
High-Level Support for Pipeline Parallelism

on Many-Core Architectures

Siegfried Benkner1, Enes Bajrovic1, Erich Marth1, Martin Sandrieser1,
Raymond Namyst2, and Samuel Thibault2

1 Research Group Scientific Computing, University of Vienna, Austria
2 University of Bordeaux, LaBRI-INRIA Bordeaux Sud-Ouest, Talence, France

Abstract. With the increasing architectural diversity of many-core ar-
chitectures the challenges of parallel programming and code portability
will sharply rise. The EU project PEPPHER addresses these issues with a
component-based approach to application development on top of a task-
parallel execution model. Central to this approach are multi-architectural
components which encapsulate different implementation variants of ap-
plication functionality tailored for different core types. An intelligent run-
time system selects and dynamically schedules component implementa-
tion variants for efficient parallel execution on heterogeneous many-core
architectures. On top of this model we have developed language, com-
piler and runtime support for a specific class of applications that can
be expressed using the pipeline pattern. We propose C/C++ language
annotations for specifying pipeline patterns and describe the associated
compilation and runtime infrastructure. Experimental results indicate
that with our high-level approach performance comparable to manual
parallelization can be achieved.

1 Introduction

With the shift towards heterogeneous many-core architectures combining differ-
ent types of execution units like conventional CPU cores, GPUs and other accel-
erators, the challenges of parallel programming will sharply rise. For an efficient
utilization of such architectures usually different programming models and APIs,
tailored for the different types of execution units, have to be combined within a
single parallel application. Available technologies like Intel TBB [1], CUDA [2],
Cell SDK [3], and OpenCL [4] are characterized by a low level of abstraction,
forcing programmers to take into account a myriad of architecture details, usu-
ally beyond the capabilities of average users. Several recent research projects
including ParLab [5], PetaBricks [6], Elastic Computing [7], ENCORE [8] and
others, are addressing these challenges by proposing higher-level programming
support for emerging many-core systems.

The European research project PEPPHER [9] targets programmability and
performance portability for single-node heterogeneous many-core architectures
by means of a component-based approach in combination with a task-parallel
execution model. In this paper we present our contributions towards high-level
support for pipelined applications within the PEPPHER framework. Section 2

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 614–625, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

High-Level Support for Pipeline Parallelism on Many-Core Architectures 615

outlines the PEPPHER approach and describes the proposed language features
for realizing pipelined C/C++ applications. Section 3 describes our source-to-
source transformation framework as well as the coordination and runtime sup-
port for pipelining. Experimental results for two real-world applications and a
comparison to TBB are presented in Section 4. The paper closes with a discussion
of related work and future directions.

2 High-Level Programming Support

Since there exists no parallel programming model that covers all types of par-
allel applications and architectures, we argue that a programming framework
for heterogeneous parallel architectures should support the use of different pro-
gramming models and APIs within an application.

2.1 The PEPPHER Component Model

Within the PEPPHER model performance-critical parts of an application are
realized by means of multi-architectural components that encapsulate, behind an
interface, different implementation variants of a function1 tailored for different
execution units of a heterogeneous many-core system.

Component implementation variants are usually written by expert program-
mers using different programming APIs (e.g., CUDA, OpenCL) or are taken
from optimized vendor-supplied libraries. Non-expert programmers may then
construct applications at a high level of abstraction by invoking component func-
tionality using conventional interfaces and source code annotations to delineate
asynchronous (or synchronous) component calls. With this approach, a sequen-
tial program spawns component calls, which are then scheduled for task-parallel
execution by the runtime system. A source-to-source compiler transforms an-
notated component calls such that they are registered with the runtime system
and generates corresponding glue-code.

