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Abstract. A fully automatic framework is proposed to identify consis-
tent landmarks and wire structures in a rotational X-ray scan. In our
application, we localize the balloon marker pair and the guidewire in
between the marker pair on each projection angle from a rotational
fluoroscopic sequence. We present an effective offline balloon marker
tracking algorithm that leverages learning based detectors and employs
the Viterbi algorithm to track the balloon markers in a globally opti-
mal manner. Localizing the guidewire in between the tracked markers
is formulated as tracking the middle control point of the spline fitting
the guidewire. The experimental studies demonstrate that our methods
achieve a marker tracking accuracy of 96.33% and a mean guidewire lo-
calization error of 0.46 mm, suggesting a great potential of our methods
for clinical applications. The proposed offline marker tracking method is
also successfully applied to the problem of automatic self-initialization
of generic online marker trackers for 2D live fluoroscopy stream, demon-
strating a success rate of 95.9% on 318 sequences. Its potential applica-
tions also include localization of landmarks in a generic rotational scan.

1 Introduction

Balloon-mounted stent is routinely used in the Percutaneous Coronary Interven-
tion (PCI) procedure to treat narrowed coronary arteries of the heart found in
coronary heart disease. During the PCI procedure, the deflated balloon is carried
by the guidewire and inserted to the coronary artery. The balloon inflates at the
position of narrowed vessel and then expands and deploys the stent. The position
of the balloon is indicated by two highly radio-opaque markers (Figure 1) whose
visibility are better than the stent in the x-ray fluoroscopy. To better evaluate the
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stent implantation outcome, stent visibility enhancement methods are required.
Current approaches [1][2] are limited to 2D stent visibility enhancement which is
accomplished by localizing the balloon markers and the guidewire between them
and generating 2D motion-compensated images. In [1], the image sequence was
generated from a fixed gantry position of the C-arm system, and therefore the
enhanced 2D image only allows assessing the stent expansion outcome from one
viewing angle.

Fig. 1. Examples of balloon markers and guidewires tracked by our methods in rota-
tional fluoroscopic sequences. The markers and guidewires exhibit low visibility, with
a variety of shape and appearance caused by the foreshortening effect in the rotational
fluoroscopy. Ground truth of the marker pair is displayed as white circles. The tracked
markers and extracted guidewires are displayed as red/blue squares and green curves,
respectively. The marker score defines the confidence of the marker tracking result in
the image and is independent of the ground truth.

3D motion-compensated volumetric reconstruction of the stent (Figure 2)
provides more accurate three-dimensional assessment of the stent implantation
outcome compared to conventional 2D visibility-enhanced image. It is based on
rotational fluoroscopy sequences which were acquired using calibrated C-arm
X-ray system. Each frame of the rotational fluoroscopy sequence is a projec-
tion image along with which the corresponding projection matrix is provided.
During the acquisition of the rotational scan, cardiac and breathing motions
were involved and therefore the markers are not always at the same positions
in the 3D space. The major challenges of 3D volumetric stent reconstruction
lie in the difficulties of marker identification in individual fluoroscopic images,
and the quality of the 3D reconstructed stent heavily depends on the robust-
ness and accuracy of the coordinate localization of the marker pairs and the
guidewire.

The problem of localizing the balloon marker pair and the guidewire at each
frame of the rotational fluoroscopy sequence is very challenging. The signal-
to-noise ratio is low, and there are marker-like objects, wire-like objects, and
other image artifacts. At some projection angles, the markers are overlaying
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with spinal cord which results in even lower marker visibility. The guidewire un-
dergoes non-rigid deformation due to the breathing and cardiac motions which
are complicated in the 2D projections [3]. Moreover, the foreshortening effect
in the 2D projection images results in curvy guidewires with sharp turn, close-
lying balloon markers, and large variation of the marker pair length and marker
size. In [4], the markers are detected manually to reconstruct non-periodic 3D
marker positions and the coronary stent. In [5], a conventional blob-like structure
detector [6] combined with a marker pair selection approach based on priori in-
formation of the marker pair is proposed. However, low-level blob-like structure
detector detects too many false positives at cluttered scene and easily misses
the target markers due to the low signal-to-noise ratio in rotational fluoroscopy,
and the user has to manually specify a region of interest as the searching re-
gion in [5]. In [1], the Probabilistic boosting-tree (PBT) [7] is employed to train
a balloon marker detector for 2D fluoroscopy sequences captured using C-arm
system with fixed gantry position. When being applied to the rotational fluo-
roscopy, this learning based detector also produces false alarms or misses target
markers.

