
Performance Evaluation and Optimization
of Nested High Resolution Weather Simulations

Preeti Malakar1, Vaibhav Saxena2, Thomas George2, Rashmi Mittal2,
Sameer Kumar3, Abdul Ghani Naim4, and Saiful Azmi bin Hj Husain4

1 Indian Institute of Science
preeti@csa.iisc.ernet.in

2 IBM Research - India
{vaibhavsaxena,thomasgeorge,rasmitta}@in.ibm.com

3 IBM T.J. Watson Research Center
sameerk@us.ibm.com

4 Universiti Brunei Darussalam, Brunei
{ghani.naim,saiful.husain}@ubd.edu.bn

Abstract. Weather models with high spatial and temporal resolutions
are required for accurate prediction of meso-micro scale weather phenom-
ena. Using these models for operational purposes requires forecasts with
sufficient lead time, which in turn calls for large computational power.
There exists a lot of prior studies on the performance of weather models
on single domain simulations with a uniform horizontal resolution. How-
ever, there has not been much work on high resolution nested domains
that are essential for high-fidelity weather forecasts.

In this paper, we focus on improving and analyzing the performance
of nested domain simulations using WRF on IBM Blue Gene/P. We
demonstrate a significant reduction (up to 29%) in runtime via a com-
bination of compiler optimizations, mapping of process topology to the
physical torus topology, overlapping communication with computation,
and parallel communications along torus dimensions. We also conduct a
detailed performance evaluation using four nested domain configurations
to assess the benefits of the different optimizations as well as the scalabil-
ity of different WRF operations. Our analysis indicates that the choice
of nesting configuration is critical for good performance. To aid WRF
practitioners in making this choice, we describe a performance model-
ing approach that can predict the total simulation time in terms of the
domain and processor configurations with a very high accuracy (< 8%)
using a regression-based model learned from empirical timing data.

1 Introduction

Operational weather forecasting is critical for planning operations in weather sen-
sitive sectors such as energy, transportation, urban planning, and public safety.
Such weather forecasting is performed using fine resolution regional and global
atmospheric models that discretize the nonlinear partial differential equations
representing evolution of atmospheric flows in time, which entails a huge compu-
tational effort. It is also imperative that the forecasts are provided with sufficient
lead time (24-48 hrs) in order to allow actions that mitigate the socio-economic

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 805–817, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



806 P. Malakar et al.

impact. Hence, it is critical to have a highly efficient and scalable execution of
the weather models on a high-performance computing platform.

Weather and Research Forecasting model (WRF) is a state-of-the-art regional
to global-scale numerical weather prediction model that is used by weather agen-
cies all over the world.WRF has been designed to performwell onmassively paral-
lel computers. It can be built in serial, parallel (MPI) and mixed-mode (OpenMP
and MPI) forms and is available on various HPC machines. Motivated by earlier
WRF performance studies on the IBM Blue Gene series [1,8], we explore optimiz-
ing WRF on the Blue Gene/P machine. Past studies on WRF are mainly focused
on simple single domain benchmarks. These are not representative of real world
short-term high-fidelity weather simulations1,2 that often require nested domain
configurations with one or more small high resolution domains (nests) embedded
into a coarse resolution parent domain such as those in Figure 1. Fine resolution
runs can effectively model weather at meso-micro scale because of higher granu-
larity, but also require a proportionally smaller time step for numerical stability
resulting in a quadratic increase in the net computational effort. Domain nesting
is essential to achieve good prediction accuracy over small regions of interest (child
domains) while avoiding expensive computation across the whole parent domain.

Nested domain simulations differ from single domain simulations in one key
aspect. Modeling (i.e., the solve operation) needs to be performed at multiple
(parent and child) spatial resolutions and the results need to be communicated
and aligned at the points of overlap. The data for the finer resolution child
domains are interpolated from the coarser domain by a process called forcing in
WRF. In a two-way nest integration, the finer grid solution also overwrites the
coarser grid solution for the coarse grid points that lie inside the finer grid by a
process called feedback [11].