The compiler and runtime system make use of rich component meta-data,
usually supplied by expert programmers via external XML descriptors. Besides
information about the data read and written by components, meta-data in-
cludes information about resource requirements, possible target platforms, and
performance relevant parameters [10]. The runtime system, built on top of the
StarPU [11] heterogeneous runtime system, relies on a representation of the pro-
gram as a directed acyclic graph (DAG) where nodes represent component calls
(tasks) and edges represent data dependences. The runtime system dynamically
schedules component calls to the available execution units of a heterogeneous
many-core architecture such that (1) independent component calls execute in
parallel on different execution units and (2) the “best” implementation variants
for a given architecture are selected based on historical performance information
captured in performance models.

1 These functions must be pure, i.e. they must not access global data, they must be
stateless, and they are to be executed non-preemptively.

616 S. Benkner et al.

2.2 Language Support for Expressing Pipeline Patterns

A pipeline consists of several inter-connected stages, where a stream of data
flowing through the pipeline is processed at every stage. Data entering a stage
via input port(s) is consumed, processed and emitted at the output port(s)
accordingly. Usually, stages are connected via buffer structures from which data
is fed into stages. While buffered pipelines require additional memory, they allow
to decouple stages and mitigate relative performance differences. In our approach
buffers between stages are generated automatically, but we provide language
features for the user to control certain aspects of buffering.

The pipeline pattern has the potential of exploiting two levels of parallelism:
inter-stage parallelism, if different stages execute on different cores, and, intra-
stage parallelism, if a stage is itself parallel and executes on, e.g., a GPU.

In our framework, pipelines may be constructed from while loops where the
loop body comprises two or more calls to multi-architectural components as
considered within the PEPPHER framework. The pipeline pragma indicates
that the subsequent while loop represents a pipeline. Each stage of the pipeline
corresponds to a single component call statement within the loop body.

1 #pragma pph pipeline
2 while(data.size != 0) {
3 func1(iFile ,data); // connect func1 to func2 via data
4 #pragma pph stage replicate(4) // replicate stage 4 times
5 func2(data ,cdata); // connect func2 to func3 via cdata
6 func3(cdata ,oFile);
7 }

Listing 1.1. Example of a pipeline directive

2.3 Stage Replication and Stage Merging

Provided application logic permits, stage replication aims to increase the poten-
tial parallelism of pipelined applications by creating multiple replicas of a stage
that may then be executed in parallel. Stages can be replicated using the stage
pragma with the replicate(N) clause, specifying that a stage should be repli-
cated N times (see Listing 1.1). As a consequence, multiple stage instances will
be generated by the compiler to enable processing of different data packets in
parallel, if enough execution units are available. While replication is a suitable
technique for increasing pipeline throughput by replicating stages with (relative)
high execution times, the programmer has to be aware that the order in which
data-packets are processed may change (unless priority ordering is used), result-
ing in unpredictable application behavior. Moreover, sizes of connected in- and
output buffers may have to be adapted as well. Also, stage replication might
result in a performance degradation if not enough execution units are available
to execute all stage replicas in parallel.

The stage pragma may also be used to merge multiple stages into a single
stage (see, e.g., Listing 1.4). This allows the programmer to manually increase
the granularity of stages, if the involved individual component calls do not ex-
hibit enough computational density to mandate processing within a separate

High-Level Support for Pipeline Parallelism on Many-Core Architectures 617

stage. Note that stages can only be merged if for all involved stages compatible
component implementation variants are available. The interface of the resulting
single stage is automatically generated by the compiler, describing all input and
output ports of the merged stage.

2.4 Buffer Management

With our framework buffers are automatically generated in between pipeline
stages. These buffers temporarily store data packets, generated by the source
stage(s), and consumed by the target stage(s). Depending on the type of appli-
cation, different order guarantees and sizes for buffers may be required. Therefore
we provide the buffer clause for specifying the order guarantee, including pri-
ority, random, and fifo, as well as the size of buffers (see Listing 1.2). Global
buffer settings may be specified by using the with buffer clause together with
the pipeline pragma. Local buffer settings for individual stages may be specified
with the buffer for port clause within the stage pragma. In Listing 1.2 the buffer
for port cdata in the second stage is changed to RANDOM and buffer size to 8,
while for all other buffers FIFO ordering is used.

