
Active Frame Selection for Label Propagation in Videos

Sudheendra Vijayanarasimhan and Kristen Grauman

University of Texas at Austin
{svnaras,grauman}@cs.utexas.edu

Abstract. Manually segmenting and labeling objects in video sequences is quite
tedious, yet such annotations are valuable for learning-based approaches to ob-
ject and activity recognition. While automatic label propagation can help, existing
methods simply propagate annotations from arbitrarily selected frames (e.g., the
first one) and so may fail to best leverage the human effort invested. We define
an active frame selection problem: select k frames for manual labeling, such that
automatic pixel-level label propagation can proceed with minimal expected er-
ror. We propose a solution that directly ties a joint frame selection criterion to
the predicted errors of a flow-based random field propagation model. It selects
the set of k frames that together minimize the total mislabeling risk over the en-
tire sequence. We derive an efficient dynamic programming solution to optimize
the criterion. Further, we show how to automatically determine how many total
frames k should be labeled in order to minimize the total manual effort spent
labeling and correcting propagation errors. We demonstrate our method’s clear
advantages over several baselines, saving hours of human effort per video.

1 Introduction

Semantic segmentation of objects in video sequences is important for many high-level
applications, such as recognizing human actions, medical imaging, and automated ve-
hicle driving. Gathering useful labeled data appears key for methods to learn to parse
videos, but it requires considerable manual effort. In particular, labeling the boundaries
of all objects of interest in each frame is tedious and time-consuming. The cost can
be mitigated by exploiting interactive segmentation techniques [24,15,1,3] or region
tracking and segmentation methods [16,9]. Researchers have also developed methods
to propagate manual annotations across video frames using interfaces with interpola-
tion tools [23,26] or inference in space-time graphical models [14,6,2,18,8]. Typically
a user annotates some frame (e.g., the first one), then invokes the propagation engine.

While semi-automatic methods are promising, existing techniques have two main
limitations. First, they assume that the provided labeled frame(s) are already fixed, and
focus only on how to optimize the propagation across the remaining unlabeled frames.
However, there is no guarantee an arbitrarily selected frame (or even a human-selected
frame) provides sufficient information to optimally propagate to the rest. Second, they
assume some fixed number of initial frames, or else that a human labeler will watch
the algorithm’s intermediate outputs and decide when a new label is necessary to get
the method back on track. However, this neglects the fact that there is a direct trade-off
between the number of frames initially labeled and the amount of erroneously propa-
gated labels someone will need to fix afterwards—and that trade-off is video dependent.
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active selection propagatelabel

Fig. 1. Goal: actively select k video
frames for a human to label, so as
to ensure minimal expected error
across the entire sequence after au-
tomatic propagation. Best viewed in
color.

More importantly, requiring a human in the loop to catch propagated errors precludes
the possibility of “farming” each frame-level annotation job to multiple people working
in parallel, which would be desirable for large-scale annotation efforts.

We instead propose to actively select frames for label propagation. The goal is to
leverage the required human effort more purposefully, by allowing the propagation al-
gorithm’s expected errors to automatically guide which frames are presented to a hu-
man for manual labeling.1 The k most useful frames are jointly chosen according to the
expected label error, were they to be propagated via a dense flow-based random field
model. Specifically, we compute the predicted mislabeling rate for every frame j should
frame i be labeled and propagated to it, based on the expected optical flow error and
model uncertainty. We then formulate the best k-selection as an optimization problem
to minimize total propagation error, and provide an efficient dynamic programming al-
gorithm to solve it in time polynomial in the number of total frames. After obtaining
the selected annotations, we propagate the labels sequentially with that same model. We
further show how to optimize over the number of frames that need to be selected.

In this way, our method reduces total manual effort—both by keeping the number
of selected frames low, and by ensuring that after propagation minimal human fixing
is required. Moreover, by reducing video annotation to k independent image labeling
tasks, it has the advantage that one may elect to have them all labeled in parallel (e.g.,
on Mechanical Turk, if desired). The propagation to unlabeled frames is completely
automatic and done offline, so no further user intervention is required.

