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Abstract. Quantum processes describe concurrent communicating sys-
tems that may involve quantum information. We propose a notion of
open bisimulation for quantum processes and show that it provides both
a sound and complete proof methodology for a natural extensional be-
havioural equivalence between quantum processes. We also give a modal
characterisation of the behavioural equivalence, by extending the
Hennessy-Milner logic to a quantum setting.

1 Introduction

The theory of quantum computing has attracted considerable research efforts in
the past twenty years. Benefiting from the superposition of quantum states and
linearity of quantum operations, quantum computing may provide considerable
speedup over its classical analogue [30,13,14].

As is well known, it is very difficult to guarantee the correctness of classical
communication protocols at the design stage, and some simple protocols were
eventually found to have fundamental flaws. One expects that the design of com-
plex quantum protocols is at least as error-prone, if not more, than in the classi-
cal case. In view of the success that classical process algebras [23,18,1] achieved
in analyzing and verifying classical communication protocols, several research
groups proposed various quantum process algebras with the purpose of modeling
quantum protocols. Jorrand and Lalire [21,22] defined a language QPAlg (Quan-
tum Process Algebra) by adding primitives expressing unitary transformations
and quantum measurements, as well as communications of quantum states, to a
CCS-like classical process algebra. An operational semantics of QPAlg is given,
and further a probabilistic branching bisimulation between quantum processes is
defined. Gay and Nagarajan [12,11] proposed a language CQP (Communicating
Quantum Processes), which is obtained from the pi-calculus [24] by adding prim-
itives for measurements and transformations of quantum states, and allowing
transmission of qubits. They presented a type system for CQP, and in particular
proved that the semantics preserves typing and that typing guarantees that each
qubit is owned by a unique process within a system. A probabilistic branching
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bisimulation for CQP was proposed by Davidson [3] and shown to be a con-
gruence. The second author of the current paper, together with his colleagues,
proposed a language named qCCS [8,31,9] for quantum communicating systems
by adding quantum input/output and quantum operation/measurement prim-
itives to classical value-passing CCS [15,16]. One distinctive feature of qCCS,
compared to QPAlg and CQP, is that it provides a framework to describe, as
well as reason about, the communication of quantum systems which are entan-
gled with other systems. Furthermore, a bisimulation for processes in qCCS has
been introduced, and the associated bisimilarity is proven to be a congruence
with respect to all process constructors of qCCS. Uniqueness of the solutions to
recursive process equations is also established, which provides a powerful proof
technique for verifying complex quantum protocols.

In the study of quantum systems, as well as classical communicating systems,
an important problem is to tell if two given systems exhibit the same behaviour,
as this may allow us to replace a complex system with a simplified but equiva-
lent one. To approach the problem we first need to give criteria for reasonable
behavioural equivalence. Two systems should only be distinguished on the basis
of the chosen criteria. Therefore, these criteria induce an extensional equivalence
between systems, ≈behav, namely the largest equivalence which satisfies them.

Having an independent notion of which systems should, and which should
not, be distinguished, one can then justify a particular notion of equivalence, e.g.
bisimulation, by showing that it captures precisely the touchstone equivalence.
In other words, a particular definition of bisimulation is appropriate because
the associated bisimulation equivalence, say ≈bis, is sound with respect to the
touchstone equivalence and provides for it a complete proof methodology, i.e.
s1 ≈bis s2 if and only if s1 ≈behav s2.

This approach originated in [19] but has now been widely used for differ-
ent process description languages; for example, see [20,28] for its application to
higher-order process languages, [26] for mobile ambients, [10] for asynchronous
languages and [6] for probabilistic timed languages. Moreover, in each case the
distinguishing criteria are almost the same. The touchstone equivalence should
be compositional (preserved by some natural operators for constructing sys-
tems), barb-preserving (equivalent processes exhibit the same observables) and
reduction-closed (nondeterministic choices are in some sense preserved).

We adapt this approach to quantum processes. Using natural versions of these
criteria we obtain an appropriate touchstone equivalence, which we call reduction
barbed congruence, ≈r. We then develop a theory of bisimulations which is both
sound and complete for ≈r. Moreover, we provide a modal characterisation of
≈r in a quantum logic based on Hennessy-Milner logic [17] by establishing the
coincidence of the largest bisimulation with logical equivalence.

Due to lack of space, we omit all proofs; they can be found in [5]. We also
refer the readers to [25] for the basic notions of linear algebra and quantum
information theory used in this paper.
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2 A Probabilistic Model

We review the model of probabilistic labelled transition systems (pLTSs). Later
on we will interpret the behaviour of quantum processes in terms of pLTSs
because quantum measurements give rise to probability distributions naturally.

