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Abstract. The appearance of a 3D object depends on both the viewing direc-
tions and illumination conditions. It is proven that all n-pixel images of a con-
vex object with Lambertian surface under variable lighting from infinity form a
convex polyhedral cone (called illumination cone) in n-dimensional space. This
paper tries to answer the other half of the question: What is the set of images of
an object under all viewing directions? A novel image representation is pro-
posed, which transforms any n-pixel image of a 3D object to a vector in a 2n-
dimensional pose space. In such a pose space, we prove that the transformed
images of a 3D object under all viewing directions form a parametric manifold
in a 6-dimensional linear subspace. With in-depth rotations along a single axis
in particular, this manifold is an ellipse. Furthermore, we show that this para-
metric pose manifold of a convex object can be estimated from a few images in
different poses and used to predict object’s appearances under unseen viewing
directions. These results immediately suggest a number of approaches to object
recognition, scene detection, and 3D modelling. Experiments on both synthetic
data and real images were reported, which demonstrates the validity of the
proposed representation.

Keywords: pose manifold, 3D object, in-depth rotations, viewing directions,
appearance prediction, object rendering.

1 Introduction

One of the major tasks of computer vision is to recognize objects through their ap-
pearances. Because the objects are usually 3 dimensional and their images are 2 di-
mensional, their appearances in images vary due to the changes in viewpoints and
illumination conditions.

The image changes due to illumination variations have been extensively studied in
the past two decades. Shashua [13] proved the images of a Lambertian object under
all possible light source directions form a 3D linear subspace in n-dimensional image
space. Belhumeur and Kriegman [2] pointed out that the image set is actually
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m-dimensional illumination cone where m is the number of distinct surface normals.
Basri and Jacobs [1] approximated the illumination cone with a 9-dimensional linear
subspace with spherical harmonics approximation on light sources. With these en-
couraging results, the images of an object under all possible illumination conditions
can be predicted and represented by a few base images. Consequently, the recognition
tasks with illumination variations have been greatly facilitated.

Similarly, researchers searched for viewpoint (or pose) linear subspaces to simplify
the pattern recognition problems under viewpoint variations. Because viewpoint and
pose have the same effect in images of an object, this paper uses them interchangea-
bly. Prince et al. [11] approximated pose variations in image space as non-linear
transformations. Active appearance models [7] and eigen light fields [9] predicted
novel appearances of a human face from exemplar appearances based on cross-
identity similarity in human faces. These techniques rely heavily on within-class simi-
larity which are not generalizable and may reduce between-class separability desired
in recognition tasks.

Explicit 3D models have been used in the 2D pose-related recognition. Generally, a
synthesis-and-analysis strategy is applied, which estimates 3D models from 2D input
image(s). Then pattern recognition is conducted either in 3D space [3] or in 2D image
space with rendered views [4]. In structure-from-motion (SfM), rigid pose variation is
modeled as an affine transform in 2D images [15]. Shashua studied the inter-point
relationships in pose variant images [12]. Ullman and Basri [15] proved that an image
of a generally rotated 3D point set can be linearly represented by three other views
with 6 coefficients and 3 constraints. In [8], level sets of motion field on images have
been studied under perspective projection.

This paper addresses the fundamental issues of representing objects under varying
viewing directions. Different from [2, 11] of treating images in n-dimensional image
space, 2D images are considered as projected 3D points with textures and are trans-
formed into vectors in a 2n-dimensional pose space. We attempt to answer the ques-
tion: What is the set of all images under all poses in R?"? Because pose variations at
most involve a few rotation, translation, and scaling parameters, this set is compact
and should be able to represent parametrically. Is this set able to be determined by a
small number of exemplar images? If so, how many images are needed?

