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Abstract. Several salient object detection approaches have been pub-
lished which have been assessed using different evaluation scores and
datasets resulting in discrepancy in model comparison. This calls for a
methodological framework to compare existing models and evaluate their
pros and cons. We analyze benchmark datasets and scoring techniques
and, for the first time, provide a quantitative comparison of 35 state-
of-the-art saliency detection models. We find that some models perform
consistently better than the others. Saliency models that intend to pre-
dict eye fixations perform lower on segmentation datasets compared to
salient object detection algorithms. Further, we propose combined mod-
els which show that integration of the few best models outperforms all
models over other datasets. By analyzing the consistency among the best
models and among humans for each scene, we identify the scenes where
models or humans fail to detect the most salient object. We highlight
the current issues and propose future research directions.

1 Introduction

Visual saliency is the ability of a vision system (human or machine) to select
a certain subset of visual information for further processing. This mechanism
serves as a filter to select only the interesting information related to current
behaviors or tasks to be processed while ignoring irrelevant information.

Recently, salient object detection has attracted a lot of interest in computer
vision as it provides fast solutions to several complex processes. Firstly, it detects
the most salient and attention-grabbing object in a scene, and then it segments
the whole extent of that object. The output usually is a map where the intensity
of each pixel represents the probability of that pixel belonging to the salient
object. This problem in its essence is a segmentation problem but slightly differs
from the traditional general image segmentation. While salient object detection
models segment only the salient foreground object from the background, general
segmentation algorithms partition an image into regions of coherent properties.
Salient object detection methods also differ from other saliency models that aim
to predict scene locations where a human observer may fixate. Since saliency
models, whether they address segmentation or fixation prediction, both generate
saliency maps; they are interchangeably applicable.

The value of saliency detection methods lies in their applications in many fields
including: object detection and recognition [30][9], image compression [59], video
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summarization [60], and photo collage [20][17]. A comparison of some image re-
targeting techniques (some based on salient object detection [13][35]) is available
at: http://people.csail.mit.edu/mrub/retargetme/.

Some work has been published on quantitative evaluation of general segmen-
tation algorithms [44][48]1. To the authors’ best knowledge, such attempt for
benchmarking salient object segmentation methods has not been reported. Un-
fortunately, these methods have often been evaluated on different datasets, which
in some cases are small and not easily accessible. The lack of published bench-
marks causes discrepancy in quantitative comparison of competing models. Not
only does a benchmark allow researchers to compare their models with other al-
gorithms, but it also helps identify the chief factors affecting performance. This
could result in an even faster performance improvement.

2 Related Works

Here we provide a short summary of the main trends in saliency detection. The
interested reader can refer to the extensive reviews for more details [67][61].

As a pioneer, Itti et al. [2] derived bottom-up visual saliency using center-
surround differences across multi-scale image features. Ma and Zhang [51] pro-
posed an alternative local contrast method using a fuzzy growth model. Harel et
al. [3] used graph algorithms and a measure of dissimilarity to achieve efficient
saliency computation with their Graph Based Visual Saliency (GBVS) model.
Liu et al. [33] used conditional random field to learn regions of interest us-
ing three features: multi-scale contrast, center-surround histogram, and color
spatial-distribution. More recently, Goferman et al. [15] simultaneously modeled
local low-level clues, global considerations, visual organization rules, and high-
level features to highlight salient objects along with their contexts. Zhai and
Shah [12] defined pixel-level saliency by contrast to all other pixels. However,
for efficiency they used only luminance information, thus ignoring distinctive
clues in other channels. Achanta et al. [16] proposed a frequency-tuned method
that directly defines pixel saliency using the color differences from the average
image color. Visual saliency is equated to discrimination in [62] and extended
to bottom-up mechanism in the pre-attentive biological vision. Spectral com-
ponents in an image have been explored to detect visual saliency [5][34][56]. In
Hou and Zhang [5], the gist of the scene is represented with the average Fourier
envelope and the differential spectral components are used to extract salient re-
gions. This is replaced by the phase spectrum of the Fourier transform in [34]
because it is more effective and computationally efficient. Some researchers in-
cluding Bruce and Tsotsos [4] and Zhang et al. [10] attempted to define visual
saliency based on information theory. Some others have further used graph-cut
or grab-cub algorithms to refine borders of their saliency maps and count for
salient object contours [23][13]. While some methods define visual saliency in a
local way (e.g., Itti et al. [2], SEO [8], GBVS [3], AWS [7], and DAKlein [25]),

1 http://www.wisdom.weizmann.ac.il/$\sim$vision/Seg_Evaluation_DB
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some others are based on global rarity of image regions over the entire scene
(e.g., AIM [4], SUN [10], HouNIPS [6], HouCVPR [5], and RC [13]).