We begin with some notations. A (discrete) probability distribution over a set
S is a function Δ : S → [0, 1] with

∑
s∈S Δ(s) = 1; the support of such a Δ is

the set �Δ� = { s ∈ S | Δ(s) > 0 }. The point distribution s assigns probability
1 to s and 0 to all other elements of S, so that �s� = {s}. In this paper we only
need to use distributions with finite support, and let Dist(S) denote the set of
finite support distributions over S, ranged over by Δ,Θ etc. If

∑
k∈K pk = 1 for

some collection of pk ≥ 0, and the Δk are distributions, then so is
∑

k∈K pk ·Δk

with (
∑

k∈K pk ·Δk)(s) =
∑

k∈K pk ·Δk(s).

Definition 1. A probabilistic labelled transition system is a triple 〈S,Actτ ,→〉,
where S is a set of states, Actτ is a set of labels Act augmented with distinguished
element τ , and → is a subset of S × Actτ ×Dist(S).

We often write s
α−→ Δ for (s, α,Δ) ∈→, and s

α−→ for ∃Δ : s
α−→ Δ. In a

pLTS actions are only performed by states, in that actions are given by relations
from states to distributions. But in general we allow distributions over states
to perform an action. For this purpose, we lift these relations so that they also
apply to distributions [7].

Definition 2. Let R ⊆ S × Dist(S) be a relation from states to distributions
in a pLTS. Then R◦ ⊆ Dist(S)×Dist(S) is the smallest relation that satisfies
the two rules: (i) s R Θ implies s R◦ Θ; (ii) Δi R◦ Θi for all i ∈ I implies
(
∑

i∈I pi ·Δi) R◦ (
∑

i∈I pi · Θi) for any pi ∈ [0, 1] with
∑

i∈I pi = 1, where I is
a countable index set.

We apply this operation to the relations
α−→ in the pLTS for α ∈ Actτ , where

we also write
α−→ for (

α−→)
◦
. Thus as source of a relation

α−→ we now also allow

distributions. But note that s
α−→ Δ is more general than s

α−→ Δ because if
s

α−→ Δ then there is a collection of distributions Δi and probabilities pi such
that s

α−→ Δi for each i ∈ I and Δ =
∑

i∈I pi ·Δi with
∑

i∈I pi = 1.

We write s
τ̂−→ Δ if either s

τ−→ Δ or Δ = s. We define weak transitions
â

=⇒ by letting
τ̂

=⇒ be the reflexive and transitive closure of
τ̂−→ and writing

Δ
â

=⇒ Θ for a ∈ Act whenever Δ
τ̂

=⇒ a−→ τ̂
=⇒ Θ. If Δ is a point distribution, we

often write s
â

=⇒ Θ instead of s
â

=⇒ Θ.
Let R ⊆ S×S be a relation between states. It induces a special relation R̂ ⊆

S × Dist(S) between states and distributions by letting R̂ def
= {(s, t) | s R t}.

Then we can use Definition 2 to lift R̂ to be a relation (R̂)
◦
between distributions.

For simplicity, we combine the above two lifting operations and directly write R◦

for (R̂)
◦
in the sequel, with the intention that a relation between states can be

lifted to a relation between distributions via a special application of Definition 2.
In this particular case, it holds that Δ R◦ Θ implies Θ (R−1)

◦
Δ, where s R t iff
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t R−1 s for any s, t ∈ S. This way of lifting relations has elegant mathematical
characterisations; see [4] for more details.

3 Quantum CCS

We introduce a quantum extension of classical CCS (qCCS) which was originally
studied in [8,31,9]. Three types of data are considered in qCCS: as classical data
we have Bool for booleans and Real for real numbers, and as quantum data
we have Qbt for qubits. Consequently, two countably infinite sets of variables
are assumed: cVar for classical variables, ranged over by x, y, ..., and qVar for
quantum variables, ranged over by q, r, .... We assume a set Exp, which includes
cVar as a subset and is ranged over by e, e′, . . . , of classical data expressions over
Real, and a set of boolean-valued expressions BExp, ranged over by b, b′, . . . ,
with the usual boolean constants true, false, and operators ¬, ∧, ∨, and →.
In particular, we let e �� e′ be a boolean expression for any e, e′ ∈ Exp and
�� ∈ {>,<,≥,≤,=}. We further assume that only classical variables can occur
freely in both data expressions and boolean expressions. Two types of channels
are used: cChan for classical channels, ranged over by c, d, ..., and qChan for
quantum channels, ranged over by c, d,.... A relabelling function f is a map
on cChan ∪ qChan such that f(cChan) ⊆ cChan and f(qChan) ⊆ qChan .
Sometimes we abbreviate a sequence of distinct variables q1, ..., qn into q̃.

The terms in qCCS are given by:

P,Q ::= nil | τ.P | c?x.P | c!e.P | c?q.P | c!q.P | E [q̃].P | M [q̃;x].P |
P +Q | P || Q | P [f ] | P\L | if b then P | A(q̃; x̃)

where f is a relabelling function and L ⊆ cChan ∪ qChan is a set of chan-
nels. Most of the constructors are standard as in CCS [23]. We briefly explain
a few new constructors. The process c?q.P receives a quantum datum along
quantum channel c and evolves into P , while c!q.P sends out a quantum datum
along quantum channel c before evolving into P . The symbol E represents a
trace-preserving super-operator applied on the systems q̃. The process M [q̃;x].P
measures the state of qubits q̃ according to the observable M and stores the
measurement outcome into the classical variable x of P .