While our work shares active learning’s high-level motivation to minimize human
involvement, the active frame selection problem we define is distinct. Traditional active
selection methods aim to choose useful instances for category labeling, such that a
classifier’s uncertainty on unseen instances will be reduced (e.g., [21,11]). In contrast,
the active video frame selection problem aims to jointly select those frames in light of
their known temporal ordering such that the expected propagation errors on the current
sequence will be minimized. Furthermore, the fact that the k-selection jointly influences
many frames in either direction in time means that a naive approach—i.e., one that
selects representative keyframes, or one that looks only forward in time to detect abrupt
changes—would not meet our goal. Rather, we need to model the “trackability” as part
of the selection criterion.

To our knowledge, we are the first to define the active video frame selection problem,
where the system determines which subset of frames require labeling. The proposed

1 Throughout we assume a dense labeling, where the annotator marks the pixel-level boundaries
of all objects present in the frame.
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approach is a novel solution to maximize annotator effort in this important, practical
setting. We demonstrate its advantages on challenging videos, as compared to a method
that uniformly samples frames for labeling and a clustering-based keyframe selection
technique. Our results indicate that active frame selection is crucial to most efficiently
use human time for video annotation.

2 Related Work

Interactive segmentation techniques help a user extract objects from videos
[1,24,15,3] or groups of related images [4]. Such methods offer novel interfaces to
indicate foreground objects in a space-time volume [24,3], to propagate an initial fore-
ground region while the user corrects any mistakes along the way [1,15], or to intelli-
gently recommend where a user should scribble [4]. In contrast to our problem, these
methods attempt binary labelings and, more importantly, assume a user is closely in-
volved throughout to refine the segmentation at each step. Our goal is to guide the user
to the frames that most require attention.

Researchers are also developing novel video annotation tools amenable to online
data collection [26,23]. LabelMe Video allows users to draw polygons around objects
and select a start and end frame; interpolation transfers the polygons to other frames.
The crowd-sourcing study in [23] asks a worker to draw a bounding box every T frames,
and then interpolates the object path efficiently. Both methods assume the object’s mo-
tion is either static or uniform during interpolation. As such, our approach can naturally
enhance such tools, removing the burden on a user to have insight on which frames are
usable for propagation.
Video Object Segmentation takes an unsupervised approach [9,16,10,19].
Graph-based clustering [10], tracking [9], and random field models [16,19] have all
been explored. Optionally, when labeled frames are available, such methods can per-
form label transfer using tracks [9] or dense correspondences [12]. A well-known chal-
lenge in tracking is “drift”, where small errors accumulate over time. Our approach
counters this pitfall by requesting more labeled frames where flow errors appear to ac-
cumulate, and by using an appearance model for uniform regions with few keypoints.

A few recent methods directly address Label Propagation in Video. using prob-
abilistic models [14,6,2,18]. The methods typically assume the label field in the first
(and/or last) frame of the sequence is given, and then automatically track through the
remaining frames based on the objects’ color and motion properties.

Active Learning Methods consider how to select useful instances to refine a classi-
fier, and in particular “batch-mode” selection methods have been explored for training
object classifiers [21,11]. We also want to reduce manual intervention, but our setting
differs significantly: our objective is to minimize propagation error rather than build
a classifier, and the selection criterion must account for both the information overlap
between selected frames as well as the likelihood of successful flow-based transfer to
all unlabeled frames. Very recent work considers ways to actively train an “object vs.
background” classifier for a given video, iteratively requesting a bounding box or su-
perpixel label in a selected uncertain frame [22,8]. Like our approach, these methods
aim to efficiently use annotator effort for video labeling. However, whereas we jointly
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solve for a labeling of all objects in the video and explicitly model the “trackability”
for active selection, the previous techniques handle a single object of interest indepen-
dently and base selection on traditional measures of classifier uncertainty. Furthermore,
both prior methods assume an annotator remains in the loop for each sequential request
following a classifier update, whereas our method computes the set of frames requiring
annotation at once. This makes it uniquely amenable to annotators working in parallel
(e.g., for crowdsourcing), and in principle enables non-myopic selection.

Finally, keyframe Selection finds representative frames using clustering (e.g., [25])
or by maximizing the dissimilarity between keyframes [7,13]. While intended for visual
summarization—not active annotation—they serve as a natural baseline; we find they
underperform our approach, due to their failure to quantify how well labels can be
transferred to the unselected frames.

