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Abstract. The appearance of a 3D object depends on both the viewing direc-
tions and illumination conditions. It is proven that all n-pixel images of a con-
vex object with Lambertian surface under variable lighting from infinity form a 
convex polyhedral cone (called illumination cone) in n-dimensional space. This 
paper tries to answer the other half of the question: What is the set of images of 
an object under all viewing directions? A novel image representation is pro-
posed, which transforms any n-pixel image of a 3D object to a vector in a 2n-
dimensional pose space. In such a pose space, we prove that the transformed 
images of a 3D object under all viewing directions form a parametric manifold 
in a 6-dimensional linear subspace. With in-depth rotations along a single axis 
in particular, this manifold is an ellipse. Furthermore, we show that this para-
metric pose manifold of a convex object can be estimated from a few images in 
different poses and used to predict object’s appearances under unseen viewing 
directions. These results immediately suggest a number of approaches to object 
recognition, scene detection, and 3D modelling. Experiments on both synthetic 
data and real images were reported, which demonstrates the validity of the  
proposed representation. 

Keywords: pose manifold, 3D object, in-depth rotations, viewing directions, 
appearance prediction, object rendering. 

1 Introduction 

One of the major tasks of computer vision is to recognize objects through their ap-
pearances. Because the objects are usually 3 dimensional and their images are 2 di-
mensional, their appearances in images vary due to the changes in viewpoints and 
illumination conditions.  

The image changes due to illumination variations have been extensively studied in 
the past two decades. Shashua [13] proved the images of a Lambertian object under 
all possible light source directions form a 3D linear subspace in ݊-dimensional image 
space. Belhumeur and Kriegman [2] pointed out that the image set is actually  
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m-dimensional illumination cone where ݉ is the number of distinct surface normals. 
Basri and Jacobs [1] approximated the illumination cone with a 9-dimensional linear  
subspace with spherical harmonics approximation on light sources. With these en-
couraging results, the images of an object under all possible illumination conditions 
can be predicted and represented by a few base images. Consequently, the recognition 
tasks with illumination variations have been greatly facilitated. 

Similarly, researchers searched for viewpoint (or pose) linear subspaces to simplify 
the pattern recognition problems under viewpoint variations. Because viewpoint and 
pose have the same effect in images of an object, this paper uses them interchangea-
bly. Prince et al. [11] approximated pose variations in image space as non-linear 
transformations. Active appearance models [7] and eigen light fields [9] predicted 
novel appearances of a human face from exemplar appearances based on cross-
identity similarity in human faces. These techniques rely heavily on within-class simi-
larity which are not generalizable and may reduce between-class separability desired 
in recognition tasks. 

Explicit 3D models have been used in the 2D pose-related recognition. Generally, a 
synthesis-and-analysis strategy is applied, which estimates 3D models from 2D input 
image(s). Then pattern recognition is conducted either in 3D space [3] or in 2D image 
space with rendered views [4]. In structure-from-motion (SfM), rigid pose variation is 
modeled as an affine transform in 2D images [15]. Shashua studied the inter-point 
relationships in pose variant images [12]. Ullman and Basri [15] proved that an image 
of a generally rotated 3D point set can be linearly represented by three other views 
with 6 coefficients and 3 constraints. In [8], level sets of motion field on images have 
been studied under perspective projection.  

This paper addresses the fundamental issues of representing objects under varying 
viewing directions. Different from [2, 11] of treating images in n-dimensional image 
space, 2D images are considered as projected 3D points with textures and are trans-
formed into vectors in a 2n-dimensional pose space. We attempt to answer the ques-
tion: What is the set of all images under all poses in Թଶ? Because pose variations at 
most involve a few rotation, translation, and scaling parameters, this set is compact 
and should be able to represent parametrically. Is this set able to be determined by a 
small number of exemplar images? If so, how many images are needed? 

Considering the projected point sets of an object with ݊ points as a 2n-D point, each 
pair of axes corresponds to a point in the image and the values are its coordinates (x- and 
y-coordinates). This paper proves: 1) Under all in-depth rotations along a fixed axis (e.g., 
y-axis), the images of an object in pose space form an elliptic pose manifold of a 2D pose 
linear subspace. 2) 2 images of a rotated object are enough to determine this pose ellipse, 
given the rotation angle between the two images. 3) Under all possible rotations, the 
images form a parametric pose manifold in a 6D pose linear subspace, whose two 3D 
projections are ellipsoids. We show experimental investigations on both synthetic and 
real data to demonstrate the validity of the proposed manifold representations. 