Free classical variables can be defined in the usual way, except for the fact
that the variable x in the quantum measurement M [q̃;x] is bound. A process P
is closed if it contains no free classical variable, i.e. fv(P ) = ∅.

The set of free quantum variables for process P , denoted by qv(P ) can be
inductively defined as in Figure 1. For a process to be legal, we require that

1. q �∈ qv(P ) in the process c!q.P ;
2. qv(P ) ∩ qv(Q) = ∅ in the process P || Q;
3. Each constant A(q̃; x̃) has a defining equation A(q̃; x̃) := P , where P is a

term with qv(P ) ⊆ q̃ and fv(P ) ⊆ x̃.

The first condition says that a quantum system will not be referenced after it
has been sent out. This is a requirement of the quantum no-cloning theorem.
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qv(nil) = ∅ qv(τ.P ) = qv(P )
qv(c?x.P ) = qv(P ) qv(c!e.P ) = qv(P )
qv(c?q.P ) = qv(P )− {q} qv(c!q.P ) = qv(P ) ∪ {q}
qv(E [q̃].P ) = qv(P ) ∪ q̃ qv(M [q̃; x].P ) = qv(P ) ∪ q̃
qv(P +Q) = qv(P ) ∪ qv(Q) qv(P || Q) = qv(P ) ∪ qv(Q)
qv(P [f ]) = qv(P ) qv(P\L) = qv(P )

qv(if b then P ) = qv(P ) qv(A(q̃; x̃)) = q̃.

Fig. 1. Free quantum variables

The second condition says that parallel composition || models separate parties
that never reference a quantum system simultaneously.

Throughout the paper we implicitly assume the convention that processes are
identified up to α-conversion, bound variables differ from each other and they
are different from free variables.

We now give the semantics of qCCS. For each quantum variable q we assume
a 2-dimensional Hilbert space Hq. For any nonempty subset S ⊆ qVar we write
HS for the tensor product space

⊗
q∈S Hq and HS for

⊗
q �∈S Hq. In particular,

H = HqVar is the state space of the whole environment consisting of all the
quantum variables, which is a countably infinite dimensional Hilbert space.

Let P be a closed quantum process and ρ a density operator on H,1 the pair
〈P, ρ〉 is called a configuration. We write Con for the set of all configurations,
ranged over by C and D. We interpret qCCS with a pLTS whose states are all the
configurations definable in the language, and whose transitions are determined
by the rules in Figure 2; we have omitted the obvious symmetric counterparts
to the rules (C-Com), (Q-Com), (Int) and (Sum). The set of actions Act takes
the following form, consisting of classical/quantum input/output actions.

{c?v, c!v | c ∈ cChan , v ∈ Real} ∪ {c?r, c!r | c ∈ qChan , r ∈ qVar}

We use cn(α) for the set of channel names in action α. For example, we have
cn(c?x) = {c} and cn(τ) = ∅.

In the first eight rules in Figure 2, the targets of arrows are point distributions,
and we use the slightly abbreviated form C α−→ C′ to mean C α−→ C′.

The rules use the obvious extension of the function || on terms to configu-
rations and distributions. To be precise, C || P is the configuration 〈Q || P, ρ〉
where C = 〈Q, ρ〉, and Δ || P is the distribution defined by:

(Δ || P )(〈Q, ρ〉) def
=

{
Δ(〈Q′, ρ〉) if Q = Q′ || P for some Q′

0 otherwise.

Similar extension applies to Δ[f ] and Δ\L.

1 As H is infinite dimensional, ρ should be understood as a density operator on some
finite dimensional subspace of H which contains Hqv(P ).
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(Tau)

〈τ.P, ρ〉 τ−→ 〈P, ρ〉

(C-Inp)

v ∈ Real

〈c?x.P, ρ〉 c?v−→ 〈P [v/x], ρ〉
(C-Outp)

v = [[e]]

〈c!e.P, ρ〉 c!v−→ 〈P, ρ〉

(C-Com)

〈P1, ρ〉 c?v−→ 〈P ′
1, ρ〉 〈P2, ρ〉 c!v−→ 〈P ′

2, ρ〉
〈P1 || P2, ρ〉 τ−→ 〈P ′

1 || P ′
2, ρ〉

(Q-inp)

r �∈ qv(c?q.P )

〈c?q.P, ρ〉 c?r−→ 〈P [r/q], ρ〉
(Q-Outp)

〈c!q.P, ρ〉 c!q−→ 〈P, ρ〉
(Q-Com)