Object-based theories of attention propose that humans attend to objects
and high-level concepts. Inspired by these cognitive findings, some models (e.g.,
Judd et al. [1]) have used object detectors such as faces, humans, animals, and
text to detect salient locations. Some models address saliency detection in the
spatio-temporal domain by employing motion, flicker, optical flow (e.g., [65]), or
interest points learned from the image regions at fixated locations (e.g., [63]).
Since the research in this area is rather new and the few existing models are in
their early phases, thus we leave their quantitative evaluation for the future.

Recently a new trend called active visual segmentation has emerged with the
intention to segment a region that contains a fixation point (Mishra et al. [49]).
Their framework combines monocular cues (color/intensity/texture) with stereo
and/or motion, in a cue-independent manner. Similarly, Siagian and Koch [50]
also proposed a new approach for active segmentation by combining boundary
and region information. We consider adding them to promote this new trend.

3 The Salient Object Detection Benchmark

Saliency Detection Models. In this work, as the initial seed, we focus on those
models that are easily accessible, attained good accuracies, or have been highly
referred. Software for some models was already available online. For others, we
contacted their creators for the code; the authors then either sent us the source
code to compile or the executables. Some authors, however, preferred to run
their models on our stimuli and hence send us back the saliency maps. In order
to achieve a thorough model comparison, we intend to open an online challenge
where modelers could contribute by submitting their results.

We compare three categories of models: 1) those aiming to detect and segment
the most salient object in a scene (emphasized more here), 2) active segmentation
approaches, and 3) models that address fixation prediction. Table 1 shows the
list of models from the first two categories, and table 2 shows category 3.

Datasets. We choose 5 benchmark datasets based on the following criteria: 1)
being widely-used, 2) having size and stimulus variety, and 3) containing different
biases such as number of annotators, number of salient objects, and center-bias.
Due to specialty of various datasets, it is likely that model rankings may differ
across datasets. Hence, to come up with a fair comparison, it is recommended
to run models over several datasets and draw objective conclusions. A model is
considered to be good, if it performs well over almost all datasets.

Fig. 1 provides explanation of the 5 datasets used here as well as sample
images of the five smallest and largest objects from each. Fig. 2 shows Mean
Annotation Position: MAP = (1/UV )

∑U
u=1

∑V
v=1 suv averaged over U images

and annotated bounding boxes of V subjects (suv). There is a strong center-bias
in the single-object datasets, most probably due to the tendency of photogra-
phers to frame interesting objects at the image center [11]. Similarly, there are
two peaks (at the left and the right) in the images with two salient objects
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Table 1. Compared salient object detection models (checked) sorted chronologically.
Abbreviations: {M: Matlab, C: C/C++, S: Sent saliency maps}. w and h: image
width/height. DB shows the datasets that we have results over them. JiaLiSal is ap-
plied to 100 and 1000 images of ASD and MSRA, respectively. max X : Preserve the
aspect ratio while resizing the bigger dimension to X.