There are three key challenges faced by WRF users while performing nested
domain simulations. First, nesting entails significant communication between the
parent and child domains in the form of forcing and feedback operations, which
results in an increased run time and poor scalability that in turn affect the fore-
cast lead time. Second, there does not exist much work on scalability analysis of
nested domain simulations that can provide guidance to WRF users on the po-
tential benefits and trade-offs associated with extra computing resources. Lastly,
there is risk of over-decomposition on a small-sized domain when the number of
processors is large. Therefore, it is critical to choose the nesting configuration
to ensure that the nest domain sizes are appropriate for the available proces-
sor configuration. Due to the relative opaqueness of the WRF code, most users
typically employ a tedious and time-consuming trial and error approach that
involves running the code multiple times in order to make this decision.
We make the following contributions:

(a) We significantly reduce the runtime of WRF nested domain simulations
(up to 29%) via compiler optimizations on the IBM Blue Gene/P machine, ef-
ficient mapping of 2D process topology of WRF on to the 3D torus topology
of BG/P to reduce the communication time in WRF and optimization of some

1 http://www.emc.ncep.noaa.gov/mmb/mmbpll/nestpage/overlay hiresw4km.jpg
2 http://www.metoffice.gov.uk/research/modelling-systems/unified-model/

weather-forecasting



Performance Evaluation and Optimization of Nested High Resolution 807

critical portions of WRF source code. Unrolling the Z dimension loops and par-
allelizing the X and Y dimension communications leads to further optimization.

(b) We conduct a detailed performance evaluation of the original as well as
the optimized WRF code by performing simulations with varying number of
processors over four nested domain configurations with 2-level nesting and vary-
ing sibling domains at the innermost level. Our results indicate that forcing and
feedback operations do not scale well. Further, performance comparison of sim-
ilar nesting configurations indicates that optimal nesting choice varies with the
number of processors.

(c) We propose a performance modeling approach for estimating the total in-
tegration time for any multi-level nested domainWRF simulation, which is based
on learning regression models for each of the key WRF operations (solve, forcing,
feedback) using empirical timing data. Practitioners can use such a model to de-
termine the best (lowest runtime) nesting configuration among multiple choices
for a given number of processors.

2 Related Work

WRF has been extensively studied in the HPC community since weather mod-
eling is a key HPC application. Most of this work can be broadly grouped into
three categories: (a) optimization for specific HPC architectures, (b) performance
analysis, and (c) performance modeling.

Architecture-Specific Optimization. In the past, WRF code has been op-
timized for a number of HPC architectures such as BG/L [8], Cray XT4 [9].
For the BG/P architecture, Bhatele et al.[1], present a framework for automatic
mapping of WRF onto the BG/P torus topology using the WRF communication
graph. On a single domain configuration, they demonstrate that their mapping
reduces the average number of hops per process by up to 60%, but increases
the total communication time by 40% in certain cases. This approach is yet to
be validated on nested domain configurations. Currently, the only existing work
that deals with optimization for nested domain configurations is that of Porter
et al. [9]. They studied compiler optimizations for improving WRF performance
using the PathScale and PGI compilers on Cray XT4/5, which do not apply to
BG/P. They also report improvement in WRF performance upon changing the
default X-Y processor decomposition, which does not hold true in case of BG/P.

Performance Analysis.Wright et al. [12] examine the scalability of WRF (ver-
sion 2.1.2) across different architectures using IPM to analyze the performance.
They show that for most of the architectures, WRF exhibits a sublinear speedup
of both computation and communication times with increasing number of cores
and also identify bottlenecks such as MPI Wait. There exists a number of other
performance and profiling studies [10] focusing on other aspects of WRF. How-
ever, these studies only focus on a single domain configuration and do not consider
forcing/feedback operations that are prominent in nested configurations.