Fig. 2. An example of 3D volumetric reconstruction of the stent (right panel). Left
panel shows one frame of the rotational fluoroscopy sequence.

In this paper, we present a fully automatic framework in which a robust offline
balloon marker tracking method leverages learning based detector [1][7] and finds
the best marker pair sequence in a globally optimal manner, and a guidewire
localization method accurately extracts the guidewire body in between the mark-
ers and deals with the foreshortening effect. We also define a marker tracking
confidence measure that assigns inaccurate localizations with lower scores in the
absence of the ground truth.

2 Methodology

Instead of detecting the marker pair and the guidewire independently at each
frame of the rotational fluoroscopy sequence, the proposed methods find the
tracks of the marker and the guidewire in the spatial-temporal space in a globally
optimal manner. In the literature, some works [8][9] also formulate their offline
tracking problems as finding optimal paths in the 3D spatial-temporal space.
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For our problem, traditional tracking methods such as the Particle filter and
Kalman filter are vulnerable to the drifting problem in which the tracker loses
the track of the target as a result of low contrast, distracting artifacts, and rapid
motion of the target

Specifically, marker pairs are tracked first in the spatial-temporal space by
finding jointly two most probable tracks (green and blues paths in Figure 3(a))
from a set of marker candidates detected using an offline detector trained by
PBT classifier. This problem is solved by the Viterbi algorithm [10]. We find it
convenient and reliable to use the weight of the path ending with a marker pair
state in the trellis graph to define the confidence of the marker pair candidate.
The guidewire localization problem is formulated as finding the most probable
surface (red curves in Figure 3(a)) in the spatial-temporal space given the tracked
markers. This problem is equivalent to finding the most probable sequence of the
middle control points of the splines representing the guidewires.

(a)

Target
marker pair

2D projections of the 3D marker
models
Candidates (confidence indicated by size)

(b)

Fig. 3. (a) One marker and guidewire localization example in the spatial-temporal
space. The green and blue squares indicate the tracked markers and the red curves
indicate the extracted guidewires. (b) Illustrating the candidates generated by the
marker detector and the 2D projections of the two estimated 3D marker models. The
radius of the green dots indicates the detection confidence of marker candidate.

2.1 Marker Pair Localization

The proposed marker pair tracking method is based on a set of candidates pro-
duced by the offline trained detector. In the first stage of this detector, a single
marker detector was trained with manually annotated samples and the PBT
classifier. Since variation of the marker pair is large (length, angle, noise, etc.),
a one-stage classifier trying to detect the marker pair independently would per-
form poorly. Therefore as a bootstrapping step, a joint detector was also trained
with the target marker pair against the false-positive marker pairs obtained from
the first stage detector. At each pixel of the image, the detector not only provides
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a binary decision, but also a confidence score associated with the decision. The
detection confidences are sorted and the only certain number of detections with
high confidence are kept as the marker candidates.

However, even with the bootstrapping step, the detections still contain false
alarms and the best marker pair with the highest detection confidence is not
necessarily the target marker pair (Figure 3(b)). Another problem with applying
the detector directly on the entire image is that the target markers are not
necessarily among the detection candidates. To deal with these problems, we
apply the detector locally and repeatedly using windows of different sizes to
make sure that the target markers are among the candidates, and we address
the marker pair selection problem in a globally optimal way by finding two most
probable tracks from a set of candidates in the spatial-temporal space using the
Viterbi algorithm (Figure 4(b)).

1. Global Detection +
Keyframe Identification

2. 3D Markers
Estimation

3. Local Detections

4. Viterbi Algorithm

5. 3D Markers Refinement
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Fig. 4. (a) Workflow of the proposed marker tracking method. (b) The marker pair
localization problem is formulated as finding two most probable paths (red and blue
paths) from a set of marker candidates (green points) in the spatial-temporal space.