# Acronym (Model) Ref. Pub/Year Code Resolution DB Avl.

1 IO: Inter-observer model - - M w × h All �
2 MAP: Mean Annotation Position - - M 500 × 500 All �
3 MZ: Ma and Zhang [51] ACM-M/2003 S w × h ASD �
4 LC: Zhai and Shah [18] ACM-M/2006 C w × h All �
5 salLiu: Liu et al. [33] CVPR/2007 M max 200 All �
6 AC: Achanta et al. [14] ICVS/2008 M w × h All �
7 MSSS: Achanta and Sus̈strunk [55] ICIP/2009 M w × h All �
8 FTS: Achanta et al. [16] CVPR/2009 M w × h All �
9 EDS: Rosin [19] PR/2009 C w × h All �
10 Gopalakrishnan et al. [34] CVPR/2009 - - - -
11 Marchesotti et al. [35] ICCV/2009 - - - -
12 Valenti: Valenti et al. [40] ICCV/2009 S w × h ASD/MSRA �
13 Goferman: Goferman et al. [15] CVPR/2010 M max 250 All �
14 PMehrani: Mehrani and Veksler [23] BMVC/2010 S w × h ASD/SED1 �
15 Rahtu et al. [29] ECCV/2010 - - - -
16 Khuwuthyakorn et al. [28] ECCV/2010 - - - -
17 Zhang et al. [21] IEEE TOM/2010 - - -
18 JiaLiSal: Jia Li et al. [36] IJCV/2010 S [w h]/16 ASD/MSRA �
19 LiuICIP: Liu et al. [53] ICIP/2010 S w × h ASD �
20 MichalGazit: Gazit et al. [37] ECCV-W/2010 M w × h All �
21 DAKlein: Klein and Frintrop [25] ICCV/2011 S w × h All �
22 MengW: M. Wang et al. [18] CVPR/2011 S w × h ASD �
23 Feng et al. [22] ICCV/2011 - - - -
24 Deng and Luo [39] OE/2011 - - - -
25 Lu et al. [24] ICCV/2011 - - - -
26 L. Wang et al. [26] ICCV/2011 - - - -
27 SVO: Chang et al. [27] ICCV/2011 M w × h All �
28 CBsal: Jiang et al. [31] BMVC/2011 M w × h All �
29 RC: M.M. Cheng et al. [13] CVPR/2011 C w × h All �
30 HC: M.M. Cheng et al. [13] CVPR/2011 C w × h All �
31 Materias: Li et al. [36] BMVC/2011 M w × h All �
32 LiuIETIP: Liu et al. [42] IEEE TIP/2011 S w × h ASD �
33 Mishra: Mishra et al. [49] PAMI/2011 C w × h All �
34 SRS1: Siagian and Koch [50] Submitted. C w × h All �

Table 2. Compared saliency models originally developed for eye fixation prediction

# Acronym (Model) Ref. Pub/Year Code Resolution DB Avl.
1 ITTI: Itti et al. [2] PAMI/1998 C w/16× h/16 All �
2 ITTI98: Itti et al. (maxNorm) [2] PAMI/1998 C w/16× h/16 All �
3 AIM: Bruce and Tsotsos [4] NIPS/2005 M w/2× h/2 All �
4 GBVS: Harel et al. [3] NIPS/2006 M w × h All �
5 HouCVPR: Hou and Zhang [5] CVPR/2007 M 64 × 64 All �
6 HouNIPS: Hou and Zhang [6] NIPS/2008 M w × h All �
7 SUN: Zhang et al. [10] JOV/2008 M w/2× h/2 All �
8 PQFT: Guo and Zhang [56] TIP/2009 M 400 × 400 All �
9 SEO: Seo and Milanfar [8] JOV/2009 M w × h All �
10 AWS: Diaz et al. [7] ACIVS/2009 M w/2× h/2 All �
11 Judd: Judd et al. [1] ICCV/2009 M w × h All �

(SED2). Fig. 2.a shows entropy of images. ASD and MSRA contain more clut-
tered scenes. Histogram of normalized object sizes (object size/image size) is
plotted in Fig. 2.b. It shows there are few images with large objects in these
datasets. Objects usually range from small to medium size, about 30% of the
whole image (with MSRA containing larger objects on average). Fig. 2.c shows
subject agreement for an image which is defined as:
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r =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

|si ∩ sj|
|si ∪ sj| (1)

where si and sj are annotations of the i− th and j− th subjects (of n subjects).
Above score has the well-defined lower bound of 0 when there is no overlap in
segmentations of users and upper-bound of 1 when they have perfect overlap.
As Fig. 2 shows, subjects have higher agreement over MSRA, SED1, and SED2
datasets (about 70% of r values are above 0.9) compared to the SOD dataset.