Different from existing investigations in the fields of structure-from-motion [12, 15] 
and 3D model indexing [6, 10], this paper limits the transformations of an 3D object 
within pure rotations. Though allowance of general affine transformations makes the 
problem a linear problem, it introduces non-linear stretching and shearing which are 
not valid for transforming rigid 3D objects. Pure rigid rotations are a subset of affine 
transformations and are seemingly simpler. However, considering pure rotations only 
involves non-linear transformations due to the fact that 3D rotations form a special 
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rotational group and do not span the full 3 ൈ 3 transformation linear space. We fur-
ther show that under pure rotations, the points on the parametric manifold and the 
projected 2D images have one-to-one correspondences. Furthermore, instead of using 
sparse feature points as in [6, 10, 12, 15], this paper considers any 2D image of a 3D 
object as a dense set of points (or pixels) in the parametric manifold representation. 
Consequently, reconstructing an existing 2D image and rendering a virtual image 
under a novel viewing direction are feasible. 

2 Parametric Pose Manifold 

This section describes the proposed parametric pose manifold representations. We 
make the following assumptions: First, the 3D object has a rigid body and the projec-
tion from 3D to 2D space is orthographical. Second, no point is occluded in any  
images under different viewing directions. Third, only pure rotations about a single 
rotation center are considered and no translation/scaling is involved. All these three 
assumptions will be further discussed in Section 4 with possible solutions and future 
extensions of this paper. 

2.1 3D-2D Pose Linear Subspace 

Let ܣ א Թଷൈ be a matrix where each column of ܣ is 3 coordinates in ݕ ,ݔ, and ݖ 
axes, respectively, and ݊ is the number of points in a 3D object. Let ܴ א Թଷൈଷ be a 
rotation matrix and ܲ א Թଶൈଷ be a projection matrix which projects 3D data onto a 
2D plane. Without loss of generality, we let the image plane be ݕݔ plane. Because 
the projection is orthographical, the projection matrix is  

 ܲ ൌ ቂ1 0 00 1 0ቃ. (1) 

Then the rotation and projection operation can be characterized by a “pose” matrix ܴ′ ൌ ܴܲ א Թଶൈଷ. Let ܤ א Թଶൈ be the matrix of pose ܴ′ mapped points on the 
2D image plane, where each column contains ݔ and ݕ coordinates. Under ortho-

graphical projection, ܤ is given byܤ ൌ  (ݕ or) ݔ It’s shown in [15] that .ܣ′ܴ
coordinates of a 3D object in such a case lie in a 3D linear subspace. Combining the 
two coordinates in the 2݊-dimensional pose space, we have the following proposition. 

Proposition 1. The set ࣜ ൌ ቄܤ|ܤ ൌ ,ܣ′ܴ ′ܴ א Թଶൈଷቅ  forms a 6-dimensional 

linear subspace in the 2݊-dimensional space.                              □ 

This 6-dimensional linear subspace is named as 3D to 2D pose linear subspace of set ܣ and we use ࣦଷଶሺܣሻ to denote it. With Proposition 1, we are able to linearly 
represent any image under an arbitrary viewing direction using at most 6 basis “im-
ages”. These 6 basis “images” can be learned from 3 images of the rotated objects 
which are linearly independent. Pose matrices caused by pure rotations and ortho-
graphical projections do not span the entire 6-dimensional space Թଶൈଷ. Therefore, the 
basis “images” are not necessarily valid images because the 3D object is assumed 
rigid. 

It was argued in [13] that the explicit representations are not necessary, due to the 
existences and allowances of non-rigid transformations which together with pure  
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rotations span the entire 6D space. For rigid objects, however, these non-rigid trans-
formations are not valid and introduce false object representations (images). This paper 
derives this explicit parametric manifold representation and shows the necessity and 
advantages of the representation in image representations and appearance prediction.  