Workflow. Figure 4(a) illustrates the workflow of the proposed marker track-
ing method. We first apply the detector globally on each frame of the sequence
and keep certain number (e.g. 20) of top candidates which are sorted according
to their detection probabilities. However, the target markers are not necessarily
among the candidates and the top two markers are not necessarily the target
markers. After the global detection, several keyframes are identified based on
the detections. A keyframe is a frame whose first two detections have very high
detection confidences. Only the top two detections are kept in the keyframes. By
selecting a strict threshold, only a few key frames with highest confidence are de-
termined for each sequence and no key frame with incorrect markers is noticed in
our testing sequences. In the second step, the 3D positions of the two markers are
reconstructed using markers from the keyframes, the projection matrices along
with these frames, and the epipolar geometry. Due to cardiac and breathing
motions, the reconstructed 3D coordinates of the two markers are not accurate.
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As shown in Figure 3(b), after projected the 3D markers to the image plane
using the projection matrix associated with the frame, the 2D projections are
far away from the target markers. Nevertheless, 2D projections of the 3D models
provide valuable information about the length and direction of the marker pair,
and they give an approximate search region of the marker pair. In step 3, we
apply the detector locally and repeatedly in windows centering at the 2D marker
projections and with different sizes. Contrast normalization is applied within
the window before applying the detector in order to detect markers even in low
contrast areas. New candidates are added to existing candidate set of each frame
so as to make sure that the target markers are within the candidate set. In step
4, we formulate the marker tracking problem as finding two most probable tracks
from the candidates in the spatial-temporal space using the Viterbi algorithm.
Instead of finding the two most probable tracks of the markers independently in
the spatial-temporal space, we use the Viterbi algorithm to find a joint path of
the marker pair in the trellis graph. In step 5, 3D marker positions are refined
with the new tracking results and used in the next iteration.

Finding the Most Probable Path with Viterbi Algorithm. Our problem
in step 4 is, given the marker pair candidates founded by the detector, all the
frames of the rotational fluoroscopy sequence, and the 2D projections of the two
reconstructed 3D marker models, to find the best state sequence of the marker
pair that maximizes the posterior probability P (X |Y,O):

X̂ = argmax
X

P (X |Y,O), (1)

where, X = {x1, ..., xT } is the state sequence, Y = {I1, ..., IT } are the images,
and O = {O1, ..., OT } with Ot = {b∗t , e∗t } being the begin marker and end marker
projected from the 3D marker models. The state xt can be any marker pair
candidate xt,k = (bt,k, et,k) at frame t. bt,k and et,k represent the begin marker
candidate and the end marker candidate, respectively.

We employ the Viterbi algorithm to solve this problem. A trellis graph for
marker tracking is first constructed as in Figure 5. Each node in the trellis graph
represents a marker pair. The Viterbi algorithm recursively finds the weight Vt,k

of the most likely state sequence ending with each xt,k.

V1,k = P (I1|x1,k)P (O1|x1,k)P (x1,k), (2)

Vt,k = P (It|xt,k)P (Ot|xt,k)max
j

(P (xt,k|xt−1,j)Vt−1,j), t �= 1. (3)

P (x1,k) represents the prior probability of the kth marker pair candidate at
the first frame and is equal for all the candidates. P (It|xt,k) is one term of the
observation probability and is defined as the sum of the detection confidences of
both markers:

P (It|xt,k) ∝ P (It|bt,k) + P (It|et,k). (4)
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P (Ot|xt,k) is another term of the observation probability and is defined as a
combination of direction and length similarities to the maker pair projected
from the 3D marker models:

P (Ot|xt,k) ∝ exp(− |Lt,k − L∗
t | /L∗

t )×max((bt,k − et,k) · (b∗t − e∗t )/(Lt,kL
∗
t ), 0),

(5)

where, the first term is the length similarity and the second term is the direc-
tion similarity, Lt,k = ||bt,k − et,k|| and L∗

t = ||b∗t − e∗t || are the lengths of the
candidate marker pair and the projected marker pair, respectively.