Considering the projected point sets of an object with n points as a 2n-D point, each
pair of axes corresponds to a point in the image and the values are its coordinates (x- and
y-coordinates). This paper proves: 1) Under all in-depth rotations along a fixed axis (e.g.,
y-axis), the images of an object in pose space form an elliptic pose manifold of a 2D pose
linear subspace. 2) 2 images of a rotated object are enough to determine this pose ellipse,
given the rotation angle between the two images. 3) Under all possible rotations, the
images form a parametric pose manifold in a 6D pose linear subspace, whose two 3D
projections are ellipsoids. We show experimental investigations on both synthetic and
real data to demonstrate the validity of the proposed manifold representations.

Different from existing investigations in the fields of structure-from-motion [12, 15]
and 3D model indexing [6, 10], this paper limits the transformations of an 3D object
within pure rotations. Though allowance of general affine transformations makes the
problem a linear problem, it introduces non-linear stretching and shearing which are
not valid for transforming rigid 3D objects. Pure rigid rotations are a subset of affine
transformations and are seemingly simpler. However, considering pure rotations only
involves non-linear transformations due to the fact that 3D rotations form a special
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rotational group and do not span the full 3 X 3 transformation linear space. We fur-
ther show that under pure rotations, the points on the parametric manifold and the
projected 2D images have one-to-one correspondences. Furthermore, instead of using
sparse feature points as in [6, 10, 12, 15], this paper considers any 2D image of a 3D
object as a dense set of points (or pixels) in the parametric manifold representation.
Consequently, reconstructing an existing 2D image and rendering a virtual image
under a novel viewing direction are feasible.

2 Parametric Pose Manifold

This section describes the proposed parametric pose manifold representations. We
make the following assumptions: First, the 3D object has a rigid body and the projec-
tion from 3D to 2D space is orthographical. Second, no point is occluded in any
images under different viewing directions. Third, only pure rotations about a single
rotation center are considered and no translation/scaling is involved. All these three
assumptions will be further discussed in Section 4 with possible solutions and future
extensions of this paper.

2.1  3D-2D Pose Linear Subspace

Let A € R3™ be a matrix where each column of A is 3 coordinates in x, y, and z
axes, respectively, and n is the number of points in a 3D object. Let R € R3*3 be a
rotation matrix and P € R?*3 be a projection matrix which projects 3D data onto a
2D plane. Without loss of generality, we let the image plane be xy plane. Because
the projection is orthographical, the projection matrix is

0 0

. 1
1 0 (D
Then the rotation and projection operation can be characterized by a “pose” matrix

R’ = PR € R¥3. Let B € R¥" be the matrix of pose R mapped points on the
2D image plane, where each column contains x and y coordinates. Under ortho-

P:[(l)

graphical projection, B is givenbyB = R A. It’s shown in [15] that x (or y)
coordinates of a 3D object in such a case lie in a 3D linear subspace. Combining the
two coordinates in the 2n-dimensional pose space, we have the following proposition.

Proposition 1. The set B = {B|B =R AVR € R2X3} forms a 6-dimensional

linear subspace in the 2n-dimensional space. L

This 6-dimensional linear subspace is named as 3D to 2D pose linear subspace of set
A and we use L%(A) to denote it. With Proposition 1, we are able to linearly
represent any image under an arbitrary viewing direction using at most 6 basis “im-
ages”. These 6 basis “images” can be learned from 3 images of the rotated objects
which are linearly independent. Pose matrices caused by pure rotations and ortho-
graphical projections do not span the entire 6-dimensional space R?*3. Therefore, the
basis “images” are not necessarily valid images because the 3D object is assumed
rigid.

It was argued in [13] that the explicit representations are not necessary, due to the
existences and allowances of non-rigid transformations which together with pure
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rotations span the entire 6D space. For rigid objects, however, these non-rigid trans-
formations are not valid and introduce false object representations (images). This paper
derives this explicit parametric manifold representation and shows the necessity and
advantages of the representation in image representations and appearance prediction.