2.2 2D-1D Elliptic Pose Manifold 

Considering a rotation in 3D space, we have ܴ א ܱܵሺ3ሻ  so that ்ܴܴ ൌ ܫ  and |ܴ| ൌ 1. It has 3 degrees of freedom, e.g., the Euler angles ሺ߶, ,ߠ ߰ሻ. Thus the 6 basis 

matrices ܴଵ′, … , ܴ′ above are not all independent and the dimension of pose sub-
space could be further reduced to as low as 3. This subsection starts with 2D rotations 
and 2D-to-1D projection. 3D cases will be discussed in Section 2.4 and 2.5.  

From Proposition 1, we have the following proposition. 

Proposition 2. Given an n-point 2D coordinate matrix ܣ א Թଶൈ, the pose projected 

set ࣜ ൌ ቄܤ|ܤ ൌ ,ܣ′ܴ ′ܴ א Թଶቅ forms a 2-dimensional linear subspace in ݊-

dimensional space.                                                   □ 

Lemma 1. If the two rows of ܣ are orthogonal to each other, ࣜ forms an ellipse in 
the pose linear subspace. 

Proof. Let ࢞ ൌ ሾݔଵ, … , � ሿ andݔ ൌ ሾݕଵ, … ,  ,ܣ ሿ be the first and second rows ofݕ
respectively, and we have ்࢟࢞ ൌ 0.  

Let ܴଵ′ ൌ ሾ1,0ሿ  and ܴଶ′ ൌ ሾ0,1ሿ  be two bases for the pose matrices ሼܴ′|ܴ′ ൌܴܲ, ܴ א ܱܵሺ2ሻ, ܲ ൌ ሾ1,0ሿሽ . Then we have ଵܤ ൌ ܴଵ′ܣ ൌ ,࢞ ଶܤ ൌ ܴଶ′ܣ ൌ ,࢟  and ܤଵܤଶ் ൌ ்࢟࢞ ൌ 0.  Normalizing ܤଵ  and ܤଶ , two orthogonal bases are obtained as ܤଵ ൌ ଶܤ ଵ| andܤ|/ଵܤ ൌ ߠ  .ሻܣଶ| in ࣦଶଵሺܤ|/ଶܤ ܤ ,  is calculated as ܤ ൌ ଵܤ cos ߠ  ଶܤ sin ߠ ൌ |ଵܤ| cos ߠ ଵܤ  |ଶܤ| sin ߠ  .ଶܤ
Projecting ܤ  onto ࣦଶଵሺܣሻ , we get the two coordinates ݒଵ ൌ |ଵܤ| cos ߠ  and ݒଶ ൌ |ଶܤ| sin ܽ Let .ߠ ൌ ,|ଵܤ| ܾ ൌ  ଶ|, so thatܤ|

 
௩భమమ  ௩మమమ ൌ 1. □ (2) Next, we extend it to more general case where the two rows of ܣ are not orthogonal.  

Theorem 1. ࢞, ࢟ א Թ, point set ܣ ൌ ቀ࢟࢞ቁ, ࣜሺܣሻ forms an ellipse in ࣦଶଵሺܣሻ. 

Proof. Let ߙ ൌ ଵଶ atan ଶ࢟࢞࢞࢞ି࢟࢟ ሻߙଵሺ࢛ , ൌ ࢞ cos ߙ  ࢟ sin ߙ ଶ࢛ , ቀߙ  గଶቁ ൌെ࢞ sin ߙ  ࢟ cos ߙ . We have ࢛ଵ࢛ଶ் ൌ 0 . Then, we can select ࢛ෝଵ ൌ |భ࢛|భ࢛  and ࢛ෝଶ ൌ |మ࢛|మ࢛  to be a set of orthogonal bases in ऌ . Projecting an arbitrary point ܤሺߠሻ ൌ ሺ࢞ cos ߠ  ࢟ sin ሻߠ א ࣜ onto these bases results in 

ଵ࢜  ൌ |ෝభ|௨భ࢛ ሾሺ்ݔݔ െ ்ݕݔ tan ሻߙ cos ߠ cos ߙ  ሺ்ݕݕ  ்ݕݔ cot ሻߙ sin ߠ sin  ሿ.  (3)ߙ

Because tan ߙ2 ൌ ଶୡ୭୲ ఈି୲ୟ୬ ఈ ൌ ଶ࢟࢞࢞࢞ି࢟࢟, we have the following equality.  