Proposed Combined Models. Since different models are based on differ-
ent hypotheses and algorithms, it is likely that combining evidences from them
may enhance the saliency detection accuracy. Here, we investigate such an idea.
Let p(xf ) represent the probability of an image pixel x being part of the salient
foreground object (i.e., 2D normalized saliency map [0 1]). Let p(xf |Mi) be such
evidence from the i − th model. Assuming independence among models (i.e.,
p(xf |Mi,Mj) ∝ p(xf |Mi)p(xf |Mj)), then a Naive Bayesian evidence accumula-
tion would be:

p(xf |M1,M2, · · · ,MK) ∝ 1

Z

K∏

k=1

p(xf |Mk) (2)

where K is the number of models and Z is chosen in a way that the final map
is a probability density function (pdf). Since, a very small value by only a single
model suppresses all evidences from the other models in the multiplication case
(Eq. 2), we also consider another combination scheme using linear summation:

p(xf |M1,M2, · · · ,MK) ∝ 1

Z

K∑

k=1

G(p(xf |Mk)
)

(3)

where G(x) is one of three combination functions: 1) identity (i.e.,G(x) = x), 2)
exp(x), and 3) −1/log(x). We chose exp and −1/log functions to avoid negative
values and weigh the highly salient regions more, assuming that models are more
accurate at the peaks of their saliency maps.

Evaluation Scores. Similar to [16], we calculate the precision-recall (PR)
curve by varying a threshold on the intensity values [0:0.05:1] and generating a bi-
nary saliency map. Since MSRA dataset has bounding boxes, we first fit a rectan-
gle to the thresholded saliency map, fill it, and then calculate scores using bound-

ing boxes. We also report the F-Measure defined as: Fβ = (1+β2)Precision×Recall
β2Precision+Recall .

Here, as in [16] and [13], we use β2 = 0.3 to weigh precision more than recall.
We also calculate the ROC and AUC (Area Under ROC Curve) results from true
positive rates and false positive rates obtained during the calculation of PR.

4 Experiments and Results

Baseline Models.We implemented two simple yet powerful baseline models: 1)
MAP explained in Sec. 3 and Fig. 2, and 2) Human Inter-observer (IO) ’model’
which is the aggregated map of annotations by other subjects (excluding the one
under test) for each image. The IO model provides an upper bound for other
models since humans usually agree in annotating the most salient object.
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ASD SED1 SED2 SODMSRA

Fig. 1. Sample images from the datasets. Top row shows the five smallest ob-
jects and bottom row shows the five largest objects from each dataset. 1)
ASD [16]: This dataset contains 1,000 images from the MSRA dataset. Authors
have manually segmented the salient object (contour) within the user-drawn rect-
angle to obtain binary masks. Link: http://ivrgwww.epfl.ch/$\sim$achanta/ . 2)
MSRA [33]: This dataset (part B of the original dataset) includes 5,000 im-
ages containing labeled rectangles from nine users drawing a rectangular shape
around what they consider the most salient object. There is a large variation
among images including natural scenes, animals, indoor, outdoor, resolution, etc.
Link: http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/

salient object.htm . 3) SED [47]: This dataset contains two parts. The first one,
single object database(SED1), has 100 images containing only one salient object
similar to the ASD. But in the second one, two objects database(SED2), there
are two salient objects in each image (100 images). Our purpose in employing this
dataset is to evaluate the accuracy of models when there is more than one ob-
ject in a scene is to evaluate accuracy of models over more complex stimuli. It is
still not clear how the models developed over single-object datasets will scale up
in more general cases. Each of one-object and two-object datasets contain 100 im-
ages. Link: http://www.wisdom.weizmann.ac.il/$\sim$vision/Seg_Evaluation_DB.
4) SOD [46]: This dataset is a collection of salient object boundaries
based on the Berkeley Segmentation Dataset (BSD). Seven subjects are
asked to choose the salient object(s) in 300 images. This dataset con-
tains many images with several objects making it challenging for models.
Link: http://elderlab.yorku.ca/$\sim$vida/SOD/index.html . Another interesting
dataset called Imgsal contains both human fixations and tagging of objects with dif-
ferent sizes. Link: http://www.cim.mcgill.ca/$\sim$lijian/database.htm.

http://ivrgwww.epfl.ch/$\sim $achanta/
http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm
http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm
http://www.wisdom.weizmann.ac.il/$\sim $vision/Seg_Evaluation_DB
http://elderlab.yorku.ca/$\sim $vida/SOD/index.html
http://www.cim.mcgill.ca/$\sim $lijian/database.htm.
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Fig. 2. a) histogram of image entropy (inset: location prior MAP), b) distribution of
normalized object sizes, c) distribution of annotators agreement (0 � r � 1). Note that
the ASD dataset has only one annotator.