2.2 2D-1D Elliptic Pose Manifold

Considering a rotation in 3D space, we have R € SO(3) so that RTR =1 and
|R| = 1. It has 3 degrees of freedom, e.g., the Euler angles (¢, 8,v). Thus the 6 basis
matrices Rll , ...,Rﬁl above are not all independent and the dimension of pose sub-
space could be further reduced to as low as 3. This subsection starts with 2D rotations

and 2D-to-1D projection. 3D cases will be discussed in Section 2.4 and 2.5.
From Proposition 1, we have the following proposition.

Proposition 2. Given an n-point 2D coordinate matrix A € R?*™ the pose projected
set B = {B|B =R AVR € ]RZ} forms a 2-dimensional linear subspace in n-
dimensional space. Ul
Lemma 1. If the two rows of A are orthogonal to each other, B forms an ellipse in

the pose linear subspace.

Proof. Let x = [xq,...,x,] and = [y, ..., ] be the first and second rows of A,
respectively, and we have xy” = 0.

Let Rll =[1,0] and RZ’ =[0,1] be two bases for the pose matrices {R' |R =

PR,R €50(2),P =[1,0]} . Then we have By =R, A=x,B,=R, A=y, and
B;Bf = xy" = 0. Normalizing B; and B,, two orthogonal bases are obtained as
By = By/|By| and B, = B,/|B,| in L3(A). R R

VO, B is calculated as B = B;cos8 + B,sin@ = |B;|cos 6 B, + |B,|sin 6 B,.
Projecting B onto L3(A), we get the two coordinates v; = |B;|cos@ and
v, = |B,|sin 6. Let a = |B,|,b = |B,|, so that

v v
a_:;+b_22=1'u 2)

Next, we extend it to more general case where the two rows of A are not orthogonal.

Theorem 1. Vx,y € R", point set A = (;), B(A) forms an ellipse in L1(A).
Proof. Let a= éatan xszx_y;yT , uw(a) =xcosa+ysina , u, (a + g) =
—xsina+ycosa. We have u;ul = 0. Then, we can select #i; = l:ﬁ and
u, = IZ% to be a set of orthogonal bases in B. Projecting an arbitrary point
B(6) = (xcos 8 + ysin6) € B onto these bases results in
v, = % [(xxT —xyTtana) cosB cosa + (yyT + xyT cota)sinfsina]. (3)
2 _ 2xyT

Because tan2a = —, we have the following equality.

cota—tana  xxT—yy

xxT — xyTtana = yyT + xy" cota = alu|. “4)
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Then v; = acos(f — a) U,. Similarly, we have v, = bsin(6 — a) U,, whereb =
—_(xxT — xycota). On L1(A), the coordinates (v;,v,) satisfies Eq. 2. O

[uz|
We name this elliptic manifold 2D-1D pose manifold and denote it as M7 (A).
M1(A) c L1(A) andit’s a planar ellipse.

2.3  3D-1D Pose Manifold of a 3D Object Rotated along Y-Axis

Theorem 1 can be extended to a special case of 3D in-depth rotations along a single axis.
Without loss of generality, it is assumed in this subsection the rotation axis is y-axis. Due
to orthographical projection, 2D images of such rotated points have the same y-
coordinates. This implies that adding n dimensions of y-coordinates to £3 and forming
L2 does not change pose manifold M . Therefore, we have the following proposition.

Proposition 3. All images of a 3D object in 2n-dimensional pose space under all in-
depth rotations along a single axis form an elliptic pose manifold. |

Proposition 3 provides a clear answer to the question, what the set of images of an object
under all in-depth rotations along a single axis is. The set is an elliptic manifold in 2D pose
linear subspace, which can be expressed using a single parameter, rotation angle 6.

2.4  Pose Manifold of a 3D Object under Arbitrary Rotations

In this subsection, we develop the ultimate pose manifold which describes the general
3D rotations of an object. We begin with 3D-1D case. The rotation group R = SO0 (3)
is generated by Euler angles (¢, 8,1) so that VR € R, 3¢,0,¢ € R, such that
R =R,(¥)R,(6)R,(p) where R,(¥),R,(6),R,(¢p) are rotation matrices in terms

of x,y,z axes, respectively.