்ݔݔ  െ ்ݕݔ tan ߙ ൌ ்ݕݕ  ்ݕݔ cot ߙ ൌሶ  ଵ|. (4)ݑ|ܽ
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Then ࢜ଵ ൌ ܽ cosሺߠ െ ሻߙ ෝଵ࢛ . Similarly, we have ࢜ଶ ൌ ܾ sinሺߠ െ ሻߙ ෝଶ, whereܾ࢛ ൌଵ|࢛మ| ሺ்࢞࢞ െ ࢟࢞ cot ,ଵݒሻ, the coordinates ሺܣሻ. On ࣦଶଵሺߙ ଶሻ satisfies Eq. 2.       □ We name this elliptic manifold 2D-1D pose manifold and denote it as ଶࣧଵሺAሻ. ଶࣧଵሺAሻݒ ؿ ࣦଶଵሺAሻ and it’s a planar ellipse.  
2.3 3D-1D Pose Manifold of a 3D Object Rotated along Y-Axis 

Theorem 1 can be extended to a special case of 3D in-depth rotations along a single axis. 
Without loss of generality, it is assumed in this subsection the rotation axis is y-axis. Due 
to orthographical projection, 2D images of such rotated points have the same y-
coordinates. This implies that adding n dimensions of y-coordinates to ࣦଶଵ and forming ࣦଷଶ does not change pose manifold ࣧ. Therefore, we have the following proposition. 

Proposition 3. All images of a 3D object in 2n-dimensional pose space under all in-
depth rotations along a single axis form an elliptic pose manifold.              □ 

Proposition 3 provides a clear answer to the question, what the set of images of an object 
under all in-depth rotations along a single axis is. The set is an elliptic manifold in 2D pose 
linear subspace, which can be expressed using a single parameter, rotation angle ߠ. 

2.4 Pose Manifold of a 3D Object under Arbitrary Rotations 

In this subsection, we develop the ultimate pose manifold which describes the general 
3D rotations of an object. We begin with 3D-1D case. The rotation group ࣬ ൌ ܱܵሺ3ሻ 
is generated by Euler angles ሺ߶, ,ߠ ߰ሻ so that ܴ א ,߶ ,࣬ ,ߠ ߰ א Թ, such that ܴ ൌ ܴ௭ሺ߰ሻܴ௬ሺߠሻܴ௫ሺ߶ሻ where ܴ௭ሺ߰ሻ, ܴ௬ሺߠሻ, ܴ௫ሺ߶ሻ are rotation matrices in terms 
of ݔ, ,ݕ  .axes, respectively ݖ

Lemma 2. If the rows of ܣ are orthogonal to each other, ࣜ forms an ellipsoid pose 
manifold in the pose linear subspace. 

Proof. Let ࢞ ൌ ሾݔଵ, … , ࢟ ,ሿݔ ൌ ሾݕଵ, … , ࢠ ሿ, andݕ ൌ ሾݖଵ, … ,  ሿ be the three rowsݖ
of ܣ, respectively. We have ்࢟࢞ ൌ ்ࢠ࢞ ,0 ൌ 0, and ்ࢠ࢟ ൌ 0.  

Let ܴଵ′ ൌ ሾ1,0, 0ሿ, ܴଶ′ ൌ ሾ0,1, 0ሿ, and ܴଷ′ ൌ ሾ0, 0, 1ሿbe three bases for the pose 

matrices ሼܴ′|ܴ′ ൌ ܴܲ, ܴ א ܱܵሺ3ሻ, ܲ ൌ ሾ1,0, 0ሿሽ . ܴଵ′ , ܴଶ′ , and ܴଷ′  correspond 

to Euler angles ሺ0,0,0ሻ, ቀగଶ , గଶ , 0ቁ and ቀ0, గଶ , 0ቁ, respectively. Then we haveܤଵ ൌܴଵ′ܣ ൌ ,࢞ ଶܤ ൌ ܴଶ′ܣ ൌ ,࢟ ଷܤ ൌ ܴଷ′ܣ ൌ ଶ்ܤଵܤand ࢠ ൌ ଷ்ܤଵܤ ൌ ଷ்ܤଶܤ ൌ 0. 
Normalizing Bଵ, Bଶ , and Bଷ, orthogonal bases are obtained as ܤଵ ൌ ଶܤ ,|ଵܤ|/ଵܤ ൌ ଷܤ ଶ|, andܤ|/ଶܤ ൌ ଷଵܮ ଷ| inܤ|/ଷܤ ሺܣሻ. ሺ߶, ,ߠ ߰ሻ א Թଷ 