〈P1, ρ〉 c?r−→ 〈P ′
1, ρ〉 〈P2, ρ〉 c!r−→ 〈P ′

2, ρ〉
〈P1 || P2, ρ〉 τ−→ 〈P ′

1 || P ′
2, ρ〉

(Oper)

〈E[q̃].P, ρ〉 τ−→ 〈P, Eq̃(ρ)〉
(Meas)

M =
∑

i∈I λiE
i pi = tr(Ei

q̃ρ)

〈M [q̃; x].P, ρ〉 τ−→ ∑
i∈I pi〈P [λi/x], E

i
q̃ρE

i
q̃/pi〉

(Int)

〈P1, ρ〉 α−→ Δ qbv(α) ∩ qv(P2) = ∅
〈P1 || P2, ρ〉 α−→ Δ || P2

(Sum)

〈P1, ρ〉 α−→ Δ

〈P1 + P2, ρ〉 α−→ Δ
(Rel)

〈P, ρ〉 α−→ Δ

〈P [f ], ρ〉 f(α)−→ Δ[f ]

(Res)

〈P, ρ〉 α−→ Δ cn(α) ∩ L = ∅
〈P\L, ρ〉 α−→ Δ\L

(Cho)

〈P, ρ〉 α−→ Δ [[b]] = true

〈if b then P , ρ〉 α−→ Δ

(Cons)

〈P [ṽ/x̃, r̃/q̃], ρ〉 α−→ Δ A(x̃, q̃) := P

〈A(ṽ, r̃), ρ〉 α−→ Δ

Fig. 2. Operational semantics of qCCS. Here in rule (C-Outp), [[e]] is the evaluation
of e, and in rule (Meas), Ei

q̃ denotes the operator Ei acting on the quantum systems q̃.

4 An Extensional Equivalence

Let C = 〈P, ρ〉. We use the notation qv(C) := qv(P ) for free quantum variables
and env(C) := trqv(P )(ρ) for partial traces. Let Δ =

∑
i∈I pi · 〈Pi, ρi〉. We write

E(Δ) for the distribution
∑

i∈I pi · 〈Pi, E(ρi)〉.
We formally define three criteria, namely barb-preservation,

reduction-closedness and compositionality, in order to judge whether two pro-
cesses are equivalent.

Definition 3. A relation R is

– barb-preserving if C R D implies that C ⇓≥p
c iff D⇓≥p

c for any p ∈ [0, 1] and

any classical channel c, where C ⇓≥p
c holds if C τ̂

=⇒ Δ for some Δ with

∑
{Δ(C′) | C′ c!v−→ for some v} ≥ p;

– reduction-closed if C R D implies

• whenever C τ̂
=⇒ Δ, there exists Θ such that D τ̂

=⇒ Θ and Δ R◦ Θ,

• whenever D τ̂
=⇒ Θ, there exists Δ such that C τ̂

=⇒ Δ and Δ R◦ Θ;
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– compositional if C R D implies (C||R) R (D||R) for any process R with
qv(R) disjoint from qv(C) ∪ qv(D), and R is closed under super-operator
application, namely C R D implies E(C) R E(D) for any E ∈ T SO(Hqv(C)),
where T SO(Hqv(C)) stands for the set of trace-preserving super-operators on

finite dimensional subspaces of Hqv(C).

Here barb-preservation means that two related configurations have the same
probability to send out values on classical channels. Reduction-closure ensures
that non-deterministic choices are in some sense preserved. In the definition of
compositionality, it is worth noting that we only allow the super-operator E to be
applied on Hqv(C). The intuition behind this restriction is that systems in qv(C)
are actually the local quantum variables of C, and they cannot be manipulated
by the outer environment.

Definition 4 (Reduction barbed congruence). Let reduction barbed con-
gruence, written ≈r, be the largest relation over configurations which is barb-
preserving, reduction-closed and compositional, and furthermore, if C ≈r D then
qv(C) = qv(D) and env(C) = env(D).

With the above definition, it is difficult to prove if two given configurations are
related by reduction barbed congruence. Therefore, we need to discover some
proof techniques which are easy to use.

4.1 Open Bisimulations

We now introduce a coinductively defined relation which will be used later on
to characterise reduction barbed congruence.

Definition 5. A relation R ⊆ Con × Con is an open simulation if C R D
implies that qv(C) = qv(D), env(C) = env(D), and for any E ∈ T SO(Hqv(C)),

– whenever E(C) α−→ Δ, there is some Θ with E(D)
α̂

=⇒ Θ and Δ R◦ Θ.

A relation R is an open bisimulation if both R and R−1 are open simulations.
We let ≈o be the largest open bisimulation.

Two quantum processes P and Q are bisimilar, denoted by P ≈o Q, if for any
quantum state ρ and any indexed set ṽ of classical values, we have

〈P{ṽ/x̃}, ρ〉 ≈o 〈Q{ṽ/x̃}, ρ〉.

Here x̃ is the set of free classical variables contained in P and Q.