Lemma 2. If the rows of A are orthogonal to each other, B forms an ellipsoid pose
manifold in the pose linear subspace.

Proof. Let x = [x1, ..., x,], ¥ = [V1, ..., Vnl, and z = [z,, ..., Zz,] be the three rows
of A, respectively. We have xy” =0, xz" = 0, and yz' = 0.

Let R, =[1,0,0], R, =[0,1,0], and R, = [0,0,1]be three bases for the pose
matrices {R' |R" = PR,R € SO(3),P = [1,0,0]}. R, , R, .

to Euler angles (0,0,0), (g,g,O) and (O,S,O), respectively. Then we haveB; =

and R; correspond

R, A=x,B,=R,A=y,B; =R, A=zandB,B} = BB} = B,B] = 0.
Normalizing B;, B,, and Bj, orthogonal bases are obtained as B; = B;/|B,]|,
B, = B,/|B,|. and B; = B3/|B;]| in L3(A). v(¢,6,9) € R

B = B,|B;| cosy cos 8 + B,|B,|(— siny cos ¢ + cosip sin @ sin ¢)
+B;|B;|(sin sin ¢ + cos sin 6 cos ¢) 5)
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Projecting B onto L1(A), we get three coordinates as follows.

v, = |B;| cosy cos 8
v, = |B,|(—siny cos ¢ + cosy sin 6 sin ¢p). (6)
v3 = |B3|(sin sin ¢ + cos 1 sin 6 cos ¢p)

Let a = |B,|,b = |B,|, and ¢ = |Bs|, so that

v:  vi  vE
Stata=10 (7

Fig. 1 shows an ellipsoid pose manifold of a 3D sphere under all 3D rotations includ-
ing rolls, yaws, and tilts. We randomly sampled the points on the sphere, which
makesxx” # yyT # zzT. According to Lemma 2, the three semi-axes have different
lengths, i.e. a # b # c. Therefore, this manifold is not spherical.
Now we extend this knowledge to 3D rotation and 2D projection. Because each
image is represented by a 2n-dimensional vector, a set of bases can be chosen as
A _@x0) 5 _ 00 5 _@z0 5 _0x) 5 0y 5 _ (02
Bl_w' Z_W' 3_W' 4—_W' S_W' G_W' (8)
Apparently, B; L B;,Vi # j and they are bases of L3 (A). Projecting B(¢,6,)
onto each basis respectively, we get six coordinates in the pose linear subspace. Simi-
lar to the 3D-1D case, we can get two ellipsoid expressions as

2 2 2
vi ,v2 , U3
—2+—2+—2=1
a b c

€))

2 2 2 "
Ta gV % _ 4
a2 b2 2

3rd principal component

-3
2

sy, )
Prig, 1

Ly
"!nm‘"m

Fig. 1. 3D-1D pose manifold of a sphere with all rotationsR € SO(3)and a projection P =
[1,0,0]. The manifold is a 3D ellipsoid (not a sphere), because the sampling method on the
sphere shape is not even.

Theorem 2. If the rows of A are orthogonal to each other, all images of a 3D object
in 2n-dimensional pose space under all rotations form a pose manifold in a 6D linear
pose subspace described by Eq. 9. |
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If the point set doesn’t have the orthogonal property, we use a strategy similar to the
proof of Theorem 2 and rotate the point set a specific angle so that it satisfies the or-
thogonal requirement. It’s not difficult to obtain the rotation matrix

Ry = Rz(lpO)Ry(QO)Rx(d)O)’ where

2xzT nyT

1 1
= -atan———, 0, = —atan———— = —atan
Po -2z 07 xxT—zzT’ Yo 2

(10)

xxT—yyT

4 / 4 T / 4 / T
Denote the rotated point set as {x YV . Z } , such that {x YV ,Z } =

, , Y
Ro{x,y,2}T. According to Theorem 2, all images of rotated {x YV ,Z } form the

pose manifold described by Eq. 9. The original point set {x,y,z}" can be seen as one
’ 7’ ’ T
image of rotated {x Y . Z } . Therefore, the general case of non-orthogonal point

set is proven and can be stated as follows.