P (xt,k|xt−1,j) represents the probability of transition from the jth state of
time t−1 to the kth state of time t and penalizes rapid and inconsistent motions:

P (xt,k|xt−1,j) ∝ exp(−d(xt,k, xt−1,j)/σ)× exp(−θ(xt,k, xt−1,j , xt−2,i)/π), (6)

where, d(xt,k, xt−1,j) is the average movement of the begin and end markers from
t− 1 to t, θ(xt,k, xt−1,j , xt−2,i) is the mean angle between the motion vectors of
the begin/end marker at time t − 1 and time t. xt−2,i is the second last node
in the path ending with xt−1,j . The σ is typically set to 50 pixels (15 mm) in
our experimental studies. The first term of Eq. 6 penalizes rapid motion of the
markers while the second term penalizes inconsistent motions and is used only
after the first two frames.

An illustration of the most probable path/Viterbi path is shown in Figure 5.
The best state in the last frame T is found as x̂T = argmaxxT,k

(VT,k), and
the states in other time slices are retrieved by back-tracking the Viterbi path
(Figure 5).

Candidate
Marker
Pair

Tracked
Marker
Pair

Candidate
Path

Most
Probable
Path

t=1 t=2

t=3

t=4 t=5
t=6

Fig. 5. The trellis graph of the Viterbi algorithm constructed for the marker pair
tracking. Each node represents a marker pair. The bold green path is the most probable
path/Viterbi path retrieved by back-tracking.

2.2 Marker Pair Confidence

After the marker tracking, a confidence score needs to be assigned to the tracked
marker pair so that inaccurate marker pairs have lower scores and less impact
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on the 3D volumetric reconstruction of the stent. We found it convenient and
reliable to use directly the Vt,k to define the confidence of the marker pair xt,k.
Vt,k decides which marker pair at time t should be selected if the tracking ends
at t and therefore is a good indication of the confidence of xt,k.

The values of Vt,k are normalized for all the nodes at time t, and the nor-
malized weights of the nodes in the Viterbi path are temporally smoothed by
averaging every three adjacent nodes in the path.

2.3 Guidewire Localization

It is very straightforward to apply the fast marching [11][12] based centerline
extraction method to localize the guidewire since the two end points are al-
ready available after the marker pair tracking. In our preliminary studies, we
applied the Laplacian of Gaussian (LoG) filter to create a speed map for the fast
marching, and applied the fast marching twice with either marker as the start-
ing point and the other one as the ending point. The resulting two centerlines
are averaged and fit with a B-spline to produce the final result. However, the
guidewires extracted by the fast marching were easily distracted by the stent
and affected by the foreshortening effect as shown in the second row of Figure 6.
Therefore, in this paper we propose a novel guidewire localization method for ro-
tational fluoroscopic sequences. The proposed method formulates the guidewire
localization problem as finding the best sequence of middle control points in the
spatial-temporal space and employs again the Viterbi algorithm to solve this
problem.

Fig. 6. Some comparisons of the proposed guidewire localization method (first row)
with the fast marching based method (second row)

Specifically, we sample a set of candidates of the middle control point along the
normal directions of the line connecting the two balloon markers (Figure 7). A
B-spline is fit to the two balloon markers and one candidate of the middle control
point and represents a guidewire candidate. Based on our experimental studies,
the spline fit with three control points is enough to model all the guidewire con-
figurations and the target guidewires are always within the guidewire candidates.