3 Approach

Our goal is to annotate all objects in a video with minimal manual effort. To achieve
this, our method first selects a set of informative frames for human labeling, and then
propagates those labels to the rest of frames using optical flow and appearance-based
models.

We first define the propagation algorithm (Section 3.1), since by design our selection
criterion is closely aligned with it. Then in Section 3.2, we define the optimization
problem for selection that minimizes the total predicted error on all frames, and finally
derive a dynamic programming algorithm to efficiently solve it.

3.1 Video Label Propagation

Let F = {f1, f2, ..., fN} be the sequence of N frames from a video that need to be
annotated, such that each pixel will be assigned one of C object labels. Given k frames
S = {fn1 , . . . , fnk

}, with corresponding labels {Ln1, . . . , Lnk
}, where S ⊂ F , we

propagate their labels to the rest of the video. Each Lni is a matrix of labels having the
same dimensions as the image frame (height by width) indexed by the 2D pixel coordi-
nates p, and each Lni(p) ∈ {1, . . . , C}. Let (lt, rt) be the indices of the closest labeled
frames before and after frame t, respectively (“left” and “right” of t).2 We assume that
given labels (Llt , Lrt), the rest of the frames do not affect the labels of frame t.

In this section, we devise two methods for propagation: a basic flow-based approach
and an enhanced variant that uses the flow model within a Markov Random Field. The
simpler flow-based model is the core that ties to the selection procedure, while the MRF
strengthens it with motion-based data terms and usual smoothness constraints. We test
both in experiments.

Pixel Flow Propagation Method. The basic propagation method uses dense optical
flow to track every pixel in ft in both the forward and backward directions until it
reaches the closest labeled frames on either side. We estimate the expected propagation

2 Frame indices (lt, rt) might not exist if the number of labeled frames is < 2, or if i < n1 or
i > nk. For clarity we omit such cases, as they do not affect the method description.
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Fig. 2. Relationship between flow and label transfer

error as the pixel is being tracked, and choose its label from either lt or rt, whichever
has the smaller error. By tracking the flow in both temporal directions, we account for
the fact that object motion in a video can cause one or the other to be more reliable; for
example, if an object is moving away from the camera, the earlier frames offer higher
resolution on the object and are more reliably propagated, whereas if it is approaching
the camera, the opposite is true.

Let w denote a flow field indexed by pixel positions that returns the 2D flow vector at
a given point. Given the forward flow field from frame t to t+1, wt, and the backward
field from t to t− 1, ŵt, each pixel position p in frame t can be tracked to the next and
previous frames:

p′ = p+wt(p),

p̂′ = p+ ŵt(p). (1)

Defining the expected propagation error. Even with a good dense flow algorithm,
inevitably errors occur due to boundaries, occlusions, and when pixels change in ap-
pearance, or enter/leave the frame. Thus, we explicitly model the probability that a
pixel is mistracked. In the following, we define this propagation error for a later frame
t + j back to t, i.e., using the forward flow from p to p′ (see Figure 2). All terms are
analogously defined for propagating from a prior frame t− j.

The probability that pixel p in frame t will be mislabeled if we were to obtain its
label from frame t+ 1 is:

P(p, t+ 1, t) = 1− exp(−d(p, t)), where (2)

d(p, t) = β (dapp(p, t) + dmot(p, t) + docc(p, t) + dout(p, t)) ,

and β is a scaling parameter. P(p, t−1, t) is defined analogously using ŵ, p̂′, and t−1.
The component distances reflect the expected forms of tracking error. Specifically,

dapp(p, t) = ‖ft(p)− ft+1(p
′)‖ (3)

computes the color difference, and the flow differences are

dmot(p, t) = ‖wt(p)−wt+1(p
′)‖. (4)

The latter helps identify pixels that drift across object boundaries, thus having the mo-
tion of two different objects. We detect occlusions using the consistency of the forward
and backward flow:

docc(p, t) =
‖wt(p) + ŵt+1(p)‖
‖wt(p)‖ + ‖ŵt+1(p)‖ . (5)
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Fig. 3. Schematic for the propagation process to label frame t. Frames lt and rt denote t’s closest
labeled frames before (“left”) and after (“right”). Dark blue frames denote the k = 3 selected
frames. Dotted arrows denote optical flow or MRF-based propagation from adjacent frames,
which propagate labels to t from either direction to generate label matrices L(lt)

t and L
(rt)
t (shown

in gray). They combine to form Lt, the final label estimate for t.