Proposition 4. All images of a 3D object in 2n-dimensional pose space under all
rotations form a parametric pose manifold described by Eq. 9. L

Because this manifold is a geometric structure existed in a 6D pose linear subspace, it
is difficult to visualize it in 3D space. It is also difficult to use 3D senses to imagine
this 6D geometry. To help readers to imagine this pose manifold, we show in Fig. 2 a
few 3D projections of it from different projecting directions. Also, it has a similar but
higher dimensional geometry of the following structure. Consider two identical cy-

= land

2 2

linders along x- and y-axes, respectively, which are expressed as Z—z + Z—z
2

Z_Z + Z_Z = 1. The intersection of them is two ellipses in 3D space, which has a similar

but low-dimensional structure to the pose manifold described by Eq. 9.

Fig. 2. 4 different 3D projections of the 6D pose manifold described by Eq. 9. Similar to a 3D
object (a cylinder) forming different 2D projections (circles, rectangles, etc.) along different
projecting directions, it forms different 3D projections in different projecting directions.
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3 Experiments

We demonstrate the proposed pose manifold concepts using experiments on both
synthetic and real images. In the first experiment, a 3D face scan from the USF Hu-
man ID database was used to synthesize the two input point sets with texture informa-
tion tagged on them. The 3D rotation angle along y-axis is 10° between the two
inputs. Fig. 3 shows these two rendered projections with textures for learning the pose
manifold. Note that they are not 3D rendering, but 2D textured point clouds. From
now on, no 3D face models are involved. We denote the two textured point clouds as
711 o Tin

xll,...,xln} x21,...,x2n
= , ty ={b11, ., bin ¢, and ={ },t=t,where
P {Y11'---'Y1n L { 1 1n} Pz Y21, Yon 2 L P
911, =1 91n

and p, are 2D point locations and t; and &, are RGB texture information.

An orthogonal bases are established as s, = —lzlland S, =

1

L%. Projecting x; and x, onto s;and s,, we get x; = u;8; and x, = u,s; +

v,58,. Due to Theorem 2, Ja € [O, %] ,a>0,b > 0, such that

T
X2—X281S .
—2—22Lwhich spans
|x2—x25751]

u, cosa = acosf

u;sinag = bsinf
u, cosa — v, sina = acos(6 + Af)
U, sina + v, cosa = bsin(6 + A9)

) 1D

where A8 is the rotation angle between the two images (AQ = ) Solving these

uq cos @ Uy
v, cos(0+A0) - Z)

The textured point sets are shown in Fig. 3(a) and the two basis images (as;and
bs,) are shown in Fig. 3(b). The semi-axes are multiplied to make the aspect ratios of
basis images “correct”. Then the manifold on 2D plane L2 is plotted in Fig. 4, with
the two input point sets marked “m”. Then any point on MZ forms a rotated image
and a few examples are synthesized in Fig. 5.

(a) (b)

Fig. 3. Pose manifold concepts on synthetic face data. (a) 2D projections of 3D rotated texture
points along y-axis as inputs. (b) The two basis images (s1,S,) obtained from the data of (a)
which spans L3.

T
18
equations, we get a = atan(
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a0 s0 o0 S0 500 w0 150 20w

Fig. 4. The elliptic pose manifold MZ on £2 spanned by s, and s, as shown in Fig. 3(b).
The two inputs are marked as m.