ܤ  ൌ |ଵܤ|ଵܤ cos ߰ cos ߠ  ଶ|ሺെܤ|ଶܤ sin ߰ cos ߶  cos ߰ sin ߠ sin ߶ሻ ܤଷ|ܤଷ|ሺsin ߰ sin ߶  cos ߰ sin ߠ cos ߶ሻ (5) 
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Projecting ܤ onto ࣦଷଵሺܣሻ, we get three coordinates as follows. 

 ቐݒଵ ൌ |ଵܤ| cos ߰ cos ଶݒ                                           ߠ ൌ ଶ|ሺെܤ| sin ߰ cos ߶  cos ߰ sin ߠ sin ߶ሻݒଷ ൌ ଷ|ሺsinܤ| ߰ sin ߶  cos ߰ sin ߠ cos ߶ሻ    . (6) 

Let ܽ ൌ ,|ଵܤ| ܾ ൌ ܿ ଶ|, andܤ| ൌ  ଷ|, so thatܤ|

 
௩భమమ  ௩మమమ  ௩యమమ ൌ 1. □ (7) 

Fig. 1 shows an ellipsoid pose manifold of a 3D sphere under all 3D rotations includ-
ing rolls, yaws, and tilts. We randomly sampled the points on the sphere, which 
makes்࢞࢞ ് ்࢟࢟ ്  According to Lemma 2, the three semi-axes have different .்ࢠࢠ
lengths, i.e. ܽ ് ܾ ് ܿ. Therefore, this manifold is not spherical.  

Now we extend this knowledge to 3D rotation and 2D projection. Because each 
image is represented by a 2݊-dimensional vector, a set of bases can be chosen as  

ଵܤ  ൌ ሺ௫,ሻ|௫| , ଶܤ ൌ ሺ௬,ሻ|௬| , ଷܤ ൌ ሺ௭,ሻ|௭| , ସܤ ൌ ሺ,௫ሻ|௫| , ହܤ ൌ ሺ,௬ሻ|௬| , ܤ ൌ ሺ,௭ሻ|௭| . (8) 

Apparently, ܤ ٣ ,ܤ ݅ ് ݆ and they are bases of ࣦଷଶ ሺܣሻ. Projecting ܤሺ߶, ,ߠ ߰ሻ 
onto each basis respectively, we get six coordinates in the pose linear subspace. Simi-
lar to the 3D-1D case, we can get two ellipsoid expressions as 

 ቐ௩భమమ  ௩మమమ  ௩యమమ ൌ 1௩రమమ  ௩ఱమమ  ௩లమమ ൌ 1. (9) 

 

Fig. 1. 3D-1D pose manifold of a sphere with all rotations ܴ א ܱܵሺ3ሻand a projection ܲ ൌሾ1,0,0ሿ. The manifold is a 3D ellipsoid (not a sphere), because the sampling method on the 
sphere shape is not even.  

Theorem 2. If the rows of ܣ are orthogonal to each other, all images of a 3D object 
in 2n-dimensional pose space under all rotations form a pose manifold in a 6D linear 
pose subspace described by Eq. 9.                                       □ 
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If the point set doesn’t have the orthogonal property, we use a strategy similar to the 
proof of Theorem 2 and rotate the point set a specific angle so that it satisfies the or-
thogonal requirement. It’s not difficult to obtain the rotation matrix ܴ ൌ ܴ௭ሺ߰ሻܴ௬ሺߠሻܴ௫ሺ߶ሻ, where  

