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Abstract. Computational tomography perfusion (CTP) is an important func-
tional imaging modality in the evaluation of cerebrovascular diseases, such as 
stroke and vasospasm. However, the post-processed parametric maps of blood 
flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast  
enhancement profile and the oscillatory nature of the results generated by the 
current computational methods. In this paper, we propose a novel sparsity-base 
deconvolution method to estimate cerebral blood flow in CTP performed at 
low-dose. We first built an overcomplete dictionary from high-dose perfusion 
maps and then performed deconvolution-based hemodynamic parameters esti-
mation on the low-dose CTP data. Our method is validated on a clinical dataset 
of ischemic patients. The results show that we achieve superior performance 
than existing methods, and potentially improve the differentiation between 
normal and ischemic tissue in the brain. 

1 Introduction 

Stroke is the third-leading cause of death in the United States after heart disease and 
cancer. Early and rapid diagnosis of stroke can save critical time for thrombolytic 
therapy. Cerebral perfusion imaging via computed tomography perfusion (CTP) has 
become more commonly used in clinical practice for the evaluation of patients with 
acute stroke and vasospasm. Various mathematical models have been used to process 
the acquired temporal data to ascertain quantitative information, such as cerebral 
blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) [1-3]. 
However recent reports on over-exposure of radiation in CTP have brought the do-
sage problem to the limelight because many patients reported biologic effects from 
radiation exposure, including hair loss and skin burns. A key challenge in CTP is to 
obtain a high-quality CBF image from a low-dose perfusion scan. 

The most commonly used deconvolution method to quantify the perfusion parame-
ters in CTP is truncated singular value decomposition (TSVD) and its variants, such 
as circular TSVD (cTSVD) [2]. The oscillatory nature [4] of the TSVD-based method 
has initiated research that incorporates different regularization methods to stabilize 
the deconvolution, and have shown varying degrees of success in recovering the resi-
due function or the perfusion parameters [3][5-8]. However, prior studies have fo-
cused exclusively on imposing regularizations on the noisy low-dose CTP, without 
considering the corpus of high-dose CTP data.  
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In this paper, we propose a new sparsity-based deconvolution method to estimate 
cerebral blood flow in CTP at low-dose. We first learned a dictionary of CBF maps 
from a corpus of high-dose CTP data and then performed deconvolution-based hemo-
dynamic parameter estimation of the low-dose CTP. This method produces perfusion 
parameter maps with better signal-to-noise characteristics.  

Our major contribution in this work is two-fold: First, we propose to train a dictio-
nary of perfusion parameter maps from the high-dose CT data to improve the quanti-
fication of low-dose CT perfusion. Second, we use local sparsity and redundancy in a 
global spatial Bayesian objective combined with the temporal convolution model. 
Then on the in vivo brain ischemic stroke CTP data, we demonstrate that our esti-
mated CBF values lead to better separation between ischemic tissue—which by its 
angiogenic nature tends to have less blood flow—and normal tissue. 

2 A Dictionary Approach to Deconvolution 

In this section, we present the new sparsity based deconvolution framework for CTP 
quantification. The framework is comprised of two steps: dictionary learning and 
sparse coding.  

2.1 Perfusion Parameter Model 

Based on the theoretical model provided in [1], in CTP, the amount of contrast in the 
region is characterized by 

ሻݐ௩ሺܥ   ൌ ܨܤܥ ׬ ݐ௔ሺ߬ሻܴሺܥ െ ߬ሻ݀߬௧଴  (1) 

where ܥ௩ሺݐሻ is the tissue enhancement curve (TEC) of tracer at the venous output in 
the volume of interest (VOI), CBF is the cerebral blood flow, ܥ௔ሺݐሻ is an arterial 
input function (AIF) and ܴሺݐሻis the tissue impulse residue function (IRF), which 
measures the mass of contrast media remaining in the given vascular network over 
time. To discretize the computation, we assume that ܥ௔ሺݐሻ and ܥሺݐሻ are measured 
with N equally spaced time points ݐଵ, ,ଶݐ … , -The convo .ݐ߂ ே, with time incrementݐ
lution is discretized 