Fig. 5. A few synthesized example images from the pose manifold shown in Fig. 4

A 3D-2D pose manifold was built in Experiment 2 from three views of a fish mod-
el as shown in Fig. 6. Fig. 6(a) is an exact side view along z-axis, while Fig. 6(b) and
6(c) are the side views slightly rotated along y-axis and x-axis, respectively. From
Proposition 4, two ellipsoids are estimated using the first 3 principal components and
the 4-6 principal components, respectively. They are shown in Fig. 7. The input im-
ages and the synthesized images are marked as red and blue spheres, respectively.

Because the 3D-2D pose manifold is a 3D geometry in a 6D linear subspace, nei-
ther of the two projections (Fig. 7a and 7b) uniquely represents all possible rotations
(or viewing directions). Some rotations might merge into one point on one of the pro-
jected ellipsoids. For instance, input images shown in Fig. 6(a) and 6(c) merge into
the lower blue sphere in Fig. 7(a), and input images in Fig. 6(a) and 6(b) merge into
the upper blue sphere in Fig. 7(b).

Taking a point on the manifold (red sphere on Fig. 7), a virtual rotated image of the
fish model can be synthesized. A few examples are shown in Fig. 8. Note that the
synthesized views are all from unseen angles and no actual 3D model is involved.
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() (b) (©

Fig. 6. Original fish images for estimating the pose manifold. (a) Exact side view, (b) side view
rotated along y-axis by 20°, and (c) side view rotated along x-axis by 20°.

(b)

Fig. 7. Pose manifold estimated from the 3 images (@) shown in Fig. 6. The pose manifold is a
3D surface in a 6D linear subspace. (a) is its projection in the first 3 dimensions, and (b) is its
projection in the 4th-6th dimensions. Combining (a) and (b) forms the entire parametric mani-
fold. The rendered images shown in Fig. 8 are marked as @.

Fig. 8. Synthesized images with simulated 3D rotations from the pose manifold shown in
Fig. 7. The rotations are 20° apart in tilt and yaw.
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In Experiment 3, we estimated the pose manifold using three real images of a human
face under near-frontal rotations as shown in Fig. 9(a). The images were from CMU-PIE
face database [14] and were resized/cropped to 80 X 80 pixels. The rotation angles of the
three images along y-axis are 8, = —17°, 8, = 0°, and 6; = 16°. 67 corresponding
points were manually labeled on each of these three images as shown in Fig. 9(b).

(b)
Fig. 9. Three real face images under rotations for constructing the pose manifold. (a) Original
input images. (b) 67 labels on each image.

The following steps were performed to estimate the pose manifold and to use the
pose manifold to predict images under different rotations.

1. The human face was sampled based on all pixels in image 2 and denoted the coor-
dinates as P, = {Xy1, ..., Xon, Y21, -, Vo) and the textures as t ={I,...,I,},
where [; is image intensity of pixel i.

2. Thin-plate spline (TPS) warping [5] was performed to establish a point-wise cor-
respondence. The corresponding pixel locations in image 1 and image 3 are de-
noted as P1= {xlli o X1 Y11) ""yln} and P3 = {X31, o X3, Y31, ""y3n}'

3. Principal component analysis was performed on CT, where C = {p;, p,, p5}’ and
the first two principal components {s;,s,} were used as bases for the pose linear
subspace L2.

4. The 3 input images were projected onto £Z and 3 2D vectors ({uy, v1}, {up, v5},
{us, v3}) were obtained. Fig. 10 shows the two basis images which represent two
orthogonal in-depth rotations.

2 2
5. With known {63, 0,, 85}, an ellipse (Z—z + Z_Z = 1) was fitted as a = ;Z
_ l V1 V3 )
b= 2 (sin91 + sinf3/"
6. Given an arbitrary rotation angle €', the image can be estimated as p' =
acos@'s; + bsinf's,. The image can be rendered with textures .

