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Abstract. A robust automated segmentation of abdominal organs can
be crucial for computer aided diagnosis and laparoscopic surgery assis-
tance. Many existing methods are specialised to the segmentation of
individual organs or struggle to deal with the variability of the shape
and position of abdominal organs. We present a general, fully-automated
method for multi-organ segmentation of abdominal CT scans. The method
is based on a hierarchical atlas registration and weighting scheme that
generates target specific priors from an atlas database by combining as-
pects from multi-atlas registration and patch-based segmentation, two
widely used methods in brain segmentation. This approach allows to
deal with high inter-subject variation while being flexible enough to be
applied to different organs. Our results on a dataset of 100 CT scans com-
pare favourable to the state-of-the-art with Dice overlap values of 94%,
91%, 66% and 94% for liver, spleen, pancreas and kidney respectively.

1 Introduction

The accurate segmentation of organs like the liver, pancreas and kidneys on
abdominal computed tomography (CT) scans form an important input to com-
puter aided didagnosis (CAD) systems and to laparoscopic surgery assistance.
The detailed segmentation and rendering of such structures can crucially as-
sist clinicians in surgery planning and navigation. Further applications include
cancer detection and staging, especially of pancreatic cancer [1]. Most previous
work is based on either statistical shape models or probabilistic atlases learned
on a training set and applied in combination with post-processing steps based
on image intensities and morphology that are often specialized to a particular
organ [2–5]. However, the high inter-subject variability in shape and location
of abdominal organs, especially the pancreas, poses a challenge to generalized,
population-based models and requires more subject-specific prior knowledge. In
[1], a subject-specific segmentation model based on statistical shape models is
presented. While this method achieves good segmentation results, it is specific
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and limited to pancreas segmentation. Linguraru et al.[5] propose a 4D graph
model that incorporates patient-specific data for multi-organ segmentation.

Subject-specific, automated segmentation methods based on multi-atlas reg-
istration have been pioneered and are now widely used for brain segmentation
of magnetic resonance (MR) imaging [6],[7]. Other application areas include car-
diac segmentation on CT [8]. With multi-atlas registration, high accuracies are
achieved for the segmentation of cortical and subcortical brain structures [6],[7].
A comparatively low variation between subjects in overall brain shape generally
allows a good global alignment, providing atlas-patient correspondences that
allow the generation of target specific segmentation priors [7]. The high shape
and position variability in abdominal organs as well as the differences in global
abdominal shape and potentially differences in field of view, forms a significant
challenge to the pairwise image registration of abdominal scans. This hampers
correspondence estimation on a localized voxel level but also the organ level
which is a key requirement for atlas-based propagation strategies.

Patch-based segmentation [9] has recently been proposed as an alternative to
multi-atlas registration in brain imaging. In this approach, a coarse alignment
is sought between the target and atlas images, and patch-comparison between
target and atlases is carried out in a local window to obtain the target labelling.

Previous work for abdominal segmentation based on spatial atlases employed
general, population-based probabilistic models, e.g., [2]. Here, we propose an
approach that is more sensitive to inter-subject variation. We generate a subject-
specific probabilistic atlas for an unlabelled subject by selecting and aligning suit-
able atlases from a database, combining multi-atlas registration and patch-based
refinement. We have evaluated the proposed method on a set of 100 abdominal
CT scans for the segmentation of the liver, spleen, kidneys and pancreas and
achieve a segmentation accuracy that compares favourably to existing methods.

2 Method

In the proposed approach, the final segmentation is obtained by establishing
correspondences between every target voxel and multiple, manually labelled atlas
images. Atlases are weighted on three scales: on a global level, the organ level and
the voxel level. In the first step, the set of most suitable atlases from a database is
selected for a new subject by measuring global image appearance. After aligning
all pre-selected atlases with the target image, a local atlas weighting is carried
out on an organ by organ basis. Finally, a patch-based segmentation refinement
is applied to identify atlas labels at the voxel level.