Essentially, docc reflects that if a pixel is not occluded, we expect the two flows to be
opposite in direction, making the numerator close to 0. Finally, we set dout(p, t) = 0
if p′ is within the frame, and a constant R if it has left. Large values for any d(·)
term indicates a pixel may have been wrongly mapped to a different object, and hence
is likely to cause a propagation error. Note that each term contributes equally to the
distance since large values for any one is likely to cause an error.

When there is more than one frame between labeled frame rt and current frame t, we
must predict errors accumulated over successive frames. Defining the error recursively,
we have:

P(p, t+ j, t) = P(p, t+ j − 1, t) (6)

+ (1− P(p, t+ j − 1, t))P(p, t+ j, t+ j − 1),

for j > 1. In other words, pixel p was either mislabeled along some hop from t+ j− 1
back to t, or else those hops were all correct and the wrong label was propagated from
the single hop from adjacent frames t+j and t+j−1. We will refer to these mislabeling
probabilities again in Section 3.2 to define the selection objective.

Minimization and final label map. Thus, to estimate the final label Lt(p) for pixel p
in frame t with the flow alone, we first compute P(p, lt, t) and P(p, rt, t) recursively
using Eqn. 6 to obtain the two corresponding label estimates L(lt)(p) and L(rt)(p), and
then take the best prediction:Lt(p) = L(j∗)(p), where j∗ = argminj={lt,rt} P(p, j, t).
See Figure 3. Tracking in both directions helps avoid mistakes made if propagating only
one way. If lt or rt does not exist, then the labels are simply obtained from the tracked
points in the other labeled frame.

Pixel Flow + MRF Propagation Method. The previous section defined both the basic
flow-based propagation, and (more crucial to our selection approach) a means to esti-
mate propagation errors. Next we explain an enhanced variant that uses flow tracking
within a space-time Markov Random Field (MRF) model. The MRF variant helps us
(a) infer label maps that are smooth in space and time, and (b) enhance each pixel’s
label estimate using object appearance models defined by the labeled frames.
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The use of a random field for video segmentation is itself not new (e.g.,
see [16,15,18,19] for variants); however, our formulation specifically allows for the
propagated error predictions that are central to active frame selection, as we will see in
the following.

Given labels on the subsequent frame t+1, we define a random field for t with nodes
at every pixel, and hidden nodes corresponding to their unknown labels. To obtain the
backward label assignment3 for t, we minimize the energy:

E(Lt) =
∑

p

Ap(Lt(p)) + Tp(Lt(p)) +
∑

p,q∈N

Vp,q

(
Lt(p), Lt(q)

)
,

where Ap is a unary potential based on an appearance model defined by frame rt, Tp

is a unary potential based on transferred labels from t + 1, and Vp,q is the pairwise
potential computed over N, the set of neighboring pixels in a 4−connected grid. They
are defined as follows.

Node potentials. The manual segmentation of frame rt yields object regions taking
on (perhaps a subset of) the C possible object labels. We use its regions to fit C Gaussian
mixture models, one per label. Let N (μc, Σc) denote the c-th label’s mixture model,
defined over a feature F (p) consisting of color and entropy-based features (detailed in
Sec. 4). We define:

Ap(c) = − log P( F (p) | N (μc, Σc)). (7)

We expect this color model to primarily help fill in background objects at pixels oc-
cluded in the previous frame.

The other node potential reflects the cost of transferring a label for p from the next
frame t+ 1. We define:

Tp(c) =

{
d(p, t) if c = Lt+1(p

′)
U otherwise,

(8)

where d(p, t) is defined in Eqn. 2, and U is a constant. This achieves label smoothness
in time, where we account for estimated motion by using p′.