Fig. 3 shows precision-recall, F-measure, ROC curves, and AUC values for all
models over five datasets. Model rankings using F-measure usually do not match
with the other scores (although very similar). Therefore, we focus on drawing
conclusions based on ROC, AUC, and PR scores as they are more consistent.

Accuracy of Baseline Models. There is still a large gap between existing
models and the IO over all datasets which indicates room for improvement. The
IO model performs lower on the SOD. This also could be verified from Fig. 2
where subjects show less agreement since there is no unique salient object in
many images. MAP model stands somewhere in the middle, better than some
models indicating that a simple center-biased model could capture a lot of salient
regions. MAP performs the lowest on the SED2 because two objects do not
always happen at exact locations of the two left and right peaks of the MAP
model. Random predictor, a map with the value for each pixel taken uniformly
random from the range [0 1], scores 0.5 on AUC and provides a theoretical
lower-bound for models. All models perform above chance level in all cases.

Model Rankings. Table 3 shows the best four models from salient object
detection and fixations prediction categories over 5 datasets. Based on average
rankings using AUC, SVO, Goferman, CBsal, and RC rank as the top four in
order. For fixation prediction, on average the four best models are: GBVS, AIM,
HouNIPS, and AWS. Among salient object detection models, SRS1, Michal-
Gazit, Mishra, and EDS usually rank at the bottom over datasets. LC and AC
models also perform poorly using AUC and PR. SalLiu is a good model in terms
of AUC score and F-measure but not PR. This might be due to the binary nature
of its saliency maps. Goferman is usually good using AUC but not as good using
PR. Low performance of MichalGazit is probably due to its very sparse maps.
MAP model does well over SOD dataset indicating existence of center-bias. Our
results show that SOD is the most difficult dataset for models (they perform
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D2

SO
D

SE
D1

Precision-Recall (PR)

AS
D

F-measure ROC AUC

M
SR

A

Fig. 3. PR, F-measure, ROC, and AUC scores of saliency models: Top row for each
dataset shows saliency segmentation and bottom row shows fixation prediction models.
mult indicates multiplication of models, and identity, log, exp indicate linear summation
of identity, logarithmic, and exponential functions, respectively (see text).
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poorly and score on a narrow band) while ASD and MSRA (the biggest dataset
with rectangular annotations) datasets are the easiest ones.

MAP model ranks in the middle among fixation prediction models. On SOD,
MAP model works very well, right below the best model, repeatedly indicating
high center bias in this dataset (Fig. 2). Using F-measure AIM consistently
ranks above other models. ITTI and PQFT rank at the bottom over all datasets.
The ITTI98 model is based on the same principles of the ITTI model but uses
maxNorm normalization: For each feature map, find the global max M and the
average m of all other local maxima. Then, weigh the map by (M −m)2. Please
refer to [67] for a full investigation of fixation prediction models.

Table 3. Model rankings over categories and datasets using AUC. Gof. = Goferman.

# Salient object detection models Fixation prediction models

ASD MSRA SED1 SED2 SOD ASD MSRA SED1 SED2 SOD

1 CBsal CBsal Gof. RC SVO GBVS GBVS AIM AWS GBVS

2 LiuICIP SVO SVO Gof. Gof. HouNIPS HouNIPS GBVS GBVS MAP

3 SVO Gof. CBsal HC MAP AIM AIM MAP SEO AIM

4 LiuIETIP RC PMehrani SVO RC AWS MAP HouNIPS AIM HouNIPS

A
S

D
S

E
D

1

Fig. 4. Accuracy of models over small and large objects from ASD and SED1 datasets

Models built originally for fixation prediction, on average, perform lower than
models specifically built to detect and segment the most salient object in a scene.
Best fixation prediction models perform better than poor saliency detection mod-
els. Why does performance accuracy of the two categories of approaches differ
over segmentation datasets? The reason lies on the amount of true positives vs.
false positives. Segmentation approaches try to generate white salient regions to
capture more of the true positives. On the other hand, fixation prediction models
are very selective and generate few false positives (there are not many fixations
on the image). In a separate study, we noticed that fixation prediction mod-
els perform better than the saliency detection models over eye fixation datasets
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(for fixation prediction) [67]. Active segmentation algorithms score consistently
below the other two categories. The main reason is the dependency of these
models on the initial seed which sometimes may not happen on the most salient
object due to the spatial outliers in the image.