࡯  ൌ ܨܤܥ ڄ ݐ߂ ڄ ࢇ࡯ ڄ  (2) ࡾ

where 

࡯ ൌ ൮ܥሺݐଵሻܥሺݐଶሻܥڭሺݐேሻ൲     ࡾ ൌ ൮ܴሺݐଵሻܴሺݐଶሻܴڭሺݐேሻ൲     ࢇ࡯ ൌ ൮ ଵሻݐ௔ሺܥ ଶሻݐ௔ሺܥ0 ଵሻݐ௔ሺܥ ڮ ڮ0 ڭ0 ேሻݐ௔ሺܥڭ ேିଵሻݐ௔ሺܥ ڰ ڮڭ  ଵሻ൲ݐ௔ሺܥ

 
When ܴሺݐሻ is estimated from Equation (2), CBF can be computed from 

ܨܤܥ  ൌ ܴሺݐ ൌ 0ሻ (3) 

since from the definition of the residue function ܴሺݐሻ, ܴሺݐ ൌ 0ሻ ൌ 1. 
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2.2 Proposed Dictionary Learning Approach to Deconvolution 

Sparse representations over trained dictionaries for perfusion parameter maps restora-
tion rest on the assumption that the image priors in the perfusion maps can be learned 
from images, rather than choosing a prior based on some simplifying assumptions, 
such as spatial smoothness, non-local similarity, or sparsity in the transformed do-
main. Since the low dose CTP have high noise level in TEC, it is important to learn 
the dictionaries from the high-dose (thus low noise level) CTP. Therefore, we imple-
ment the sparse and redundant representation in the spirit of Sparseland [9]. In our 
model, we estimate perfusion parameters by considering both temporal correlations 
and example-based restoration based on dictionaries learned from high-dose data. 

Problem Formulation: Suppose ܥሺݔ, ,ݕ ,ݖ ሻݐ א Թேൈ்  is TEC in VOI ሾݔ, ,ݕ  ሿ் fromݖ
a spatial-temporal patch of size √ܰ ൈ √ܰ ൈ 1  pixels and ܶ  time points. ܴሺݔ, ,ݕ ,ݖ ሻݐ א Թேൈ் represent the remaining tracer concentration (RIF) of the voxel ሾݔ, ,ݕ  are the respective row, column ݖ and ݕ ,ݔ where ,ݐ ሿ at a given time pointݖ
and slice coordinates of the spatial-temporal data. The least-square form of (2) is 

௟௦ܬ  ൌ ԡ࡯ െ  ԡଶଶ (4)ࡾࢇ࡯

Due to the noise in the low-dose CTP data, the solution of (4) may be severely dis-
torted. In the spirit of Sparseland model, we incorporate a prior of not only temporal 
correlation but also sparse representation from the learned dictionaries of the parame-
ter map patches through the inclusion of two constraints to the original least-square 
cost function. This results in the new cost function 

ܬ  ൌ ࡯ଵԡߤ െ ԡଶଶࡾࢇ࡯ ൅ ԡݔ െ ԡଶଶߙࡰ ൅  ԡ଴ (5)ߙଶԡߤ

where ݔ א Թே is the CBF perfusion map we want to estimate for the VOI at ሾݔ, ,ݕ ࡰ ,ሿݖ א Թேൈ௄ is the learned dictionary of CBF perfusion map patches that consists of ܭ 
key patches from the training data. ߙ א Թ௄ represents a sparse vector so that ߙࡰ can 
approximate ݔ with certain error tolerance. From the definition of the residue func-
tion, we can get ݔ ൌ ܴሺݐ ൌ 0ሻ. The choice of two parameters ߤଵ and ߤଶ dictate how 
important the temporal correlation term (the first term) and the sparsity term (the third 
term) should be weighted. 