The above definition is inspired by the work of Sangiorgi [27], where a notion
of bisimulation is defined for the π-calculus by treating name instantiation in
an “open” style (name instantiation happens before any transition). Here we
deal with super-operator application in an “open” style, but the instantiation of
variables is in an “early” style (variables are instantiated when input actions are
performed) because the operational semantics given in Figure 2 is essentially an
early semantics. For more variants of semantics, see e.g. [29].
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4.2 A Useful Proof Technique

In Definition 5 super-operator application and transitions are considered at the
same time. In fact, we can separate the two issues and approach the concept of
open bisimulation in an incremental way, which turns out to be very useful when
proving that two configurations are bisimilar.

Definition 6. A relation R ⊆ Con × Con is a ground simulation if C R D
implies that qv(C) = qv(D), env(C) = env(D), and

– whenever C α−→ Δ, there is some distribution Θ with D α̂
=⇒ Θ and Δ R◦ Θ.

A relation R is a ground bisimulation if both R and R−1 are ground simulations.

Proposition 1. Suppose that a relation R

1. is a ground bisimulation, and
2. is closed under all super-operator application.

Then R is an open bisimulation.

Proposition 1 provides us with a useful proof technique: in order to show that
two configurations C and D are open bisimilar, it suffices to exhibit a binary
relation including the pair (C,D), and then to check that the relation is a ground
bisimulation and is closed under all super-operator application. This is analogous
to a proof technique of open bisimulation for the π-calculus [27], where name
instantiation is playing the same role as super-operator application here.

Proposition 2. ≈o is the largest ground bisimulation that is closed under all
super-operator application.

For a sanity check, we can prove that ≈o is an equivalence relation. As a relation
between configurations, ≈o is preserved by all static constructors.

Proposition 3. If 〈P, ρ〉 ≈o 〈Q, σ〉 then

1. 〈P‖R, ρ〉 ≈o 〈Q‖R, σ〉;
2. 〈P [f ], ρ〉 ≈o 〈Q[f ], σ〉;
3. 〈P\L, ρ〉 ≈o 〈Q\L, σ〉;
4. 〈if b then P, ρ〉 ≈o 〈if b then Q, σ〉.

We do not have a counterpart of the above proposition for dynamic constructors
such as prefix. For example, consider the two configurations taken from [9]: 〈P, ρ〉
and 〈Q, ρ〉, where P = M0,1[q;x].nil with M0,1 = λ0|0〉〈0| + λ1|1〉〈1| being the
1-qubit measurement according to the computational basis, Q = I[q].nil, and
ρ = |0〉〈0|q ⊗ σ with σ being a state on Hq. We have 〈P, ρ〉 ≈o 〈Q, ρ〉, but
〈H [q].P, ρ〉 �≈o 〈H [q].Q, ρ〉, where H is the Hadamard operator.

Nevertheless, as a relation between processes, ≈o is preserved by almost all
constructors of qCCS.
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Theorem 1. The relation ≈o between processes is preserved by all the construc-
tors of qCCS except for summation.

It turns out that reduction barbed congruence can be captured by open bisimu-
lation precisely. This gives a coinductive technique to judge if two configurations
are behaviourally equivalent.

Theorem 2 (Soundness). If C ≈o D then C ≈r D.

In order to obtain completeness, the converse of Theorem 2, we make use of a
proof technique that involves examining the barbs of processes in certain con-
texts; the following technical lemma enhances this technique.

Lemma 1. If Δ||c!0 (≈r)
◦
Θ||c!0 where c is a fresh channel, then Δ (≈r)

◦
Θ.

We are now in a position to show that ≈r is complete with respect to ≈o.

Theorem 3 (Completeness). If C ≈r D then C ≈o D.

Proof. (Schema) Since ≈r is closed under any super-operator application, by
Proposition 1 it suffices to show that ≈r is a ground bisimulation. The key idea is
the following. For any transition C α−→ Δ, we design a test process T , depending

on the form of α, such that C||T τ̂
=⇒ Γ1 for some distribution Γ1 which exhibits

certain barbs. Since C ≈r D we know C||T ≈r D||T by the compositionality of

≈r. Since ≈r is reduction-closed, there is some Γ2 such that D||T τ̂
=⇒ Γ2 and

Γ1 (≈r)
◦ Γ2. Since ≈r is barb-preserving, Γ2 must exhibit similar barbs as Γ1.

The careful design of T ensures that D α̂
=⇒ Θ for some Θ with Δ (≈r)

◦
Θ, and

the last step involves Proposition 1. See [5] for more details. ��

4.3 Modal Characterisation

We extend the Hennessy-Milner logic by adding a probabilistic choice modality to
express the behaviour of distributions, as in [7], and a super-operator modality to
express trace-preserving super-operator application, as well as atomic formulae
involving projectors for dealing with density operators.