Accuracy of Combined Models.Our combined models (using CBsal, SVO,
and RC) score the highest in many cases supporting our claim in evidence in-
tegration. Overall, our combined models rank the best in the following order:
identity, log, exp, and mult. Over SED2 and SOD datasets, combined models
perform lower compared to single object datasets but still outperform many mod-
els. According precision-recall curves, our models stand on top (except SED2).
This is because of CBsal model perform poorly on these datasets causing the per-
formance to drop for combined models. Note that our selection of which models
to combine was purely based on the ASD dataset and not by over-fitting re-
sults to all datasets. It is possible that combining best models over each dataset
will outperform all models over that dataset. We found that the combination of
the best two models (CBsal and SVO) still works as good as (slightly below)
combining the three best models (supplement).

The Role of Object Size. It is more challenging to obtain high precision-
recall for small objects than large objects [16][25]: an algorithm that selects
the whole image obtains 80% precision with 100% recall if an object occupies
80% of the image. We compare accuracy of models over 100 images of ASD
(50 for SED1) with the smallest and 100 (50 for SED1) images with the largest
objects (Fig. 1 shows samples). On average, the object occupied 6.2% (15% for
SED1), 38.2% (39% for SED1) of the image area, respectively for small and large
objects. The resulting PR curves for ASD and SED1 datasets are shown in Fig. 4
(see supplement for other DBs). Models (specially MAP) score higher on large
objects. IO scores higher on large objects thus showing higher subject agreement.
Combined models still perform higher than other models in both cases (difference
is more pronounced over small objects). Good models (e.g., CBsal, SVO, and
LiuIETIP) still perform well with the exception of SVO that shows a noticeable
performance drop over large objects. Fixation prediction model rankings differ
over both cases. While GBVS is the best over small objects, HouNIPS (over ASD)
and AIM (over SED1) are the best over large objects. MAP model outperforms
all fixation prediction models over large objects.

The Role of Annotation Consistency. To check whether annotation con-
sistency affects accuracy, we selected (according to Eq. 1) 100 most and 100 least
consistent images (50 for SED datasets) of all datasets and calculated the scores
shown in Fig. 6. As expected, IO and MAP models perform very high over most
consistent images (on average for all other models). Combined models are at the
top in both cases (except SED2 in the least consistent case).

Easy/Difficult Stimuli for Models. Here, we study the easiest and most
difficult scenes for 11 models that did well in all cases. For each model, we sorted
the stimuli based on their AUC score and chose the top (easiest) and bottom
(hardest) five images (supplement). We noticed that models have many easy
and difficult scenes in common (Fig. 7). The top five stimuli usually have one
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Fig. 5. Five images with least (and most) annotation consistency from datasets

vivid salient object at the center with a distinctive color from the background.
The bottom five stimuli often contain objects in a textured background, objects
composed of several different parts, or objects that attract top-down attention
(e.g., text, faces, human, social interactions, gaze direction, or animals).

Analysis of Map Smoothing and Center-Bias. Here, we investigate the
role of map smoothing (blurring) as it has been shown to affect scoring for fix-
ation prediction in the past [10]. We convolve saliency maps of models with
variable-sized Gaussian kernels and calculate the scores. We also add (sepa-
rately) central Gaussian kernels to the saliency maps. AUC scores are shown in
Fig. 8. With smoothing, scores slightly change but qualitative trends and model
rankings stay the same, hence not affecting our conclusions. The reason why
smoothing changes fixation prediction but not salient object detection accuracy
is because: 1) there is uncertainty in fixations such that they often do not land
on the exact intended locations, and 2) in salient object detection, scores are
calculated using image regions while in fixation prediction, they are calculated
by sampling maps from eye positions. Shown in Fig. 2, all datasets have center-
bias similar to the eye movement datasets ( [67][11]). From Fig. 8 (right side), we
conclude that adding center-bias raises the accuracy of low-performing models
while it decreases the accuracy of good models. However, this change in accuracy
is not significant and does not alter model rankings.
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Fig. 6. Accuracy of saliency detection models over least and most consistent images
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Fig. 7. Left) Easiest stimuli for 11 best models (Fig. 3), Right) Most difficult stimuli

Smoothing Adding center-bias

Fig. 8. Left: scores of models for maps smoothed with 2 Gaussian kernel sizes over ASD
dataset. Right: model accuracy by adding Gaussian center-bias to center of a map.