Pairwise potential. The edge term is based on both the appearance and motion sim-
ilarity of neighboring pixels p and q in frame t:

Vp,q(Lt(p), Lt(q)) = δ(Lt(p) �= Lt(q))S(p, q), (9)

where δ denotes the delta function, and

S(p, q) = exp(−βf‖ft(p)− ft(q)‖) + exp(−βw‖wt(p)−wt(q)‖), (10)

with scaling parameters βf , βw set as the inverse of the mean values of the correspond-
ing terms over the entire frame. This term penalizes assigning different labels to neigh-
boring pixels with similar color and flow.

Minimization and final label map. The total MRF energy can be efficiently mini-
mized using the algorithm of [5] in order to transfer labels from t + 1 and obtain Lt.

3 As above, we describe the label transfer in the backward direction, from rt to t in order to
estimate L(rt); again, analogous equations apply to map from lt to t in order to estimate L(lt).
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Since this requires that we have already obtained labels on the subsequent frame t+ 1,
we start from the nearest labeled frame to the right, rt, and transfer labels backward
sequentially to t in order to obtain L(rt). Analogously, we transfer from lt forwards to
t to obtain L(lt). Finally, to smoothly combine the two label maps, we simply minimize
a second MRF energy function using the expected propagation errors. See Figure 3.

3.2 Active Selection of a Set of Frames

With the label propagation and error predictions defined, we now explain the novel
active selection optimization problem. Recall that existing methods sample man-
ual labels at fixed intervals [26,23] or simply annotate some manually chosen
frame(s) [9,14,3,6,2,18]. The pitfall of such an arbitrary selection is that it ignores cor-
relations between frames that can affect interpolation/propagation reliability, which do
not necessarily vary uniformly over time. In the following we show how to automate
this selection.

Selection Criterion. To get a well-segmented video, there are two sources of manual
effort cost: (1) the cost of fully labeling a frame from scratch, denoted C�, and (2) the
cost of correcting errors by the automatic propagation, denoted Cc. Both are in units of
time. One can obtain realistic estimates of these constants by observing annotators with
the label propagation tool. In our experiments we let C� = 25 minutes (based on reports
from [9]), and Cc = 1 minute, the correction time typically needed to achieve 1% pixel
error. Alternatively, one could replace the constants with frame-specific segmentation
costs when available, e.g., as predicted with a learned model [20].

We now define an optimization problem for the best set of frames from which to propa-
gate. Our aim is to chooseS∗ = {fn1, fn2 ..., fnk∗} to minimize the total expected effort:

S∗, k∗ = argmin
S⊂F,k

k C� + E(S)Cc, where (11)

E(S) =
N∑

t=1

∑

p∈t

min
j∈{lt,rt}

P(p, j, t). (12)

E(S) counts the expected number of erroneous pixels, and is computed using Eqns. 6
and 2. Since choosing which frame to propagate per pixel adds a factor of height×width
to the computation time, we modify this to select which frame to propagate per frame.
Thus we can rewrite the cost in terms of an N × N matrix C, where C(j, t) =∑

p∈t P(p, j, t):

E(S) =
N∑

t=1

min
j∈{lt,rt}

C(j, t). (13)

In many practical applications, our algorithm would be given a “budget” for k, meaning
the total number of frames that one is willing to pay to have labeled. In that case, we
target the fixed number of k frames that minimize total propagation error, and the above
reduces to:

S∗ = argmin
S⊂F

E(S). (14)
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Selected
frame index:
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S

…

1 2 i nn-1
Sequence
frame index:

(a) Basic indices

b
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1 i nn-1i+1 i+2
(b) Case 1

b = 1

…

1 2 i = ni-1
(c) Case 2

bb-1

… … …

1 i = nj m i-1j+1
(d) Case 3

Fig. 4. Sketch to illustrate the index notation (a) and the three cases in the DP solution (b-d)

Without a specified budget, the algorithm chooses both k∗ and S∗ by solving Eqn. 14
for k = {1, . . . , N} and then selecting the best one. In that case, we automatically de-
termine which frames and how many are necessary to minimize the combined labeling
and correcting effort.

Note that our approach specifically models the interaction between work done “up
front” when a user labels frames and the work done making corrections after propa-
gation. While requesting too many labeled frames overburdens the annotators, so can
requesting too few—since correction costs are likely to increase in response. Impor-
tantly, our algorithm accounts for this combined tradeoff when making its selection.