Dictionary Learning: To solve D, we use the recently developed K-SVD algorithm 
[10] which solves (5) by iterating exact K times of Singular Value Decomposition 
(SVD).We first learn a dictionary by using randomly sampled patches from the CBF 
perfusion maps estimated from the high-dose CTP data.  Given a set of image 

patches ܼ ൌ ൛ݖ௝ൟ௝ୀଵெ
, each of √ܰ ൈ √ܰ ൈ 1. We seek the dictionary D that minimizes 

 min࡭,ࡰ ∑ ฮߙ௝ฮ଴ெ௝ୀଵ , subject toฮݖ௝ െ ௝ฮଶߙࡰ ൑ ߳, ݅ ൌ 1, … , ܰ (6) 

where ߳ ൐ 0 is the prescribed error tolerance of representation error. 
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To solve (6), we start from an initial dictionary (i.e. the overcomplete DCT dictio-
nary), and an initial estimation of the CBF parameter map (i.e. CBF map from cTSVD 
algorithm). Then K-SVD algorithm approaches the solution of (6) by alternating the 
following two steps: the minimization with respect to ߙ with D fixed using orthogon-
al matching pursuit (OMP), and the update of atoms in D using the current A. The 
update stage modifies the atoms in D one by one to better represent the data Z. For 
each column k = 1,2,…,K, we find the index set ܫ௞ ൌ ሼ݅: ௞௜ߙ ് 0ሽ, which is the set of 
indices of ݖ௝’s who used ݀௞ in representation in the sparse coding step. Then we set 
error matrix ࢑ࡱ ൌ ࢑ࢆ െ ࢑ࡰ where ,࢑࡭࢑ࡰ  is ࡰ with ݀௞  replaced by 0. ࢑ࢆ  and ࢑࡭ 
collect the columns with indices in ࢑ࡵ from ࢆ and ࡭. Finally, we apply SVD de-
composition ࢑ࡱ ൌ -Update ݀௞ in D with the first column of U, and the coeffi .்ࢂࢫࢁ
cients in ߙ௝ with the entries in V multiplied by ߉ሺ1,1ሻ. Theoretically K-SVD solver 
may not produce stable results, while in this specific application and in all experimen-
tal the solver works very well and yields stable reconstructed images. 

Sparse Perfusion Deconvolution (SPD): When the dictionary D is known, the CBF 
perfusion parametric map from the low-dose CTP data can be estimated using our 
sparse perfusion deconvolution method by minimizing (5) in an iterative fashion. Our 
SPD method also consists of iterating the following two steps: minimization with 
respect to ߙ with x fixed, and update of x with ߙ fixed. 

The first step is sparse coding, which is formulated a 

      subject to      ԡݔ െ ԡଶߙࡰ ൑ ߳ (7) 

where the value of ߳ implies specific value for ߤଶ. Equation (7) can be solved by any 
matching pursuit algorithm. Here we use orthogonal matching pursuit (OMP). 

The second step is to minimize 

 min௫ ࡯ଵԡߤ െ ԡଶଶࡾࢇ࡯ ൅ ԡݔ െ  ԡଶଶ (8)ߙࡰ

Because ݔ ൌ ܴሺݐ ൌ 0ሻ, (8) can be rewritten as  

 min௫ ࡯ଵฮߤ െ ෡ࡾࢇ࡯ ڄ ݀݅ܽ݃ሺݔሻฮଶଶ ൅ ԡݔ െ  ԡଶଶ (9)ߙࡰ

where ࡾ෡ is the residue functions normalized by x so that  ෠ܴሺݐ ൌ 0ሻ ൌ 1. (9) is a qua-
dratic term that has a closed-form solution. 