Given a target image I, the segmentation problem is formulated by assigning
each voxel xi ∈ I, a label l ∈ {l0, l1, ..., lL} with L anatomical labels and a
background label l0. The labelling procedure is defined as a weighted fusion of
expert votes defined on a database of N atlases A = {A1, ...,AN}:
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Fig. 1. In the proposed method, atlases are weighted on the global, organ, and voxel
level. This scheme specifies the expert knowledge used during the segmentation in a
coarse to fine approach, allowing an improved correspondence estimation. On the global
level, a binary weighting is applied while a continuous weighting is used in organ- and
voxel levels (indicated in red tone).

with weights wg
n defined on the global atlas level and local weights wo

j and wv
j

that are assigned on an organ- and voxel-level respectively.
Based on this hierarchical weighting scheme, the target segmentation is in-

ferred from all available atlases. The proposed method is illustrated in Fig. 1: at
the global stage, a set of atlases is selected based on overall appearance. After
pairwise alignment, an individual atlas weighting is defined for every organ.
Finally, the labelling at the most localized level is inferred after non-linearly
aligning atlases on an organ level and by evaluating image-atlas similarities on
a voxel-by voxel basis.

Weights on all levels are based on the sum of squared intensity differences
Δ(R, n) between image I and atlas An, defined over a region of interest R
measuring image appearance on the relevant level of locality:

Δ(R, n) =
∑

j∈R

‖I(xj) −An(xj)‖2 (2)

In Sections 2.1, 2.2 and 2.3, the atlas weighting schemes applied at the global-
organ- and voxel levels are described respectively.
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2.1 Global Atlas Weighting

For a given target image I, binary weights wg are assigned on a global atlas
level. This weight defines a pre-selection of atlases based on global appearance
in order to deal with significant differences in body size and field of view. No
pairwise registration is performed before computing global atlas weights. By
doing so, local minima that may arise from a mis-registration of very different
images does not influence the measurement. The ROI R in Eq. 2 spans the whole
CT scan and weights are defined as follows:

wg
n =

{
1 if Δ(I, n) < Δδ

0 , otherwise. (3)

where Δδ is a threshold on the global image distance.

2.2 Organ Level Atlas Weighting

Atlases An that show a high similarity with the target image I at a global
scale are thus weighted with wg

n = 1. These atlases are then aligned with the
target image to perform atlas selection on the localized organ, and voxel levels.
After pairwise alignment, the atlas label maps Sl

n for label l from atlas n are
transformed to the target space. The organ-wide atlas weight wo

l,n is the product
of a term wI

l,n that is defined by atlas-target similarities as well as a term wS
l,n

that is defined by the agreement between individual atlas label maps:

wo
l,n = wI

l,nwS
l,n (4)

The similarity-based term wI
l,n is defined after affine alignment of An to I and

measures similarities over the transformed organ label:

wI
l,n = exp

(

−Δ(Sl
n, n)
h

)

(5)

where h is a user-set variable that defines the number of atlases supporting
the segmentation of organs with label l. wS

l,n measures the agreement between
transformed label maps after applying a non-rigid atlas-target alignment:

wS
l,n =

1
N − 1

∑

k∈N,k �=n

JI(Sl
k, Sl

n)wg
k (6)

where JI is the Jaccard index.
This term is based on a similar principle to the one proposed in the STAPLE

algorithm [10] where raters that show good agreement with others are weighted
higher. The main difference being that in STAPLE the confidence vote is eval-
uated on the voxel-level while in our approach confidence is evaluated over the
whole label of a given structure, allowing independent intensity-based corrections
at the voxel level.
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2.3 Local Voxel Weighting

Label weights on a voxel level are assigned based on the similarity of a patch sur-
rounding a given voxel xi ∈ I and patches in a local neighbourhood of all aligned
atlas images An. This nonlocal means fusion strategy was recently adapted from
image-denoising to the labelling of brain MR scans [9]. A 3-D patch of size sp x
sp x sp is defined around every voxel xi ∈ I. The image similarity between this
patch and patches of the same size defined around the voxels in a local neigh-
bourhood of size sn, is evaluated in all available atlases. This results in weights
defined by patches P around xi and the voxels xn,j in all atlases An and in the
defined search window. Following [9], the weights are defined as

wv
j (xi, xj) = exp

(

−Δ (P, n)
hv

)

(7)

where xj is a voxel in atlas An as defined in Eq. 1 and hv defines the weighting
in relation to patch distance.