To formulate this problem formally, we define B = {b1, ..., bT } and E =
{e1, ..., eT } as the tracked begin and end marker sequences, andM={m1, ...,mT }
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Fig. 7. The first and third panels show two examples of sampled candidates of the
middle control point. The third and fourth panels show the corresponding guidewire
candidates. Each guidewire candidate is a spiline fit with the two tracked balloon
markers and a middle control point candidate.

as the sequence of middle control points. The problem is, given the tracked
marker pairs, all the images of the sequence, and the candidates of middle control
point, to find the best sequence of the middle control points that maximizes the
posterior probability P (M |B,E, Y ):

M̂ = argmax
M

P (M |B,E, Y ). (7)

A similar trellis graph as in Figure 5 is constructed for the Viterbi algorithm.
Each node in the graph represents a guidewire candidate and there are 161
candidates including 160 splines and one straight line. The Viterbi algorithm
recursively finds the weight Ut,k of the most likely state sequence ending with
each candidate spline ct,k whose control points are bt, et, and the kth middle
point candidate mt,k:

U1,k = P (I1|c1,k)P (c1,k) (8)

Ut,k = P (It|ct,k)max
j

(P (ct,k|ct−1,j)Ut−1,j). (9)

The observation probability is defined based on the integral of the intensity
values along ct,k in the LoG-filtered image (ILoG):

P (It|ct,k) ∝
∫ 1

0

ILoG(ct,k(s))ds. (10)

The transition probability P (ct,k|ct−1,j) is defined based on the mean distance
between the points of spline ct,k and the corresponding points of spline ct−1,j

displaced with movement estimated from the two balloon markers.

3 Experimental Results

3.1 Marker Tracking and Guidewire Localization in Rotational
Fluoroscopy

Test Data. In the experiments, we have eight rotational fluoroscopy sequences
acquired with calibrated C-arm X-ray system as the test data. Each sequence
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has 133 frames, and each frame was captured from a different projection angle
with a size of 1240× 960 pixels (0.3 mm/pixel). A projection matrix is provided
for each frame. Manual annotations of the balloon markers and the guidewires
were created and verified by three human experts and serve as the ground truth
in our experiments.

Marker Pair Tracking Results. In the first experiment, we evaluate the
marker tracking performance by the proposed method and compare it with the
marker localization method based on the two-stage detector trained offline using
the PBT classifier [1][7]. In this method the detector is also applied globally and
locally as in our framework, and the top two marker candidates in terms of the
detection confidence are used as the result of each frame.

Table 1. Evaluation of the marker tracking performance

PBT
Proposed Method Proposed Method

(1 iteration) (2 iterations)

#Correct Frames 824 1007 1025
Accuracy 77.44% 94.64% 96.33%

Time (mins) 0.804 1.189 2.014

The results are shown in Table 1. A marker pair is determined as correct
if both markers are within 10 pixels (3 mm) from the ground truth. The last
row of the table shows the average computation time of each method. In the
proposed method with two iterations which achieved the best accuracy, the 3D
models of the two markers are refined using the tracking results from the first
iteration and used in the second iteration which starts from step 3 of Figure 4(a).
The performance converges after 2 iterations because the 3D models of the two
markers stayed almost the same.

We also studied the marker tracking accuracy as a function of the distance
threshold. As shown in Figure 8, the proposed method with two iterations in-
dicated by the blue curve outperformed the PBT detector on all the threshold
values and still can reach more than 90 percent accuracy even when the threshold
value is set to 3 pixels (0.9 mm).

To further analyze the results generated by the proposed marker tracking
method with two iterations, we separated the errors to two types, i.e., the de-
tector error and the Viterbi error. A detector error is caused by the detector
which failed to detect one or both target markers as the candidate at one frame.
The Viterbi error is due to the Viterbi algorithm which picked the wrong pair of
markers although the target markers are within the candidate set. As shown in
Table 2, there are 9 detector errors and 30 Viterbi errors. It can also be noticed
in Table 2 that more detector errors may result in more Viterbi errors. This is
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Fig. 8. Marker pair localization accuracy as a function of the distance threshold

due to the fact that a misdetection of the marker not only affects its own frame
but also affects frames before and after it in the Viterbi algorithm.

At frames where the markers are correctly tracked, the distances between the
automated tracking results and the ground truth markers are computed. The
last column of Table 2 shows the mean distance for each sequence. For all the
correct frames of the eight sequences, the presented method achieves a mean
tracking error of less than 1 pixel.