If vec(B) denotes the vector formed by the entries of a matrix B in column major 
order, and define ࡼ ൌ  ෡, thenࡾࢇ࡯

 vec ቀ࡯ െ ෡ࡾࢇ࡯ ڄ ݀݅ܽ݃ሺݔሻቁ ൌ vec൫࡯ െ ࡼ ڄ diagሺݔሻ൯ ൌ vecሺ࡯ሻ െ  (10) ݔࡹ

where M is a ܶܰ ൈ ܰ matrix in form of  

ࡹ ൌ ൮ .ܲ,ଵ 00 .ܲ,ଶ ڮ ڮ0 ڭ0 0ڭ 0 ڰ ڮڭ .ܲ,ே
൲ 

,
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where .ܲ,௜ .  dictates the ݅௧௛ column of matrix P in its column vector form. Equation 
(9) can be transformed into the conventional least square problem 

 min௫ԡሺ࢔ࡵ; ݔሻࡹ െ ሾߙࡰ; vecሺ࡯ሻԡଶଶ (11) 

Let ࡭ ൌ ሺ࢔ࡵ; ࡮ ሻ.  andࡹ ൌ ሺߙࡰ; vecሺ࡯ሻሻ, we get 

ݔ  ൌ  (12) ࡮ା࡭

where ࡭ା.  is the pseudo-inverse of matrix A, ሺ. ; , ሻ denotes a vector or matrix by 
stacking the arguments vertically. 
    To address the global CBF deconvolution problem, we use a sliding window of 
size √ܰ ൈ √ܰ on the specific slice and overlaps the windows by step size of 1. The 
final global CBF parametric map is generated by averaging the areas that the windows 
overlap. 

3 Experiments 

In this section, we describe the results from comparing our approach with cTSVD on 
two clinical subjects with ischemia related to vasospasm. The presence and location 
of the perfusion deficits were identified by board-certified radiologists with subspe-
cialty training in neuroradiology. 

3.1 Data Acquisition 

CTP was performed during the typical time-period for vasospasm in aneurysmal sub-
arachnoid hemorrhage, between days 6-8 in asymptomatic patients and on the same 
day clinical deterioration occurred in symptomatic patients. There is a standard scan-
ning protocol for CTP at our institution using GE Lightspeed or Pro-16 scanners 
(General Electric Medical Systems, Milwaukee, WI) with cine 4i scanning mode and 
45 second acquisition at 1 rotation per second using 80 kVp and 190 mA.  

3.2 Experimental Results 

For cTSVD, a threshold of 6% of the maximum singular value is used, in accordance 
with parameter tuning in our experiments. For all experiments, the dictionary used are 
of size 64 ൈ 256, designed to handle perfusion image patches of 8 ൈ 8 pixels. In all 
experiments, the denoising process uses a sparse coding of each patch of size 8 ൈ 8 
pixels from noisy image. The parameters are chosen empirically and the experimental 
results are not sensitive to the parameters. Repetitive scanning of the same patient at 
different radiation doses is unethical and a physiological phantom which can uptake 
contrast agent is currently not available. Thereby, low-dose CTP data is simulated 
following the practice in [11], where Gaussian noise ε~Nሺ0, σଶሻ is added to the 
high-dose CTP data. In the following, peak signal-to-noise ratio (PSNR) is calculated 
by dividing the peak value of the tissue time-enhancement curve by the noise standard 
deviation σ. 



Sparsity-Based Deconvolution of Low-Dose Perfusion CT Using Learned Dictionaries 277 

    1) Learned Dictionaries: Figure 1 shows the redundant DCT dictionary on the 
left, with each atom of an 8 ൈ 8 pixel image. This dictionary was used as the initiali-
zation for the training. The globally trained dictionary is shown on the right side of 
Fig. 1. This dictionary was trained on a data-set of 10,000 8 ൈ 8 patches of high-dose 
CBF perfusion maps. 
    2) LACA Estimation: Figure 2 shows CBF maps and the zoomed-in regions of a 
normal clinical subject. The zoomed-in region of the left anterior cerebral artery 
(LACA) territory (in X-ray image left and right are opposite) of the CBF map using 
TSVD in high-dose (190mA), low-dose   (PSNR=20) and using SPD in low-dose 
(PSNR=20) are shown on the right. The vascular region supplied by the LACA has 
increased noise in the CBF map using TSVD. 