ASD dataset

A
rb

it
ra

ry
 d

im
e

n
s
io

n
 2

Arbitrary dimension 1

Fig. 9. Measuring model
similarities

Analysis of Model Similarity. Follow-
ing Judd [64], here we measure the similarity
among salient object detection models. We
build a similarity matrix Q with the element
ij measured as follows. For each image of a
dataset, calculate the correlation coefficients
(CC) of saliency maps between models i and
j. Then the qij will be the average of all CCs
over all images. Over the ASD dataset, (HC,
RC), (LiuICIP, LiuIETIP), (MSSS, FTS),
(SVO, Goferman, Valenti, AWS), (HouNIPS,
AIM, GBVS) are the most similar ones to
each other. We calculate dissimilarity as 1 mi-
nus similarity (thus ranging between [-1 0]),
and use multi-dimensional scaling (MDS) analysis to represent models in a 2D
space (Fig. 9 for ASD). AC, MZ, ITTI, and SRS1 models are most different from
the others (see supplement).

Analysis of Human-Model Agreement. Finally, over the MSRA dataset,
we plot in Fig. 10 human vs. model agreement (5 best models including: CBsal,
SVO, LiuICIP, LiuIETIP, and Goferman) for each image. Aligning with Fig. 2,
most of the subjects show annotation consistency while models are less consis-
tent. We inspect cases of agreement/disagreement between and within humans
and models: 1) Images that both humans and models agree, usually have one
clear object with different features from the background rendering them bottom-
up salient. 2) Images that humans and models disagree (within the same group),
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Fig. 10. Analysis of human model agreement over MSRA
dataset

usually are not easy to
define the most salient
object. Salient objects
have several parts in
a crowded background.
The most interesting
case is when humans
(within) disagree with
models agree (and vice
versa). 3) Images for
which models disagree
usually have textured backgrounds with salient objects sharing similar features
with the background. However, this does not disrupt the top-down mechanisms
by which humans decide the most salient object. 4) Images that humans dis-
agree but models agree, usually contain salient objects with multiple parts and
different features from the background. This makes detecting the salient object
with several parts easy for models but difficult for humans. Overall, there are
not many cases for which humans disagree.

5 Conclusions

Based on the extensive experiments over 5 datasets, we conclude that SVO [27],
Goferman [15], CBsal [31], RC [13], and Liu et al. [53][52] (LiuICIP and LiuI-
ETIP) work better than the others overall. Salient object detection models (Ta-
ble 1) perform better than fixation prediction models (Table 2). Map smoothing
is not a big challenge to scoring as opposed to the fixation prediction. SOD
has 300 images and is the hardest dataset for models which encourages further
effort in the future. Many models share the easiest and the most difficult stim-
uli. Although model rankings remain the same over small and large objects,
model accuracy is higher over large objects. Further, models work better on
the most consistent images. Scenes containing objects in textured and cluttered
backgrounds are challenging for many models. There are cases where the level of
agreement on salient object is low among humans but high for the models. Anal-
ysis of model similarity shows that some models use different saliency detection
mechanisms. Focusing on these models may inspire further development.

We showed that a simple integration scheme generalizes well across datasets. It
suggests using more sophisticated combination techniques (e.g., by selecting and
combining different models) which may enhance accuracies. While most of the
models try to correctly segment the object regions, only recently
researchers (e.g., [46]) have started to account for image boundary. Contem-
porary saliency detection datasets suffer from the drawback that they contain
images with few (oftentimes one) close-up objects. Future work should investi-
gate collecting datasets with more variety including cluttered scenes with mul-
tiple objects. Majority of existing models are only applicable to static images.
Further research is needed to scale up current models or build new models in
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the spatio-temporal domain. Models have different implementation languages
(C++, Matlab) which makes analysis of computational complexity challenging.
While previous progress is promising, further work is needed to bridge the ex-
isting gap among current models and human performance. To ease this process
and initiate a collaborative effort, we share our results, data, and software in our
website.
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