Definition 7. The class L of modal formulae over Act, ranged over by φ, is
defined by the following grammar:

φ := E≥p
q̃ |

∧
i∈I φi | 〈α〉ψ | ¬φ | E .φ

ψ :=
⊕

i∈I pi · φi

where α ∈ Actτ , E is a super-operator, and E is a projector associated with a
certain subspace of Hq̃. We call φ a configuration formula and ψ a distribution
formula. Note that a distribution formula ψ only appears as the continuation of
a diamond modality 〈α〉ψ.

The satisfaction relation |= ⊆ Con × L is defined by

– C |= E≥p
q̃ if qv(C) ∩ q̃ = ∅ and tr(Eq̃ρ) ≥ p where C = 〈P, ρ〉.

– C |=
∧

i∈I φi if C |= φi for all i ∈ I.
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– C |= 〈α〉ψ if for some Δ ∈ Dist(Con), C α̂
=⇒ Δ and Δ |= ψ.

– C |= ¬φ if it is not the case that C |= φ.
– C |= E .φ if E ∈ T SO(Hqv(C)) and E(C) |= φ.

– Δ |=
⊕

i∈I pi · φi if there are Δi ∈ Dist(Con) for all i ∈ I, and for all
D ∈ �Δi�, with D |= φi, such that Δ =

∑
i∈I pi ·Δi.

With a slight abuse of notation, we write Δ |= ψ above to mean that Δ satisfies
the distribution formula ψ. A logical equivalence arises from the logic naturally:
we write C =L D if C |= φ ⇔ D |= φ for all φ ∈ L. Using the logical equivalence,
we provide a modal characterisation of reduction barbed congruence as follows.

Theorem 4. C ≈r D if and only if C =L D.

Proof. (Schema) In view of Theorems 2 and 3, it suffices to prove that C ≈o D
if and only if C =L D. For one direction, we show that C |= φ ⇔ D |= φ for all
φ ∈ L by structural induction on φ; for the other direction, we show that =L is
an open bisimulation by using Proposition 1. ��

5 Examples

BB84, the first quantum key distribution protocol developed by Bennett and
Brassard in 1984 [2], provides a provably secure way to create a private key
between two parties, say, Alice and Bob. Its security relies on the basic property
of quantum mechanics that information gain about a quantum state is only
possible at the expense of changing the state, if the states to be distinguished
are not orthogonal. The basic BB84 protocol goes as follows:

(1) Alice randomly creates two strings of bits B̃a and K̃a, each with size n.
(2) Alice prepares a string of qubits q̃, with size n, such that the ith qubit of q̃ is

|xy〉 where x and y are the ith bits of B̃a and K̃a, respectively, and |00〉 = |0〉,
|01〉 = |1〉, |10〉 = |+〉, and |11〉 = |−〉. Here the symbols |+〉 and |−〉 have

their usual meaning: |+〉 def
= (|0〉+ |1〉)/

√
2 and |−〉 def

= (|0〉 − |1〉)/
√
2.

(3) Alice sends the qubit string q̃ to Bob.
(4) Bob randomly generates a string of bits B̃b with size n.
(5) Bob measures each qubit received from Alice according to a basis determined

by the bits he generated: if the ith bit of B̃b is k then he measures with
{|k0〉, |k1〉}, k = 0, 1. Let the measurement results be K̃b, which is also a
string of bits with size n.

(6) Bob sends his choice of measurement bases B̃b back to Alice, and upon
receiving the information, Alice sends her bases B̃a to Bob.

(7) Alice and Bob determine at which positions the bit strings B̃a and B̃b are
equal. They discard the bits in K̃a and K̃b where the corresponding bits of
B̃a and B̃b do not match.

After the execution of the basic BB84 protocol above, the remaining bits of K̃a

and K̃b, denoted by K̃ ′
a and K̃ ′

b respectively, should be the same, provided that
the channels used are perfect, and no eavesdropper exists.

To detect a potential eavesdropper Eve, Alice and Bob proceed as follows:
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(8) Alice randomly chooses �k/2�, where k is the size of K̃ ′
a, bits of K̃

′
a, denoted

by K̃ ′′
a , and sends Bob K̃ ′′

a and their indexes in the original string K̃ ′
a.

(9) Upon receiving the information from Alice, Bob sends back to Alice his
substring K̃ ′′

b of K̃ ′
b according to the indexes received from Alice.

(10) Alice and Bob check if the strings K̃ ′′
a and K̃ ′′

b are equal. If yes, then the

remaining substring K̃f
a (resp. K̃f

b ) of K̃
′
a (resp. K̃ ′

b) by deleting K̃ ′′
a (resp.

K̃ ′′
b ) is the secure key shared by Alice (reps. Bob). Otherwise, an eaves-

dropper is detected, and the protocol halts without generating any secure
keys.