Table 2. More quantitative analysis of the proposed marker tracking method (2 iter-
ations)

Sequence ID
#Correct Detector Viterbi Distance
Frames Error Error (pixels)

08 208 133 0 0 0.815
08 405 130 1 2 0.791

09 128 1 4 0.719
10 129 0 4 0.929
12 118 5 10 0.796
13 125 2 6 0.827
14 133 0 0 0.421
16 129 0 4 0.589

Average 128.125 1.125 3.750 0.736

Guidewire Localization Results. In the guidewire localization experiment,
we set the scale of the LoG filtering to 5 pixels (1.5 mm) to create the guidewire-
enhanced image ILoG used in Equation 10. Some examples of the proposed
method in dealing with the foreshortening problem are shown in Figure 9. The
proposed method is robust against curvy guidewires with sharp turn and back-
ground clutter. To quantify the guidewire localization performance, we define
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Fig. 9. Some examples of the proposed method in dealing with the foreshortening effect
causing curvy guidewires with sharp turn

the distance between the extracted path and the ground truth path as the mean
of the Euclidean distances between their corresponding points. Distances to the
ground truth paths are computed only on frames on which the marker pair has
been tracked successfully. For all the correct frames of the eight sequences, the
mean guidewire localization error is 1.538 pixels (0.46 mm).

3.2 Automatic Self-initialization of Online Tracking Process in 2D
Live Fluoroscopy Stream

In this experiment, we demonstrate another application of the presented offline
balloon marker tracking method, i.e., automatic self-initialization of generic on-
line object tracker. In this application, We have 318 2D fluoroscopy sequences
acquired from a fixed position of the C-arm system and collected from worldwide
clinics as our test data. Each sequence begins with a contrast-free phase, goes
through a contrast-filled phase when the contrast is fully injected and the vessels
appear, and ends with a contrast-free phase. The balloon markers needed to be
tracked online so as to align the image and generate motion-compensated live
stream (Figure 10) for real-time assitance in stent deployment.

To simulate 2D live fluoroscopy stream, the testing program sends one frame
at a time in the speed of 15 FPS, which is the typical acquisition rate. To au-
tomatically initialize an online tracking phase, we modified the presented offline
balloon marker tracking method and apply it on the first 10 frames collected
from each live stream. In the modified method, the observation probability is
based only on the detection confidences output by the detector since 3D mod-
els of the markers are not available in this case. The transition probability of a
marker pair candidate at time t is based on the length and direction similarities
with the marker pair candidate at time t− 1, and a motion constraint.

On the 318 test sequences, the average marker tracking accuracy reached
by the presented offline tracker is 94.47% and the average computation time
is 0.538 second. When taking into account the 2/3 seconds spent on waiting
the first 10 frames in a typical acquisition rate of 15 FPS, this automatic self-
initialization phase only takes an average of 1.2 seconds. In our evaluations,
the initialization is regarded as a failure for the testing sequence if the markers
were not tracked successfully for more than 5 frames. Only 13 sequences among
the 318 test sequences were not initialized successfully. Initialization failures are
mainly caused by marker-like objects that are consistently detected at the first
10 frames and target markers that are not detected by the detector. After the
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Fig. 10. Balloon marker tracking in 2D fluoroscopy sequence. The frame shown in the
middle is aligned using the tracking result so that the marker positions are fixed.

initialization, an appearance model of the marker pair and some statistics like
the marker pair lengths are generated. An approximate searching region of the
balloon markers can also be identified. Along with the last marker pair position
at the 10th frame, these information can be used to initiate the online tracking
process using a generic online tracker.

4 Conclusion

We have proposed a novel balloon marker tracking and guidewire localization
framework for 3D stent volumetric reconstruction in rotational fluoroscopy. The
proposed methods formulate the balloon marker tracking and guidewire localiza-
tion as finding optimal paths from a set of candidates in the 3D spatial-temporal
space. Quantitative evaluations have been conducted to demonstrate significant
improvement of marker tracking accuracy over learning based detector and ef-
fectiveness of the guidewire localization method. The proposed balloon marker
tracker was also successfully applied to the automatic self-initialization of online
tracking process on 2D fluoroscopy sequences. The future work will be investigat-
ing performing marker tracking and guidewire localization jointly and integrating
the proposed framework into clinical applications.
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