 ߶ ൌ ଵଶ atan ଶ௬௭௬௬ି௭௭ , ߠ ൌ ଵଶ atan ଶ௫௭௫௫ି௭௭ , ߰ ൌ ଵଶ atan ଶ௫௬௫௫ି௬௬. (10) 

Denote the rotated point set as ቄݔ′, ,′ݕ ቅ்′ݖ
, such that ቄݔ′, ,′ݕ ቅ்′ݖ ൌܴሼݔ, ,ݕ ,′ݔሽ். According to Theorem 2, all images of rotated ቄݖ ′ݕ , ቅ்′ݖ

 form the 

pose manifold described by Eq. 9. The original point set ሼݔ, ,ݕ  ሽ் can be seen as oneݖ

image of rotated ቄݔ′, ,′ݕ ቅ்′ݖ
. Therefore, the general case of non-orthogonal point 

set is proven and can be stated as follows. 

Proposition 4. All images of a 3D object in 2n-dimensional pose space under all 
rotations form a parametric pose manifold described by Eq. 9.                 □ 

Because this manifold is a geometric structure existed in a 6D pose linear subspace, it 
is difficult to visualize it in 3D space. It is also difficult to use 3D senses to imagine 
this 6D geometry. To help readers to imagine this pose manifold, we show in Fig. 2 a 
few 3D projections of it from different projecting directions. Also, it has a similar but 
higher dimensional geometry of the following structure. Consider two identical cy-

linders along x- and y-axes, respectively, which are expressed as 
௬మమ  ௭మమ ൌ 1and ௫మమ  ௭మమ ൌ 1. The intersection of them is two ellipses in 3D space, which has a similar 

but low-dimensional structure to the pose manifold described by Eq. 9. 
 

 

Fig. 2. 4 different 3D projections of the 6D pose manifold described by Eq. 9. Similar to a 3D 
object (a cylinder) forming different 2D projections (circles, rectangles, etc.) along different 
projecting directions, it forms different 3D projections in different projecting directions. 
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3 Experiments  

We demonstrate the proposed pose manifold concepts using experiments on both 
synthetic and real images. In the first experiment, a 3D face scan from the USF Hu-
man ID database was used to synthesize the two input point sets with texture informa-
tion tagged on them. The 3D rotation angle along ݕ-axis is 10ל between the two 
inputs. Fig. 3 shows these two rendered projections with textures for learning the pose 
manifold. Note that they are not 3D rendering, but 2D textured point clouds. From 
now on, no 3D face models are involved. We denote the two textured point clouds as ଵ ൌ ቄݔଵଵ, … , ,ଵଵݕଵݔ … , ଵ࢚ ,ଵቅݕ ൌ ൝ ,ଵଵݎ … , ,ଵܾଵଵݎ … , ܾଵ݃ଵଵ, … , ݃ଵൡ, and ଶ ൌ ቄݔଶଵ, … , ,ଶଵݕଶݔ … , ଶ࢚ ,ଶቅݕ ൌ  ଵ ଵ, where࢚

and ଶ are 2D point locations and ࢚ଵ and ࢚ଶ are RGB texture information.  

An orthogonal bases are established as ࢙ଵ ൌ ଶ࢙ భ|and࢞|భ࢞ ൌ భหwhich spans ࣦଷଶ࢙భ࢙మ࢞మି࢞భห࢙భ࢙మ࢞మି࢞ . Projecting ࢞ଵ  and ࢞ଶ  onto ࢙ଵ and ࢙ଶ , we get ࢞ଵ ൌ ଵ࢙ଵݑ  and ࢞ଶ ൌ ଵ࢙ଶݑ ݒଶ࢙ଶ. Due to Theorem 2, ߙ א ቂ0, గଶቃ , ܽ  0, ܾ  0, such that  

 ൞ ଵݑ cos ߙ ൌ ܽ cos ଵݑߠ sin ߙ ൌ ܾ sin ଶݑߠ cos ߙ െ ଶݒ sin ߙ ൌ ܽ cosሺߠ  Δߠሻݑଵ sin ߙ  ଶݒ cos ߙ ൌ ܾ sinሺߠ  Δߠሻ   , (11) 

where Δߠ is the rotation angle between the two images ቀΔߠ ൌ గଵ଼ቁ. Solving these 

equations, we get ߙ ൌ atan ቀ ௨భ ୡ୭ୱ ఏ௩మ ୡ୭ୱሺఏାఏሻ െ ௨మ௩మቁ.  
The textured point sets are shown in Fig. 3(a) and the two basis images (࢙ܽଵand ܾ࢙ଶ) are shown in Fig. 3(b). The semi-axes are multiplied to make the aspect ratios of 

basis images “correct”. Then the manifold on 2D plane ࣦଷଶ is plotted in Fig. 4, with 
the two input point sets marked “■”. Then any point on ଷࣧଶ forms a rotated image 
and a few examples are synthesized in Fig. 5. 