A naive approach for optimizing Eqn. 14 would take time O(
(
N
k

)
), since there are

that many subsets of F . However, since the problem exhibits optimal substructure, we
next present a much more efficient polynomial time dynamic programming solution.

Dynamic Programming Solution. Let T (i, b, n) be the optimal value of E(·) for se-
lecting b frames from the first n frames, where i denotes the index of the b-th selected
frame. See Figure 4(a). Note that this value is valid only when b ≥ 1, i ≥ b, n ≥ i;
otherwise, we set it to ∞. We define the following recurrences for computing all other
valid values of T :

Case 1: 1-way → end. n > i

T (i, b, n) = T (i, b, n− 1) + C(i, n).

Since i is the last labeled frame, it will propagate its labels to all frames to its right
(see Fig. 4(b)). Therefore, the optimal cost of propagating to the first n frames is
simply the sum of the optimal cost of propagating to all n− 1 frames, plus the cost
of propagating from frame i to frame n.
Case 2: 1-way → beginning. b = 1 and n = i

T (i, b, n) =

i−1∑

j=1

C(i, j).

Since i is the first frame that is labeled, it propagates its labels to all frames before
it (see Fig. 4(c)).
Case 3: Both ways. b > 1 and n = i

T (i,b, n) =
i−1
min
j=b−1

T (j, b− 1, n− 1)−
i−1∑

m=j+1

C(j,m)

+

i−1∑

m=j+1

min(C(j,m), C(i,m)). (15)



Active Frame Selection for Label Propagation in Videos 505

In this case, we need to consider all possible choices j = {b− 1, . . . , i− 1} for the
index of the (b − 1)-th frame, and select the best in conjunction with frame i. See
Fig. 4(d). The last term reflects that every frame m between i and j obtains its label
from the frame with the smaller error. We subtract the value C(j,m) in the second
term because it was already added in Case 2.

Once T is computed, we obtain the optimal value for a given k as:

E(S∗) = min
i∈{k,...,N}

T (i, k,N), (16)

where i starts at k since the minimum selected index for k total frames is k. We obtain
the selected indices by keeping track of which frame j resulted in the smallest value in
Eqn. 15 for every i, b, and then backtracking from the minimum index.

The time complexity of the procedure is O(N3k), since we need to compute Nk
values in Case 3, where in the worst case each value would require N2 computations.
For N = 1000 our Matlab implementation takes about 6 seconds. We can reduce this
complexity further by keeping the matrix C sparse, by computing values only within
a range of frames. In addition, for very long videos, it would be natural to run our
algorithm on sub-clips found automatically with shot detection or event segmentation.

4 Results

We now demonstrate our approach is an effective way to select frames for labeling. We
consider three Baselines:

– Uniform-f: samples k frames uniformly starting with the first frame, and propa-
gates labels in the forward direction only using our pixel flow method.

– Uniform: samples k frames uniformly and transfers labels in both directions. Each
frame obtains its labels from the closest labeled frame.

– Keyframe: selects k representative frames by performing k-way spectral clustering
on global Gist features extracted for each frame. It requests labels for the frame per
cluster with highest intra-cluster affinity.

We evaluate three variants of our approach; DP-PF: selects k frames using our dynamic
programming (DP) algorithm and propagates labels using our pixel flow approach, DP-
MRF: selects using our DP algorithm and propagates using our MRF-based formu-
lation. DP2-MRF: automatically selects the number of frames and their indices by
minimizing total annotation cost as defined in Eqn. 11.

Datasets. We use four publicly available datasets4: (1) Camseq01: 101 frames of a
moving driving scene. (2) Camvid seq05: first 3000 frames from 0005VD sequence
depicting a driving scene. (3) Labelme 8126: (MVI 8126 from ICCV LabelMeV-
ideo [26]) 167 frames depicting a traffic signal, and (4) Segtrack [18], which consists
of 6 videos. All four are challenging due to camera ego-motion, color overlap between
fg and bg, interframe motion, occluding objects, and deformable shapes.