 

Fig. 1. Left: DCT dictionary. Right: Globally trained dictionary using high-dose CBF maps. 

In comparison, significantly improved spatial smoothness in the vascular region and 
higher color contrast between the artery region and the vascular region can be ob-
served from the CBF map computed using our proposed method. The standard devia-
tion the LACA region computed using TSVD and SPD under different PSNR are 
shown in Table 1. 

 

Fig. 2. (a) An acquired CT image from a CTP exam in a normal subject. (b) Left anterior cere-
bral artery (LACA) territory using cTSVD in high-dose (190mA) (c) cTSVD in low-dose 
(PSNR=20) (d) our proposed SPD in low-dose (PSNR=20) data. 
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Table 1. Standard deviation of the LACA region on a patient with normal blood flow under 
different PSNR using TSVD and our SPD method 

PSNR 20 40 60 80 
TSVD 56.09 47.11 23.14 22.98 
SPD 41.94 42.12 16.44 16.47 

 
3) Ischemic Comparison: We also show the CBF maps processed for patients with 

ischemic deficits (Figure 3) using TSVD and our proposed SPD on high-dose and 
low-dose CTP data. On the left, the low value of CBF in the ischemic patient becomes 
more evident while the vascular regions become smoother and variations in the esti-
mated blood flow maps are reduced greatly by our method. The difference of the 
blood flows between the vascular and the artery regions were significantly enlarged.  

4) Ischemic Voxels Clustering: By aggregating all voxels (within the VOI) from 
the normal patient data sets into a single “normal” group with n1 samples, and the 
ischemia patient data sets into an “abnormal” group with n2 samples. In our case, 
n1=1000 and n2=1000. To quantify the separability between normal and ischemic 
CBF values, we define the distance between these two clusters as: 

 

Fig. 3. CBF maps and zoomed-in regions in an ischemic patient with a RMCA deficit estimated 
by (a) TSVD in high-dose (b) TSVD in low-dose (c) SPD in low-dose. Low blood flow is deli-
neated in blue. Red color indicates high blood flow value, while blue color indicates low blood 
flow value. 

              
d =

μ1 − μ2

σ1
2 /n1 +σ 2

2 /n2

                               (13) 

where ߤଵ, ߤଶ are the means, and ߪଵ, ߪଶ are the standard deviations of CBF in the 
normal and ischemic clusters respectively. We expect our SPD algorithm to produce 
larger distance d as defined in Eq. (13), that is, to more definitely differentiate  
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between normal and ischemic regions in the brain. Fig.4 show scatter plots of normal 
vs. ischemic clusters. It is apparent that the two clusters are more separable in data 
processed via SPD than TSVD. 

  

Fig. 4. (a) Two clusters of normal vs. ischemic regions in the brain generated by TSVD me-
thod. The distance d between two clusters is 22.67. (b) Two clusters of normal vs. ischemic 
regions by our sparse perfusion deconvolution method. The distance d between two clusters is 
63.79. 

4 Conclusion 

In this paper, we introduced a novel sparsity-based deconvolution algorithm to esti-
mate cerebral blood flow in low-dose CTP. We trained a dictionary using CBF maps 
computed from high-dose CTP and then performed deconvolution-based hemody-
namic parameter estimation of the low-dose CTP data. The experimental results  
indicated that our algorithm not only outperforms TSVD algorithm but also may sig-
nificantly improve the diagnostic performance of ischemia related to vasospasm in 
aneurysmal subarachnoid hemorrhage patients. 
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