 

   
(a)                                          (b) 

Fig. 3. Pose manifold concepts on synthetic face data. (a) 2D projections of 3D rotated texture 
points along ݕ-axis as inputs. (b) The two basis images ሺ࢙ଵ,  ଶሻ obtained from the data of (a)࢙
which spans ܮଷଶ . 
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Fig. 4. The elliptic pose manifold ଷࣧଶ on ࣦଷଶ spanned by ࢙ଵ and ࢙ଶ as shown in Fig. 3(b). 
The two inputs are marked as ■. 

     

     

Fig. 5. A few synthesized example images from the pose manifold shown in Fig. 4 

A 3D-2D pose manifold was built in Experiment 2 from three views of a fish mod-
el as shown in Fig. 6. Fig. 6(a) is an exact side view along z-axis, while Fig. 6(b) and 
6(c) are the side views slightly rotated along y-axis and x-axis, respectively. From 
Proposition 4, two ellipsoids are estimated using the first 3 principal components and 
the 4-6 principal components, respectively. They are shown in Fig. 7. The input im-
ages and the synthesized images are marked as red and blue spheres, respectively.  

Because the 3D-2D pose manifold is a 3D geometry in a 6D linear subspace, nei-
ther of the two projections (Fig. 7a and 7b) uniquely represents all possible rotations 
(or viewing directions). Some rotations might merge into one point on one of the pro-
jected ellipsoids. For instance, input images shown in Fig. 6(a) and 6(c) merge into 
the lower blue sphere in Fig. 7(a), and input images in Fig. 6(a) and 6(b) merge into 
the upper blue sphere in Fig. 7(b).  

Taking a point on the manifold (red sphere on Fig. 7), a virtual rotated image of the 
fish model can be synthesized. A few examples are shown in Fig. 8. Note that the 
synthesized views are all from unseen angles and no actual 3D model is involved.  
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                 (a)                          (b)                          (c) 

Fig. 6. Original fish images for estimating the pose manifold. (a) Exact side view, (b) side view 
rotated along y-axis by 20ל, and (c) side view rotated along x-axis by 20ל. 

 

 
(a)      (b) 

Fig. 7. Pose manifold estimated from the 3 images ( ) shown in Fig. 6. The pose manifold is a 
3D surface in a 6D linear subspace. (a) is its projection in the first 3 dimensions, and (b) is its 
projection in the 4th-6th dimensions. Combining (a) and (b) forms the entire parametric mani-
fold. The rendered images shown in Fig. 8 are marked as .  

 

 

 

 

Fig. 8. Synthesized images with simulated 3D rotations from the pose manifold shown in  
Fig. 7. The rotations are 20ל apart in tilt and yaw. 
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4.1 Translation and Scaling 

This paper deals primarily with rotations, while translation and scaling also constitute 
viewpoint changes (e.g., panning and zooming). Similar to rotation, a small number of 
parameters are required to describe translation (3 parameters) and scaling (1 parameter) 
in 3D space. Therefore, images under such transformations also form lower dimensional 
parametric manifold. It is one of our future works in developing a rotation, translation 
and scaling manifold theory. An alternative is to normalize the images under translation 
and scaling and they are easier to “correct” in 2D image plane than rotation.  

4.2 Perspective Projection 

Orthographical projection is assumed throughout this paper. For objects located far 
from cameras, it’s a good approximation. Perspective or other projections can be han-
dled in a similar way. It has a different form of projection matrix. In the future, we 
plan to extend this pose manifold concept to include perspective projection, which is 
good at representing near-camera objects. 