Ground Truth. Both Camseq01 and Camvid seq05 have labels for each pixel from
one of 32 object classes relevant in a driving environment. Camvid seq05 has ground
truth for only every 30 frames, so for that data we restrict both selection and evaluation

4 Dataset links available at http://vision.cs.utexas.edu/projects/videoseg
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Table 1. Results on Labelme, Camseq, and Camvid datasets. Values are average number of in-
correct pixels (the standard metric in prior work [2,4,6,8,15,18]) over all frames in hundreds of
pixels for our method and the 3 baselines, for varying k values. In all cases, our active approach
outperforms the baselines, and yields significant savings in human annotation time (last row).

Labelme 8126 Camseq01 Camvid seq05
k = 1 5 10 15 1 5 10 15 1 15 30 45 60

E
rr

or

DP-MRF (Ours) 103 43 34 25 305 120 84 75 1017 342 201 136 92
DP-PF (Ours) 109 47 31 27 314 129 90 81 1137 420 283 159 107

Keyframe 119 62 41 30 323 153 113 86 1119 571 390 232 144
Uniform 166 58 35 31 609 132 101 83 1394 506 298 161 127

Uniform-f 166 81 51 41 609 180 120 96 1394 463 254 163 127
Time savings over

133.6 125.3 33.4 41.8 90.9 60.6 85.9 40.4 504.9 599.0 262.4 123.8 173.3
best baseline (mins)

birdfall2 girl cheetah parachute penguin monkeydog
DP-MRF (Ours) 38 491 466 32 728 723

DP-PF (Ours) 50 487 487 45 612 592
Keyframe 36 557 534 42 706 569
Uniform 37 518 581 52 1172 472

Uniform-f 98 2564 802 119 967 787
Time savings over

-1.5 19.5 43.0 6.2 59.1 -75.4
best baseline (secs)

Table 2. Results on the Seg-
track dataset. Values denote
pixel errors when selecting
k = 5 frames for annotation.

to the labeled frames. This also serves to illustrate how we can reduce selection time for
long sequences, since we make C a 100×100matrix rather than its default 3000×3000
(selection time drops from 750 to 0.06 secs). The Segtrack videos have ground truth for
the foreground target object, and thus allow us to demonstrate our method for the case
where there is only one main object of interest.

Since Labelme 8126 lacked ground truth, we manually labeled each frame by seg-
menting the first frame using an interactive toolkit5 This took 2-3 minutes per frame
to correct 2-3% pixel errors, which confirms that even correcting segmentation errors
takes significant effort, a major motivator for this work!

Implementation Details. We compute optical flow using [17]. We resize all images
to 398x530 and choose the 10 most frequent classes for all three videos. All other
classes, which occur in < 0.1% of the pixels, are Background. We use 5 components
for the GMMs over 6-dim features per pixel (r, g, b color plus each channel’s entropy
in a 9 × 9 patch surrounding the pixel). We set β = 1, R = 0.5, and U = 10; we did
not try other values. We set C� to 25 minutes (as reported in [9]) and Cc to 1 minute for
1% pixel error (2000 pixels) based on our labeling experience on LabelMe.

Error Prediction Model. Figure 5(a) compares the propagation errors predicted
by our model on LabelMe to the actual propagation errors incurred by our pixel flow
algorithm if using ground truth segmentations. Each entry in the heat map on top corre-
sponds to C(i, j) =

∑
p P(p, i, j). It shows our error predictions are quite good, hence

our selections based on those predicted errors will reflect the true labeling errors well.
The error matrices reveal low risk around the diagonals, which means that every

frame has a small range of frames on either side of it to which it can propagate its
labels well. Importantly, however, the width of the blue band differs significantly across
the frames, confirming our claim that propagation reliability is not always uniform, as
assumed by existing techniques.

5 http://www.robots.ox.ac.uk/˜vgg/software/iseg/index.shtml

http://www.robots.ox.ac.uk/~vgg/software/iseg/index.shtml
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Fig. 5. (a) Comparison of ground truth label propagation error with the error predicted by our
model (C) for Labelme. Our error predictions follow the actual errors fairly closely. (b) Each
method’s accuracy plotted for all frames, for two values of k per sequence. Accuracy values are
sorted from high to low per method for clarity. Our DP approaches (darker blue curves) have
higher accuracy, esp. on frames far away from labeled frames. Best viewed on pdf.