For simplicity, we omit the processes of information reconciliation and privacy
amplification. Now we describe the above protocol in qCCS. To ease the nota-
tions, we assume a special measurement Ran[q̃; x̃] which can create a string of n
random bits, independent of the initial states of the q̃ system, and store it to x̃.
In effect, Ran[q̃; x̃] = Setn+[q̃].M

n
0,1[q̃; x̃].Set

n
0 [q̃] where Setn+ (resp. Setn0 ) is the

super-operator which sets each of the n qubits it applies on to |+〉 (resp. |0〉),
Mn

0,1[q̃; x̃] is the quantum measurement on q̃ according to the basis {|0〉, |1〉},
and stores the result into x̃. Then the basic BB84 protocol can be defined as

Alice
def
= Ran[q̃; B̃a].Ran[q̃; K̃a].SetK̃a

[q̃].HB̃a
[q̃].A2B!q̃.WaitA(B̃a, K̃a)

WaitA(B̃a, K̃a)
def
= b2a?B̃b.a2b!B̃a.keya!cmp(K̃a, B̃a, B̃b).nil

Bob
def
= A2B?q̃.Ran[q̃′; B̃b].MB̃b

[q̃; K̃b].b2a!B̃b.WaitB(B̃b, K̃b)

WaitB(B̃b, K̃b)
def
= a2b?B̃a.keyb!cmp(K̃b, B̃a, B̃b).nil

BB84
def
= (Alice‖Bob)\{a2b, b2a,A2B}

where SetK̃a
[q̃] sets the ith qubit of q̃ to the state |K̃a(i)〉, HB̃a

[q̃] applies H or

does nothing on the ith qubit of q̃ depending on whether the ith bit of B̃a is 1
or 0, and MB̃b

[q̃; K̃b] is the quantum measurement on q̃ according to the basis

determined by B̃b, i.e., for each 1 ≤ k ≤ n, it measures qk with respect to the
basis {|0〉, |1〉} (reps. {|+〉, |−〉}) if B̃b(k) = 0 (resp. 1), and stores the result into
K̃b(k). We also abuse the notation slightly by writing EB̃[q̃].P when we mean
∑1n

x̃=0n(if B̃ = x̃ then Ex̃[q̃].P ) where in is the all i string of size n, i = 0, 1.
The function cmp takes a triple of strings x̃, ỹ, z̃ with the same size as inputs,
and returns the substring of x̃ where the corresponding bits of ỹ and z̃ match.
When ỹ and z̃ match nowhere, we let cmp(x̃, ỹ, z̃) = ε, the empty string.

To show the correctness of this basic form of BB84 protocol, we let

BB84spe
def
= Ran[q̃; B̃a].Ran[q̃; K̃a].Ran[q̃′; B̃b].

(keya!cmp(K̃a, B̃a, B̃b).nil‖keyb!cmp(K̃a, B̃a, B̃b).nil).

The pLTSs of BB84 and BB84spe for the special case of n = 2 can be depicted as

in Figure 3, where for simplicity, we only specify the branch where B̃a = K̃a = 00.
Each arrow in the graph denotes a sequence of τ actions, and all probabilistic
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Fig. 3. pLTSs for BB84 and BB84spe

distributions are uniform. The strings at the bottom line are the outputs of the
protocol. Then it can be easily checked from the pLTSs that BB84 ≈o BB84spe.
The key is, for each extra branch in BB84 caused by the measurement of Bob
(the K̃b line), the final states are bisimilar; they all output the same string.

Now we proceed to describe the protocol with an eavesdropper. Let

Alice′
def
= (Alice‖keya?K̃ ′

a.P str|K̃′
a|[q̃a; x̃].a2b!x̃.a2b!SubStr(K̃

′
a, x̃).b2a?K̃

′′
b .

(if SubStr(K̃ ′
a, x̃) = K̃ ′′

b then key′a!RemStr(K̃ ′
a, x̃).nil

else alarma!0.nil)))\{keya}

Bob′
def
= (Bob‖keyb?K̃ ′

b.a2b?x̃.a2b?K̃
′′
a .b2a!SubStr(K̃

′
b, x̃).

(if SubStr(K̃ ′
b, x̃) = K̃ ′′

a then key′b!RemStr(K̃ ′
b, x̃).nil

else alarmb!0.nil))\{keyb}

where |x̃| is the size of x̃, the function SubStr(K̃ ′
a, x̃) returns the substring of

K̃ ′
a at the indexes specified by x̃, and RemStr(K̃ ′

a, x̃) returns the remaining
substring of K̃ ′

a by deleting SubStr(K̃ ′
a, x̃). The special measurement Pstrm,

which is similar to Ran, randomly generates a �m/2�-sized string of indexes
from 1, . . . ,m.

To get a taste of the security of BB84, we consider a special case where Eve’s
strategy is to simply measure the qubits sent by Alice, according to randomly
guessed bases, to get the keys. She then prepares and sends to Bob a fresh
sequence of qubits, employing the same method Alice used to encode keys, but
using her own guess of bases and the keys she obtained. That is, we define

Eve
def
= A2E?q̃.Ran[q̃′′; B̃e].MB̃e

[q̃; K̃e].SetK̃e
[q̃].HB̃e

[q̃].E2B!q̃.key′e!K̃e,

BB84E
def
= (Alice′[fa]‖Eve‖Bob′[fb])\{a2b, b2a,A2E,E2B}.

where fa(A2B) = A2E, and fb(A2B) = E2B. Let
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TestBB84
def
= (BB84E‖key′a?x̃.key′b?ỹ.key′e?z̃.