Performance Modeling. Given the criticality of lead time, there is a strong in-
terest in predicting the execution time of WRF runs. Kerbyson et al. [3] describe



808 P. Malakar et al.

an analytical performance model with parameters such as the grid size and pro-
cessor configuration. This model was developed via a careful manual inspection
of the dynamic execution behaviour of the WRF application and was subse-
quently validated using performance measurements on real systems. Unlike [3],
our model makes use of regression analysis to directly learn the coefficients of
potential influencing factors using empirical timing data. Delgado et al. [2] also
describe a regression-based approach for modeling WRF performance on sys-
tems with < 256 processors, but their primary focus is on capturing the system
related factors such as clock speed, network bandwidth, which they do via a mul-
tiplicative effects model. Our modeling focuses on the interaction of domain and
processor configurations assuming fixed architecture and simulation parameters
allowing us to obtain much better accuracy even up to 1024 processors. Further,
[2] and [3] only focus on single domain configurations whereas we learn separate
models for solve/forcing/feedback operations, which can be used for predicting
performance for even multi-level nested configurations.

3 Experimental Setup

Blue Gene/P Overview. The IBM Blue Gene/P (BG/P) is the second gen-
eration in the line of Blue Gene machines after Blue Gene/L. Each BG/P node
has four 850 MHz embedded PowerPC 450 cores on a single ASIC and can
achieve a peak floating point throughput of 13.6 GF/node. The software stack
supports three modes: symmetric multi-processing mode (or SMP mode) with
one process and up to four threads, dual mode with two processes, each with up
to two threads and quad mode (also known as virtual node mode, or VN mode)
with four processes. Systems software provides optimized MPI libraries [4] and
an OpenMP runtime via the IBM XL compiler to take advantage of the 4-way
SMP node. MPI point-to-point messages are sent on the 3D torus network, while
global collective communication operations such as barrier, broadcast and allre-
duce on MPI COMM WORLD are executed on the collective network [5].

Nested Domain Configurations. For our experiments, we simulated a heavy
rainfall event that occurred on 20 January 2009, between 00z to 04z UTC in the
Borneo island. In order to capture this event, we started a 48-hour forecast run
from 19 Jan 00z UTC to 21 Jan 2009 00z UTC and generated a restart file at
20 Jan 00z UTC. This choice of restart file at the end of a 24-hour simulation,
ensured that the model is well spun off. Figure 1 shows the nested domain config-
urations used for our study. Figure 1(a) shows the 3-domain nested configuration
with the innermost nest focused on the country of Brunei. Figure 1(b) shows the
case which has 4 sibling nests of same size at the innermost level. The innermost
nests were chosen such that some of the highly populated regions in the Borneo
island are well represented. In order to study the effects of over-decomposition
of innermost nests, we also created two sibling domain configurations that are
formed by merging a subset of the domains in 1(b). More specifically, Figure 1(c)
has 50% more grid points after combining, whereas, Figure 1(d) has 10% more
grid points. The same spatial resolution is used for all sibling domains.



Performance Evaluation and Optimization of Nested High Resolution 809

(a) 3-domain (b) 6-domain

(c) 4-domain (d) 5-domain

Fig. 1. Nested domain configurations used for the experiments

WRF Runtime Setup. WRF-ARW version 3.2.1, compiled in hybrid mode
(dm+sm), was used for all the experiments. In all the simulations, Kain-Fritsch
convection parameterization, Thompson microphysics scheme, RRTM long wave
radiation, Yonsei University (YSU) boundary layer scheme, and Noah land sur-
face model were used. File I/O was restricted to just the beginning and end of
the run, however, for high resolution operational simulations that require fore-
cast output very frequently, it is possible that I/O could become a bottleneck
for scaling to large number of processors. This is especially true in production
runs that typically involve two or more levels of nesting and a forecast output
every ten minutes. We also explored the use of I/O quilting feature in WRF,
however, we excluded quilting from the current study since parallel I/O gave
the best performance. For this study we primarily use the total integration time
since the I/O time is still a small fraction of the total simulation time when
parallel I/O is used with moderate number of processors (up to 1024).