4.3 Occlusion 

In-depth rotations of a 3D object inevitably involve occlusions. Occluded pixels may 
cause the proposed pose manifold representation inconsistent dimensions of pose 
spaces of different images. Visible parts of the object in all input images can be cho-
sen and the findings in this paper hold for any subset of the object. Restricting the 3D 
objects to be convex objects can alleviate the occlusion problem. In the future, we 
may group the input images into adjacent sets and estimate a “partial” pose manifold 
from each set. Then a “composite” pose manifold may be combined.  

4.4 Correspondence 

A dense correspondence is needed to estimate the pose manifold. In this paper, a 
sparse set of correspondence was manually marked and the dense correspondence was 
established by a TPS warping. Existing stereo matching algorithms can be a good 
option for such tasks. In turn, the findings of this paper may serve as a regularization 
term for stereo algorithms.  

4.5 Relation to 3D modeling 

All the operations reported in this paper are confined in 2D image planes, except syn-
thesizing input data which involved 3D rotations. It is interesting to investigate its 
relationships to 3D modeling using stereo algorithms. The findings of this paper can 
be seen as a 2D representation of 3D rotations without explicit 3D models. The mani-
fold constraints can be used to prune the corresponding points established using stereo 
matching techniques. Avoiding explicit 3D operations may also reduce computational 
complexity of the tasks. 
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4.6 Illumination 

Beside viewpoint variations, illumination variations also affect the appearances of an 
object greatly. The illumination linear subspaces and manifolds were better established 
than pose (refer to [1, 2, 10]). In the future, we plan to combine these two subspace theo-
ries to include both illumination and pose variations in the proposed representations. 

References 

[1] Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern 
Anal. Mach. Intell. 25(2), 218–233 (2003) 

[2] Belhumeur, P.N., Kriegman, D.J.: What is the set of images of an object under all possible 
illumination conditions. Int. J. Comput. Vis. 28(3), 245–260 (1998) 

[3] Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE 
Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003) 

[4] Blanz, V., Grother, P., Phillips, P.J., Vetter, T.: Face recognition based on frontal views 
generated from non-frontal images. In: Proc. IEEE Conf. CVPR (2005) 

[5] Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deforma-
tions. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989) 

[6] Caglioti, V.: On the space requirements of indexing 3D models from 2D perspective im-
ages. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 718–
723 (2000) 

[7] Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern 
Anal. Mach. Intell. 23(6), 681–685 (2001) 

[8] Fermuller, C., Aloimonos, Y.: On the Geometry of Visual Correspondence. Int. J. Comput. 
Vis. 21(3), 223–247 (1997) 

[9] Gross, R., Matthews, I., Baker, S.: Appearance-based face recognition and light-fields. 
IEEE Trans. Pattern Anal. Mach. Intell. 26(4), 449–465 (2004) 

[10] Jacobs, D.: The space requirements of indexing under perspective projections. IEEE Trans. 
Pattern Anal. Mach. Intell. 18(3) (1996) 

[11] Prince, S.J.D., Warrell, J., Elder, J.H., Felisberti, F.M.: Tied Factor Analysis for Face Rec-
ognition across Large Pose Differences. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 
970–984 (2008) 

[12] Shashua, A.: Geometry and Photometry in 3D Visual Recognition. Ph.D. MIT (1992) 
[13] Shashua, A.: On photometric issues in 3D visual recognition from a single 2D image. Int. 

J. Comput. Vis. 21(1-2), 99–122 (1997) 
[14] Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE 

Trans. Pattern Anal. Mach. Intell. 25(12), 1615–1618 (2003) 
[15] Ullman, S., Basri, R.: Recognition by Linear Combinations of Models. IEEE Trans. Pat-

tern Anal. Mach. Intell. 13(10), 992–1006 (1991) 
 


	Parametric Manifold of an Object under Different Viewing Directions
	Introduction
	Parametric Pose Manifold
	3D-2D Pose Linear Subspace
	2D-1D Elliptic Pose Manifold
	Pose Manifold of a 3D Object under Arbitrary Rotations

	Experiments
	Conclusions and Discussions
	Translation and Scaling
	Perspective Projection
	Occlusion
	Correspondence
	Relation to 3D modeling
	Illumination

	References