Ui

and

cos 0;

Fig. 11 shows the estimated elliptic pose manifold (Step 5), 3 input images projected
onto the pose linear subspace, the images synthesized with rotation angles @ =

k . .
{% |k = —4,-3, .. ,3,4}. These two experiments demonstrated that these parametric
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pose manifold representations are valid in both view analysis and novel view synthe-
sis. With known rotation angles for input images, minimal 2 images are required to
estimate the elliptic pose manifold. In reality, more than 2 images (3 in the second
experiment) will help to make the estimation more stable.

Fig. 10. The two basis images generated in Step 4 from Fig.8(a)

y I
r———E

e —]

5EUU 500 1000 1800 EEl]D ZE‘UU 3000 3800
Fig. 11. 3 input images (m) and synthesized images (¢#) marked on the estimated elliptic pose
manifold in the 2D pose linear subspace spanned by (s;, ;). This complete and continuous
representation can extrapolate appearances of a face under unseen rotations.

4 Conclusions and Discussions

In this paper, we have demonstrated that 1) the set of images of an object under in-
depth rotations along a single axis is an elliptic manifold in 2D pose linear subspace,
and 2) the set of images of an object under all rotations is a parametric manifold de-
scribed by Eq. 9 in a 6D pose linear subspace. Furthermore, the validity of the pro-
posed pose manifold was illustrated with experimental investigations on both synthet-
ic and real image data. These findings provide bases for computer vision systems
which deal with pose/viewpoint variations.

There are a number of possible extensions and open issues that we would discuss
as follows.
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4.1 Translation and Scaling

This paper deals primarily with rotations, while translation and scaling also constitute
viewpoint changes (e.g., panning and zooming). Similar to rotation, a small number of
parameters are required to describe translation (3 parameters) and scaling (1 parameter)
in 3D space. Therefore, images under such transformations also form lower dimensional
parametric manifold. It is one of our future works in developing a rotation, translation
and scaling manifold theory. An alternative is to normalize the images under translation
and scaling and they are easier to “correct” in 2D image plane than rotation.

4.2  Perspective Projection

Orthographical projection is assumed throughout this paper. For objects located far
from cameras, it’s a good approximation. Perspective or other projections can be han-
dled in a similar way. It has a different form of projection matrix. In the future, we
plan to extend this pose manifold concept to include perspective projection, which is
good at representing near-camera objects.

4.3  Occlusion

In-depth rotations of a 3D object inevitably involve occlusions. Occluded pixels may
cause the proposed pose manifold representation inconsistent dimensions of pose
spaces of different images. Visible parts of the object in all input images can be cho-
sen and the findings in this paper hold for any subset of the object. Restricting the 3D
objects to be convex objects can alleviate the occlusion problem. In the future, we
may group the input images into adjacent sets and estimate a “partial” pose manifold
from each set. Then a “composite” pose manifold may be combined.

4.4  Correspondence

A dense correspondence is needed to estimate the pose manifold. In this paper, a
sparse set of correspondence was manually marked and the dense correspondence was
established by a TPS warping. Existing stereo matching algorithms can be a good
option for such tasks. In turn, the findings of this paper may serve as a regularization
term for stereo algorithms.

4.5 Relation to 3D modeling

All the operations reported in this paper are confined in 2D image planes, except syn-
thesizing input data which involved 3D rotations. It is interesting to investigate its
relationships to 3D modeling using stereo algorithms. The findings of this paper can
be seen as a 2D representation of 3D rotations without explicit 3D models. The mani-
fold constraints can be used to prune the corresponding points established using stereo
matching techniques. Avoiding explicit 3D operations may also reduce computational
complexity of the tasks.
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4.6 Illumination

Beside viewpoint variations, illumination variations also affect the appearances of an
object greatly. The illumination linear subspaces and manifolds were better established
than pose (refer to [1, 2, 10]). In the future, we plan to combine these two subspace theo-
ries to include both illumination and pose variations in the proposed representations.
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