810 P. Malakar et al.

4 Optimizations

We explored several optimizations for the WRF application on BG/P that in-
clude compiler options, code modifications and tuning the MPI libraries.

4.1 Compiler Options

We modified the default WRF configure from UCAR to include parallel NetCDF
for parallel I/O on BG/P. This serves as the base WRF configure to make base
WRF run for our experiments. We enhanced the base WRF configure with a
few new options. As the WRF moisture physics routines have several calls to
exponents, square-root, trigonometric functions and divisions, we enabled the
mathematical acceleration libraries mass and the vector variant library massv.
We also modified WRF source to call the massv library for the vspow call. In
addition, we also used the -qhot=vector compiler option that converts loops with
exponents, square-root, division and trigonometric functions to massv library
calls. The mass and massv library calls are optimized via SIMD instructions
that have higher throughput. Most of WRF is compiled with the -O2 option,
with select performance-critical routines compiled with -O3. To further optimize
compiler performance, we added the -qmaxmem=128000 to enable the compiler
to aggressively optimize WRF source. We also enabled OpenMP via the IBM
XL compiler option -qsmp=omp. The WRF source can tile the X or the Y loops
to enable the tile computation to be executed on different threads.

4.2 Communication Libraries

Communication overhead is a significant fraction of the WRF timestep. We ex-
plored mapfiles to efficiently map the 2D decomposition on to the 3D torus. Our
mapfiles map the processors to diagonals on the 3D torus planes when the 3D
torus dimensions cannot be folded to the WRF 2D stencil communication dimen-
sions. In addition, we explored increasing the MPI eager limit and enabling the
FIFO mode RZVANY in the DCMF library [4] that drives MPI communication
on BG/P. This mode improves performance of messages to diagonal neighbor-
ing nodes by allocating more network resources to those messages. In addition,
to minimize synchronization between nodes, we explored the Async Rectangle
Broadcast that implements broadcast without forcing synchronization between
the nodes. By default, the collective network is used that forces all nodes to
synchronize before the broadcast data is transmitted on the network. We also
replaced a call to MPI Allgather in the forcing and feedback computation with
an MPI Alltoall call as MPI Alltoall is efficient on BG/P.

4.3 Source Code Optimizations

Loop Unrolling. The XL compiler on BG/P typically only unrolls the inner-
most loops. WRF is a strong scaling application where the application domain
is decomposed along the X and Y dimensions to MPI ranks. By default, the
WRF compute loops execute in an XZY order that results in short X loops on



Performance Evaluation and Optimization of Nested High Resolution 811

Fig. 2. Halo regions in X-
Y dimensions

Table 1. Steps in WRF halo exchange

Pack data into buffer to send to the Y-neighbours.

Receive message from and send message to the Y-neighbours.

Wait for completion of communication with the Y-neighbours.

Unpack data received from Y-neighbours.

Pack data into buffer to send to the X-neighbours.

Receive message from and send message to the X-neighbours.

Wait for completion of communication with the X-neighbours.

Unpack data received from X-neighbours.

a large number of nodes. Hence, we explored unrolling the Z dimension loops in
the pack unpack functions that serialize application buffers into MPI messages
functions and WRF dynamics computation.

Parallel X and Y communication. The WRF solver sweeps over a 2D-XY-
spatial grid performing nearest neighbour computations called stencils[7]. Due
to the overlapping spatial decomposition, each process Pi,j communicates its
boundary regions, called halo regions, with its two X-neighbours Pi−1,j and
Pi+1,j and two Y-neighbours Pi,j−1 and Pi,j+1 as shown in Figure 2. Each in-
tegration time-step in WRF involves a large number of halo exchanges, which
are fairly expensive and comprise of the steps shown in Table 1. Using IBM’s
HPCT profiling tools, we found that the packing/unpacking of the halo regions
is a computation-intensive step. Further, most of the time is spent in MPI Wait
since every process waits for the completion of the communications without doing
any computation. To improve the performance, we modified the halo exchange
sequence of steps, specifically delaying the MPI Wait calls and performing the X
and Y communications in parallel, which is favoured by the BG/P torus topol-
ogy. In the new sequence, the Y-communications are overlapped with the packing
of data for the X-neighbours and the X-communications are overlapped with the
unpacking of data from the Y-neighbours. This affects only the corners of the
halo regions (e.g. regions A,B,C,D in Figure 2) and does not make a substantial
difference since these only comprise a tiny part of the subdomain. Note paral-
lelizing X and Y communication does not affect bitwise reproducability in the
application as we still maintain a deterministic order.