Fixed Size Selections. Table 1 reports the label errors for the first three datasets and
all methods, for multiple choices of k (number of labeled frames). As expected, for
all methods, error decreases for larger values of k since more effort helps in general.
However, our active selection approach (top two rows) outperforms all baselines for
all values of k and all videos. Table 2 reports the pixel error on the Segtrack dataset
when five frames are selected for annotation. Again our active approach improves over
the baselines on a majority of videos. The magnitude of errors and gains on Segtrack
are necessarily smaller, since those videos are much shorter than the other datasets and
contain only one foreground object. We focus the remaining analysis on the longer
multi-object datasets accordingly.

A difference of 20 in Table 1 denotes 2000 incorrect pixels, which would require 1
minute per frame to fix. The last rows of the Tables 1 and 2 shows our method’s savings
relative to the best baseline per test using this conversion. This clearly shows that active
frame selection is crucial to most efficiently use annotator time for video data.

This savings estimate assumes that the cost of correcting errors is proportional to the
number of mislabeled pixels. While a simple model of cost, we find it is realistic in prac-
tice for these datasets. Most of the errors occur near object boundaries; thus, using the
interactive segmentation tool, after a couple initial broad strokes, most time is spent cor-
recting the near-boundary errors. In addition, even when refining the error metric to count
only pixels close to the segmentation boundary (up to 20 pixels away), we obtain similar
relativeoutcomes,with ourDP-PFand DP-MRFapproachesoutperforming thebaselines.

Figure 5(b) reports accuracy across all frames for the driving datasets. DP-MRF out-
performs our basic pixel flow technique, showing the inclusion of an appearance model
and smoothness terms reduces propagation errors due to occlusion, drift, and incorrect
flow. Keyframe performs poorly compared to our approach, and, surprisingly, is weaker
than Uniform for larger k values. This shows that picking representative frames does
not correctly model how well new labels may influence the rest; our approach specifi-
cally models this “trackability” and therefore makes better selections.

Uniform selection with two-way propagation is typically better than Uniform-f, in-
dicating that tracking pixels and transferring labels in both directions is valuable. How-
ever, on Camvid seq05, two-way is worse. This is because the sequence is taken from a
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(b)

Fig. 6. (a) Total human annotation time required to label each sequence, as a function of selections
made per method. Darker lines are ours. Our method reduces effort better than the baselines, and
can also predict the optimal number of frames to have labeled (see DP2-MRF diamonds). (b)
Frames selected by our approach.

car moving forward, and labels are sampled every 30 frames, and so most points tracked
in the forward direction move out of the frame. Uniform performs better than our ap-
proaches on the monkeydog sequence in Segtrack. This particular sequence is fairly
challenging for optical flow computation due to fast movements and indistinctive, low
resolution features on the foreground object, which affects our cost matrix.

Figure 6(b) shows the frames selected by our approach for k = 7 on the Camseq01
sequence. We see our approach selects non-uniformly spaced frames so that they con-
tain high resolution information of most of the objects that occur in the video (the two
cars, bicyclists, pedestrians).

Minimizing Total Annotation Cost. Figure 6(a) shows the total time (kC� + ECc)
each method requires to annotate each video sequence, as a function of k. As k in-
creases, error reduces (decreasing ECc), but the kC� term increases. For all methods,
the total annotation time has a sweet spot (reflected by the dip and then slow climb
in the curves vs. k) where the combined effort cost is minimized. Again, our methods
require lower total effort on all videos.

This also shows how our DP2-MRF variant can automatically predict the optimal
number of frames to get labeled (k = 8, 9, 55 for these sequences), which is close to the
actual minimum. Labeling all frames would require 4175, 2525, 2475 min. for each
video, whereas our DP2-MRF’s intelligent requests brings that down to 449, 633, 1880
min., respectively. This equates to saving up to 90% of annotator effort.

5 Conclusions
We introduced the active multi-frame selection problem. Our approach models expected
label propagation errors, and provides an efficient DP solution to make the optimal
choice. Results show the real impact of our method in using human time for video label-
ing most effectively. This line of work has the potential to greatly enhance video labeling
tasks, which are increasingly of interest for activity recognition and other applications.
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