3 Experiments and Results

Our method was evaluated on 100 3D abdominal CT scans acquired from 21
female and 79 male subjects. Subjects were aged between 26 and 83 with a
mean age of 63. Scans have a resolution of 512 x 512 voxels in plane and contain
between 263 and 538 slices depending on the field of view and the slice thickness.
Voxel sizes range between 0.55 and 0.82 mm and the slice spacing varied between
0.4 and 0.8 mm. For each scan a manual segmentation generated by a single
trained rater is available for the liver, spleen, pancreas and the kidneys.

3.1 Experiments

A leave-one-out strategy was applied, where one scan in turn was segmented by
using the remaining 99 subjects as atlas database. The threshold Δδ was defined
in a way that 30 atlases where weighted with wg

n = 1 by the global similarity
measure in Eq. 3. Correspondence is sought between atlases and target image
before extracting organ- and voxel level similarities in Eqs. 4 and 7. A rigid and
affine registration step was followed by a multi-level non-rigid registration step
using free-form deformations with B-spline control-point spacings of 20 mm,
10 mm and 5 mm [11]. The registration is driven by the normalized mutual
information between target and source in the relevant region of interest.

In the patch-based segmentation procedure used to obtain voxel-level weights
defined in Eq. 7 a patch-size of sp = 5 and a neighbourhood size of sn = 9 where
used and hv was set to the minimum patch distance as proposed in [9].

The results obtained with the proposed approach are compared to results
based on a direct application of atlas-registration with atlas selection as proposed
in [6],[7]. For direct fusion, a set of 30 atlases is selected for each organ from the
atlas database based on image similarites and non-rigidly aligned with the target.
The final label at the voxel label is obtained by performing a majority voting
strategy as widely used in brain segmentation [6],[7].
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Table 1. Average Jaccard index (JI), Dice overlap (similarity index, SI) and Recall/
Precision for 100 subjects. Compared are reference segmentations with the proposed
method and a standard mulit-atlas segmentation technique.

Proposed method Direct fusion
Structure

Liver
Spleen
Pancreas
Kidneys

Dice Jaccard Rec./Prec.

94.4 89.5 95.3/93.9
90.9 84.6 92.4/90.7
65.5 49.6 62.9/70.7
94.3 88.1 93.4/93.9

Dice Jaccard Rec./Prec.

93.0 87.1 93.5/92.9
78.4 68.0 77.0/82.9
43.6 29.3 33.6/71.9
88.3 79.6 84.9/92.3

(a) (I) (II)

(b) (III) (IV)

Fig. 2. Panels (a) and (b) show renderings for the liver (brown), kidneys (pink), pan-
creas (yellow) and spleen (red) based on the manual reference and the proposed method
respectively. Panels I-IV illustrate the automated, hierarchical pancreas segmentation
on an axial slice with manual labels outlined in green and atlas probabilities in red
tone. Panel (I) shows the overall distribution of all atlases in the database. In panel
(II), shows the subject-specific probabilistic atlas at the global scale. Panel (III) shows
the refined atlas after pairwise registration and organ-wide intensity-based weighting.
Panel (IV) also incorporates the proposed confidence-based weighting.