5 Performance Analysis

In this section, we present the results of our performance evaluation on mul-
tiple nested domain configurations. Specifically, we discuss the various BG/P
execution modes, the benefits of various WRF optimizations, the scalability of
the original and optimized WRF code, and also the importance of choosing a
nesting configuration to match the processor configuration. We used 128 to 1024
BG/P nodes for performance evaluation to keep the simulation runtimes to rea-
sonable limits as well as to prevent over-decomposition of the domains beyond
1024 nodes.



812 P. Malakar et al.

(a) Performance variation with different
optimizations on 1 rack

128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

base

 

 

Solve
Force
Feed
I/O

128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

optimized

 

 

Solve
Force
Feed
I/O

(b) Variation of fractional times of solve,
forcing, feedback, and I/O operations vs.
number of processors

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

Number of nodes

T
im

e
 (

se
co

n
d
s)

3−domain

 

 

Total Time−Base
Total Time−Opt
Solve Time−Base
Solve Time−Opt
Force Time−Base
Force Time−Opt
Feed Time−Base
Feed Time−Opt

(c) Computation time of WRF operations

0 200 400 600 800 1000 1200
1

1.5

2

2.5

3

3.5

4

4.5

Number of nodes

S
p
e
e
d
u
p

3−domain

 

 

Total Time−Base
Total Time−Opt
Solve Time−Base
Solve Time−Opt
Force Time−Base
Force Time−Opt
Feed Time−Base
Feed Time−Opt

(d) Speedup of WRF operations

Fig. 3. WRF performance on nested domain configurations

BG/P Execution Modes. We compared the base WRF performance with
different BG/P execution modes (SMP, DUAL and VN). The performance was
best with SMP mode with 4 OpenMP threads compared to other modes. On 1024
nodes (1 rack) of BG/P, integration time for DUAL and VN modes increased
by 4% and 48% over SMP mode respectively. The total simulation runtime with
DUAL and VN modes increased by 12% and 65% over SMP mode respectively.
The increase in total runtime was partly due to higher I/O overheads in DUAL
and VN modes because of the increase in the number of MPI ranks. The I/O
times increased 1.5x and 2.8x in DUAL and VN modes respectively.

WRF Optimizations. Figure 3(a) shows the incremental performance benefits
of the various optimizations described in Section 4 on a single rack of BG/P. Each
column bar in the figure also incorporates the optimizations indicated by the pre-
vious column bars. The performance of the base WRF configuration is presented
in column bar base. The opt conf column bar indicates the performance after



Performance Evaluation and Optimization of Nested High Resolution 813

incorporating compiler options mentioned in Section 4.1, that results in a 21%
improvement over the base configuration. The column bar opt env shows the
benefit of environment variables (Section 4.2) that enable an optimized proces-
sor mapping, set the eager to rendezvous cutoff and the DCMF FIFO mode. We
see a total improvement of 3% over opt conf (23.7% over base). Loop unrolling
of the pack and unpack routines (opt pack) described in Section 4.3 results in an
improvement of 3.6% over opt env (26.5% over base). Replacing MPI Allgather
with MPI Alltoall (opt ag) provided 2.7% further improvement over opt pack
(28.4% over base). Finally, optimization for the parallel X and Y halo commu-
nication (opt xycomm) results in a performance improvement of 5% over opt ag.
This corresponds to an overall improvement of 32% to the integration time and
an improvement of 28.9% in the total simulation runtime over the base run.