(if x̃ �= ỹ then fail!0.nil else keye!z̃.skey!x̃.nil))\K

where K = {key′a, key′b, key′e}. It is generally very complicated to prove the
security of the full BB84 protocol. Here we choose to reduce TestBB84 to a
simpler process which is easier for further verification. To be specific, we can
show that TestBB84 is bisimilar to the following process:

TB
def
= Ran[q̃; B̃a].Ran[q̃; K̃a].Ran[q̃′′; B̃e].Ran′

B̃a,B̃e,K̃a
[q̃; K̃e].Ran[q̃′; B̃b].

Ran′
B̃e,B̃b,K̃e

[q̃; K̃b].P str|K̃ab|[q̃a; x̃].

(if K̃ab = K̃ba then keye!K̃e.skey!RemStr(K̃ab, x̃).nil

else (if K̃ x̃
ab �= K̃ x̃

ba then alarma!0.nil‖alarmb!0.nil else fail!0.nil))

where to ease the notations, we let K̃ab = cmp(K̃a, B̃a,
B̃b), K̃ba = cmp(K̃b, B̃a, B̃b), K̃

x̃
ab = SubStr(K̃ab, x̃), and K̃ x̃

ba = SubStr(K̃ba, x̃).
Similar to Ran, the special measurement Ran′ here, which takes three parame-
ters, delivers a string of n bits. For example, Ran′

B̃a,B̃e,K̃a
[q̃; K̃e] will first gen-

erate a string of n − |K̃ae| random bits x̃, replace with x̃ the substring of K̃a

at the positions where B̃a and B̃e do not match, and store the string after the
replacement in K̃e.

6 Conclusion and Related Work

In our opinion, bisimulation should be considered as a proof methodology for
demonstrating behavioural equivalence between systems, rather than providing
the definition of the extensional behavioural equivalence itself. We have adapted
the well-known reduction barbed congruence to obtain a touchstone extensional
behavioural equivalence for quantum processes considered in [9], and equipped
it with a coinductive proof technique and a modal characterisation.

Below we briefly compare our open bisimulation with other bisimulations for
quantum processes proposed in the literature. A branching bisimulation was de-
fined for QPAlg [21,22]. However, it cannot always distinguish different quantum
operations, as quantum states are only compared when they are input or out-
put. And the derived bisimilarity is not a congruence; it is not preserved by
restriction. Bisimulation defined in [8] indeed distinguishes different quantum
operations but it works well only for finite processes. Again, it is not preserved
by restriction. In [31], a congruent (strong) bisimulation was proposed for a spe-
cial model where no classical datum is involved. However, as many important
quantum communication protocols such as superdense coding and teleportation
cannot be described in that model, its applicability is very limited. Furthermore,
as all quantum operations are regarded as visible in [31], the bisimulation is too
strong to identify some intuitively equivalent quantum processes.

The first general (both classical and quantum data are involved, and recursive
definition is allowed), weak (quantum operations are regarded as invisible, thus
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can be combined arbitrarily), and congruent bisimulation for quantum processes
was defined in [9]. It differentiates quantum input from other actions because,
to match a quantum input, an arbitrarily chosen super-operator should be con-
sidered. The open bisimulation in this paper makes a step further by treating
the super-operator application in an open style: applying super-operators before
an action to be matched is selected. This makes it possible to separate ground
bisimulation and the closedness under super-operator application, and by doing
so, we are able to provide not only a neater and simpler definition, but also a
powerful technique for proving bisimilarity. Comparing our open bisimulation
with the bisimulation in [9], there are two main differences:

1. In [9] a non-standard weak transition =⇒ c?q−→ is used to match the transition
c?q−→. This is for a purely technical reason but makes possible the following
example which demonstrates that open bisimulation is strictly coarser. Let
P = c?q.(τ + c!0) and Q = P + c?q. Then P and Q are open bisimilar
but not bisimilar in the sense of [9]. This is actually a classical example,
however, as no quantum operation is included; restricting to this special
form of transitions also makes classical bisimulation strictly stronger.

2. In [9] any super-operator application is performed on Hqv(C′)−q, provided

that C c?q−→ C′; while in open bisimulation of this paper, it is performed on
Hqv(C). As qv(C′)− q can be a proper subset of qv(C), there are more choices

of super-operators in the former case. This observation suggests letting P =
c?q.E [q, r̃1]+I[r̃2] and Q = c?q.F [q, r̃1]+I[r̃2]. We conjecture that by taking
suitable E and F , we will have a real quantum example showing that open
bisimilarity in this paper is strictly coarser than the bisimilarity in [9].
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