using the mask M(x) and then search for the subwindow
with most salient edges.

In this experiment, we select the top ranked subwindow from our inference
algorithm for blur kernel estimation for simplicity although other alternatives
may be used. We apply other methods to select one subwindow from each image
for kernel estimation and then apply two state-of-the-art algorithms [2, 9] to
recover the whole image. Figure 5 and Figure 6 illustrate the comparison using
the deblurring algorithm of [2] and [9] respectively. We note that although some
inferred windows (e.g., Fig. 5(e) and (f)) appear to be similar, their locations
are different (60 pixels apart). The deblurring results on subwindows inferred
by our algorithm are better than those from the other two subwindow selection
strategies.



Good Regions to Deblur 69

Comparison with Deblurring Using the Whole Image. We also compare
with the deblurred results by [14] which uses the whole image for kernel esti-
mation. In this experiment, we test two region selection strategies based on the
inference results. One is to select the top ranked subwindow to estimate blur
kernel, and another is to combine the top ten good subwindows. To combine the
top ten subwindows, we choose the smallest rectangle which covers all the sub-
windows as the region for simplicity. We note that the top ranked subwindows
are usually clustered due to the usage of CRF model which encourages spa-
tial correlation, and thus the rectangular region is still of small size compared
with the whole image as shown in Figure 7. Compared to the results obtained
from the whole images in Figure 7, our algorithm with inferred region generates
comparable or superior kernel estimation and reconstructed images.

Quantitative Comparison. We conduct extensive comparisons using 120 chal-
lenging test images and present their cumulative error histograms. Given an
inferred region by the proposed algorithm, we use the fast algorithm [14] to es-
timate a blur kernel, and the non-blind deconvolution algorithm [9] to recover
the latent image (similar as [14]). For thorough evaluations, we compare the
results using the above-mentioned region selection strategies [2] and the whole
image [14]. In addition, we compare with [5] using a region or the whole image for
kernel estimation. As shown in Figure 4, the curve using our top ten subwindows
generally performs better than other algorithms [5, 14] using the whole image.
The results also show that not all the information in a blurred image is useful
and using the whole image for kernel estimation may not be the best choice. We
note that the reconstructed results are visually plausible even when the error
ratio is around 5 (an example is provided in the supplementary material), which
is different from the observations in [1]. The reason is that we employ different
non-blind deconvolution algorithms and larger test images.

Fig. 4. Cumulative error histograms on deblurred results with different window se-
lection methods including ours, [2] and [5]. We use the algorithm in [14] for kernel
estimation and the algorithm in [9] for non-blind deconvolution.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison on different window selection strategies for deblurring using [2].
(a) input blurry image and corresponding kernel; (b) & (c) user-selected subwindows
(red box) and the deblurred results; (d) subwindow selected by window selector [2]
and the deblurred result; (e) subwindow selected by window selector following [5] and
the deblurred result; (f) subwindow selected by our algorithm and the deblurred result
(best viewed on high-resolution display).

(a) (b) (c)

(d) (e) (f)

Fig. 6. Comparison on different window selection strategies for deblurring using [9].
(a) input blurry image and corresponding kernel; (b) & (c) user-selected subwindows
(red box) and the deblurred results; (d) subwindow selected by window selector [2]
and the deblurred result; (e) subwindow selected by window selector following [5] and
the deblurred result; (f) subwindow selected by our algorithm and the deblurred result
(best viewed on high-resolution display).
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(a) (b) (c) (d)

Fig. 7. Inferred regions for deblurring using [14]. The first row shows results with top
ranked subwindow and the second row with top ten subwindows. (a) input image and
the ground truth blur kernel; (b) kernel estimation and deblurred result using the whole
image [14]; (c) inferred good regions by our algorithm; (d) deblurred results using the
inferred good regions (best viewed on high-resolution display).

Analysis. Our empirical results also provide some insights about the kinds of
image structures that are favored by different deblurring algorithms. In the zebra
image, the selected window by our algorithm contains relatively strong edges, as
suggested in [1, 2]. However, small or detailed edgesmay not help kernel estimation
as shown in Figure 6(b). Furthermore, the subwindow with various oriented edges
is selected rather than the regions with repetitive textures. The empirical results
and observations bear out our intuition and analysis in Section 4.2.

6.2 Feature Components

With the model described in Section 5, we learn the weights Λ from a set of 400
images. The results show that the weights αc for feature components f(x) and
f(M(x)) of Eqn. 10 have the highest values. This indicates that Gabor filter
responses are more discriminative for this task, while using the original blur
image is more effective than using the image after removing small edges.

7 Conclusions

Recent works focus on introducing priors or additional information to facilitate
deblurring, and considerably less efforts are made to study structural information
of the input blurred image itself. We address this issue and exploit informative
image structure for deblurring. In this paper, we propose a learning-based ap-
proach for selecting good features and good patches for blur kernel estimation.
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Towards this, we introduce a kernel similarity metric for effectively compari-
son between kernels. The proposed algorithms select good regions automatically
for deblurring with efficient and favorable results, thereby relieving users from
tedious trials for selecting image patches.
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