WRF Scaling. Figure 3(b) shows the variation in fractional time for solve,
forcing and feedback operations across number of processors for base and opti-
mized codes. Observe the I/O and forcing components increase with the number
of nodes suggesting that they are performance bottlenecks. Figures 3(c) and 3(d)
show the scaling of solve, forcing and feedback operations in terms of actual tim-
ings and speedup respectively. The total time is the sum of the timings for these
3 operations. Though sub-linear, the observed speedups of solve operation in
both the original and optimized WRF code (3.5x - 5x going from 128 to 1024
processors) exhibit the same general behavior as the theoretical model presented
by Kerbyson et al. [3]. Relative to solve, the forcing and feedback operations ex-
hibit much poorer scaling, attaining speedups of 2x - 2.7x for the same increase
in the number of processors. From these figures, we also observe that with our
optimizations, the solve time improves and the forcing and feedback components
have lower overheads and better scaling.

Influence of Nesting Configuration. We also compare the performance of
the three nested domain configurations in Figures 1(b), 1(c), and 1(d), which are
equivalent in terms of practical utility and differ only in the sibling domains at
the innermost level. Figure 4(a) shows the speedup (relative to 128 processors)
as the number of processors increase. We observe that increasing the number of
domains results in poorer scalability. One reason for this behavior is that more
domains entail additional sequential forcing and feedback operations, which do
not scale well. In addition, the innermost nests with small domain sizes get
over-decomposed for higher number of processors resulting in lower computa-
tion to communication cost ratio. The superior scalability of the 4-domain and
5-domain cases suggest that as we increase the number of processors, the gap
in the total integration time due to the additional number of innermost grid
points in comparison to that of the 6-domain case should progressively decrease.
Figure 4(b) shows the total integration time for the three nested domain config-
urations with varying number of processors. Even though the 6-domain case has
the least number of grid points, for 128 processors, the 5-domain case provides
the best performance (8984s in comparison to 10701s and 9108s for 4-domain and
6-domain cases). As the number of processors increases to 1024, the 4-domain
configuration exhibits superior scaling and gives the best performance (2411s in
comparison to 2459s and 2794s for 5-domain and 6-domain cases). Therefore,



814 P. Malakar et al.

it is sometimes beneficial to consider a smaller number of consolidated domains
instead of a large number of small focused domains.

0 200 400 600 800 1000 1200
1

1.5

2

2.5

3

3.5

4

4.5

Number of nodes

S
pe

ed
up

 

 

4−domain: 490133 pts
5−domain: 362553 pts
6−domain: 327184 pts

(a)

0 200 400 600 800 1000 1200
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Number of nodes

T
ot

al
 in

te
gr

at
io

n 
tim

e

 

 

4−domain: 490133 pts
5−domain: 362553 pts
6−domain: 327184 pts

(b)

Fig. 4. Performance over the three sibling configurations across varying number of
processors

6 Empirical Modeling of Computation Time

Observations from Section 5 highlight the importance of carefully choosing the
nesting configuration that can extract the best performance for a given processor
configuration. To aid in this effort, we use the empirical timing data from our
evaluation to learn a statistical model of the computation time for the three
key operations in WRF (solve, forcing and feedback). We then describe how
these individual models can be combined to estimate the total modeling time
for complex nesting scenarios that involve multiple levels of nesting.

Regression Model. For each operation and domain/processor configuration,
the runtime for each iteration is computed as the maximum time across the
different nodes since they are operating in parallel. Since the different iterations
are executed sequentially and the number of iterations vary due to nesting or
simulation configuration, the mean runtime across the different iterations is a
good target. We choose the median value across the different iterations as the
target variable to be modeled instead of the mean to disregard outlier cases, but
the results are comparable in either case. Each domain/processor configuration
is represented as a vector of features (column headings in Table 2) based on
sizes of the domain(s) involved and the processor grid. Let the domain grid size
be denoted by nx × ny and processor grid be denoted by px × py. In case of
forcing and feedback, we also consider the parent grid size denoted by np

x × np
y.