3.2 Results

Automated and manual segmentations were compared by widely used measures
that all are defined by the true positive (TP) and false negative (FN) rates and
that range from 0 to 100. The Jaccard index (JI), the Dice overlap (Similarity
index, SI) as well as recall (REC) and precision (PRE) values between structural
labels obtained with the proposed method and direct fusion as well as manual
reference labels are presented in Tab. 1.
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Fig. 2 shows example for the automated segmentation procedure. Panels (a)
and (b) compare volume renderings obtained from automated and manual seg-
mentations. Panels (I) - (IV) present exemplarily the different steps of the pro-
posed hierarchical atlas weighting scheme for pancreas segmentation.

4 Discussion and Conclusion

In this paper we propose a novel, atlas-based segmentation technique for multi-
organ abdominal segmentation. The strength of the presented method is its
general nature which allows it to be applied robustly to multiple organs with-
out specialisation and individual parameter settings. The method is based on
multi-atlas registration, a technique widely used in brain imaging. Here, we
present a hierarchical coarse-to-fine atlas weighting strategy that is designed
to deal with the challenges found in abdominal segmentation. Especially, a large
inter-subject variation in abdominal appearance poses a significant challenge to
image registration algorithms and therefore to correspondence estimation, the
essence of atlas-based segmentation techniques. We show how the implementa-
tion of the proposed hierarchical model leads to segmentation results that com-
pare favourable to the state-of-the-art on the segmentation of a large (N=100)
and relatively diverse image database.

The results in Tab. 1 show how the proposed hierarchical model clearly out-
performs multi-atlas selection and registration schemes as originally proposed
for brain segmentation [7]. Especially for highly variable structures like the pan-
creas, a substantial improvement is achieved. The method performs at least
as good as state-of-the-art multi-organ segmentation strategies presented in re-
cent years [3],[5]. Both methods, however, are evaluated on less structures and
smaller datasets. The evaluation of the hierarchical model in [3], is restricted to
the liver and the work in [5] does not provide results for the pancreas which is
the most challenging structure due to a high variability in shape and also posi-
tion. Shimizu et. al [1] recently describe a method based on shape models that
addresses this challenge, achieving a satisfactory accuracy for pancreas segmen-
tation on a database of 20 subjects. While our method gives stable results for
pancreas segmentation, such more specialized models can improve the segmenta-
tion accuracy. Adding some shape knowledge may further improve the presented
results for more challenging organs and is a direction of future work.

The run-time of our method is defined by that of the non-rigid registration
step. In the current research implementation, one registration runs for approxi-
mately one hour for a whole abdominal scan, resulting in an overall runtime for
all organs of around three hours on a machine with eight Intel Xeon cores clocked
at 3GHz and 32GB RAM. A recent implementation [12] of the used registration
algorithm [11], however, allows speed ups of around 10 fold, making the method
relevant for an application in a clinical environment.

Future work needs to be done to evaluate the full potential of the proposed
method. As can be seen from the volume rendering in Fig. 2, the lack of topolog-
ical constraints in our voxel-level weighting may produce sometimes fuzzy and
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anatomically unplausible or even subdivided segmentations. A way to address
this problem is to incorporate smoothness constraints into the final label as-
signment instead of independently thresholding the weight at the 50% level as
described in the current model in Eq. 1. One way to include such constraints is
via graph cuts, an optimization technique widely used for labelling problems in
medical imaging [13]. Furthermore, to assess inter-observer variability, all refer-
ence segmentations will be performed by a second independent, trained rater.

References

1. Shimizu, A., Kimoto, T., Kobatake, H., Nawano, S., Shinozaki, K.: Automated
pancreas segmentation from three-dimensional contrast-enhanced computed to-
mography. Int. J. CARS 5, 85–98 (2010)

2. Park, H., Bland, P., Meyer, C.: Construction of an abdominal probabilistic atlas
and its application in segmentation. IEEE TMI 22(4), 483–492 (2003)

3. Okada, T., Yokota, K., Hori, M., Nakamoto, M., Nakamura, H., Sato, Y.: Con-
struction of Hierarchical Multi-Organ Statistical Atlases and Their Application to
Multi-Organ Segmentation from CT Images. In: Metaxas, D., Axel, L., Fichtinger,
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