Using the median iteration time as the target response and the feature vector
as independent variables, we learn a least squares linear regression model [6].
Table 2 shows the model coefficients. For instance, the computation time for
solve operation is given by Tsolve =7.69e-4

nxny

pxpy
+3.37e-3nx

px
+2.35e-3

ny

py
+4.047e-

2. A similar model was computed for the optimized WRF code as well and for
each operation, the coefficients of all the features were found to be positive, but
lower than that of the base WRF timing model. Note that the model coefficients



Performance Evaluation and Optimization of Nested High Resolution 815

Table 2. Coefficients of the model for base WRF version

Op
nxny
pxpy

n
p
xn

p
y

pxpy

nx
px

ny
py

constant

Solve 7.693e-4 NA 3.3676e-3 2.3472e-3 4.04716e-2
Forcing 6.2493e-5 2.0758e-4 2.78171e-3 1.7226e-3 1.4445e-1
Feedback 9.8716e-5 5.2550e-5 2.4233e-3 1.2726e-3 8.5323e-2

Table 3. Actual (s), predicted (s) and relative error (%) of integration time for the
base WRF model

Processors 128 256 512 1024
Domain Act Pred Err(%) Act Pred Err(%) Act Pred Err(%) Act Pred Err(%)
3-domain 2976 2877 3.3 1809 1753 3.1 1200 1143 4.7 867 815 5.9
6-domain 9109 9064 0.5 5508 5524 0.29 3745 3603 3.8 2794 2574 7.9
4-domain 10701 10225 4.5 6011 5909 1.7 3632 3455 4.9 2412 2276 5.6
5-domain 8984 8989 0.06 5374 5266 2.01 3553 3367 5.2 2460 2283 7.2

are specific to choice of BG/P and the other fixed parameters of the simulation
(e.g., mp physics = 8), but the methodology can be adapted as needed.

Computation Time for Multilevel Nested Domains. LetD = {D0, · · · , Dn}
be a set of nested domains with D0 being the root domain and the domain hi-
erarchy specified by the p(·) function. Let Tsolve(D) denote the computation
time for a solve iteration on domain D and Tforce(D,Dp) and Tfeedback(D,Dp)
denote the computation time for forcing and feedback operations between do-
main D and its parent domain Dp. Let T

SH
solve(D) denote the solve time for the

entire sub-hierarchy under the domain D. Given the constraints of the current
WRF code, the forcing, feedback, and solve operations associated with the child
domains have to be done sequentially. For two-way nesting, one can obtain the
following recursive equation,

T SH
solve(D) = Tsolve(D)+

∑

Dc|p(Dc)=D

(Tforce(Dc, D)+rTsolve(Dc)+Tfeedback(Dc, D))

where r is the parent-child time-step ratio (=3). The total integration time is
then given by T SH

solve(D0) multiplied by the number of timesteps.
Using the above recursion and the prediction models for Tsolve(·), Tforce(·, ·)

and Tfeedback(·, ·), one can obtain a reasonable estimate of the computation time
for a specified nested domain configuration and processor configuration without
having to actually run the code. Table 3 shows the actual integration timings as
well as the timings predicted by the model and the absolute relative error for
different domain and feasible processor configurations for the base WRF code.
We observe that the prediction error is fairly low (0.06 − 7.9%). Note that the
5-domain case is in fact a new configuration which was not used for training the
statistical model, but the predicted timings are still fairly accurate. This timing
prediction model can be very useful for practitioners since they can choose the
domains and nesting configurations based on the estimated run times. We plan
to do a more exhaustive evaluation over multiple nested domain cases in future.



816 P. Malakar et al.

7 Conclusions and Future Work

We performed a detailed study of nested domain weather simulations that are
critical for operational weather forecasting. We described several optimizations
to the base WRF code that reduces the total runtime by 29%. We also conducted
a performance evaluation using four test configurations and demonstrated that
high resolution nested weather simulation presents a number of challenging op-
portunities in terms of scaling to large number of processors especially in the
case of multiple small-sized sibling domains. This is partly due to the design of
the WRF code wherein, multiple nests at the same level are handled by all the
processors in a sequential manner resulting in over-decomposition. The current
design of the WRF code makes it both critical and challenging for practition-
ers to choose a good nesting configuration. Accounting for the constraints of
the current WRF code, we also presented a regression-based model for predict-
ing integration time for multi-level nested weather simulations that can be used
by WRF users to determine the domain configurations best suited for a given
processor grid. Future directions include improving the performance model by in-
corporating additional features based on the network topology, modifying WRF
code to allow subsets of processors working in parallel over sibling domains and
designing algorithms that can effectively balance the load under such circum-
stances. We also plan to explore MPI non contiguous datatypes to optimize the
pack/unpack operations in WRF. In addition, weak scaling studies could poten-
tially assist in further understanding of the effects of the proposed optimizations.
Optimizing file I/O performance in WRF is another potential future work.

Acknowledgements. We would like to thank Yogish Sabharwal, Bob Walkup,
Dong Chen, Sathish S. Vadhiyar, Vijay Natarajan and Lloyd A. Treinish for
their help, technical support and valuable suggestions. The work presented in
this paper was funded in part by the US Government contract No. B554331.

References

1. Bhatele, A., Gupta, G.R., Kale, L.V., Chung, I.H.: Automated Mapping of Regular
Communication Graphs on Mesh Interconnects. In: HiPC (2010)

2. Delgado, J., et al.: Performance Prediction of Weather Forecasting Software on
Multicore Systems. In: IPDPS, Workshops and PhD Forum (2010)

3. Kerbyson, D.J., Barker, K.J., Davis, K.: Analysis of the Weather Research and
Forecasting (WRF) Model on Large-Scale Systems. In: PARCO, pp. 89–98 (2007)

4. Kumar, S., et al.: The Deep Computing Messaging Framework: Generalized Scal-
able Message passing on the Blue Gene/P Supercomputer. In: ICS 2008 (2008)

5. Kumar, S., et al.: Architecture of the Component Collective Messaging Interface.
IJHPCA 24(1), 16–33 (2010)

6. Kutner, M.H., Nachtsheim, C.J., Neter, J.: Applied Linear Regression Models,
Fourth International edn. McGraw-Hill (September 2004)

7. Michalakes, J.: RSL: A Parallel Runtime System Library For Regional Atmospheric
Models With Nesting. Tech. Rep. ANL/MCS-TM-197, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne (1997)

8. Michalakes, J., et al.: WRF Nature Run. In: SC, p. 59 (2007)



Performance Evaluation and Optimization of Nested High Resolution 817

9. Porter, A.R., et al.: WRF code Optimisation for Mesoscale Process Studies
(WOMPS) dCSE Project Report (June 2010)

10. Shainer, G., et al.: Weather Research and Forecast (WRF) Model Performance and
Profiling Analysis on Advanced Multi-core HPC Clusters. In: 10th LCI ICHPCC
(2009)

11. Skamarock, W.C., et al.: A Description of the Advanced Research WRF version 3.
NCAR Technical Note TN-475 (2008)

12. Wright, N.J., Pfeiffer, W., Snavely, A.: Characterizing Parallel Scaling of Sci-
entific Applications using IPM. In: 10th LCI International Conference on High-
Performance Clustered Computing (2009)


	Performance Evaluation and Optimization of Nested High Resolution Weather Simulations
	Introduction
	Related Work
	Experimental Setup
	Optimizations
	Compiler Options
	Communication Libraries
	Source Code Optimizations

	Performance Analysis
	Empirical Modeling of Computation Time
	Conclusions and Future Work
	References