1 #pragma pph pipeline with buffer(FIFO)
2 while(data.size != 0) {
3 func1(iFile ,data);
4 #pragma pph stage buffer for port(cdata ,RANDOM ,8)
5 func2(data ,cdata);
6 func3(cdata ,oFile);
7 }

Listing 1.2. Influencing Buffer Management

3 Implementation

We have developed a prototype source-to-source compiler that transforms C/C++
applications with the described annotations into C++ with calls to a pipeline co-
ordination layer that utilizes the StarPU [11] heterogeneous runtime system for
scheduling stages for parallel execution onto the execution units of a heteroge-
neous many-core system comprising CPUs as well as GPUs. The source-to-source
compiler has been implemented using the ROSE compiler infrastructure [12].

3.1 Source-to-Source Transformation

After the usual front-end processing phases an abstract syntax tree is constructed.
Pipeline constructs are then further processed to determine the structure of the
pipeline (stage interconnection) by analyzing the data types of objects passed be-
tween pipeline stages. For each stage interconnection (port) corresponding buffer
structures, as specified globally or locally, are generated.

The generated target code contains calls to the pipeline coordination layer
which comprises various classes for coordinating the execution of pipeline stages

618 S. Benkner et al.

read compress writeB B

...
while(block.last != 1) {
 read(ifile,block);
 compress(block);
 write(ofile,block);
}
...

#pragma pipeline buffer[FIFO,2*N]
while(block.last != 1) {
 read(ifile,block);
 #pragma stage replicate(N)
 compress(block);
 #pragma stage buffer_...
 write(ofile,block);
}

A
nn

ot
at

e

Analyze

...
1 pipe::BufferObject *blockBItem = bufferItemCreator(...);
2 pipe::Buffer *readOutBuf = pipe::createFIFOBuffer(blockBItem);
3 pipe::Stage *readStage = pipe::createStage(STAGE::SOURCE...);
4 pipe::Stage *compressStage = pipe::createStage(STAGE::INTER,…);
...
5 pipe::connectStage(read,0,compress,0,readOutBuf);
6 readStage->setInputBuffer(iFileIn,0);
7 compressStage->setReplication(N);
8 compressStage->setComputation(&compressComponent);
9 readStage->execute();
...

Transform

type: SINK
computation: write

preceding: compress

type: INTER
input: 1 (readOutBuf)

replication: N

type: SOURCE
computation: read

output: 1 (readOutBuf)

<< readOutBuf >>
order: FIFO (size=4)

type: block

<< writeInBuffer >>
order: PRIORITY (size = 4)

type: block

BB

<< auto >>
static buffer
type: FILE*

<< auto >>
static buffer
type: FILE*

(virtual) pop() : T*
(virtual) push(T * data) : void

Buffer

FIFOBuffer PriorityBuffer

- priorityTag : tag_id_t
- data : T*

BufferObject
*1

Map onto Coordination Layer

+ execute() : void
+ callback() : void

- replication : unsigned*
Stage

*1

Fig. 1. Overview of the transformation process

on top of the StarPU runtime system. The Stage class encapsulates information
on the stage functionality (component), directly connected buffers and stages for
each port, the number of instances of a stage to be processed in parallel (repli-
cation count), and the position of the stage within the pipeline (source, inter, or
sink). Each stage owns a local coordination mechanism, described later, which
slightly differs depending on the position of a stage. The abstract Buffer class
generalizes the buffer access interface and is used to derive concrete buffer imple-
mentations like FIFO buffers or priority buffers. Each buffer stores information
about connected stages, internal storage layout, and the type of data packets.

Figure 1 gives an overview for a three-stage data compression pipeline ex-
ample. First buffer objects are generated (line 1) for holding data packets and
meta-data such as priority tags, creation dates, and other information. Next, all
inter-stage buffers are generated to hold the previously generated buffer objects,
setting the default data type for each buffer, as shown in line 2. Class instances

High-Level Support for Pipeline Parallelism on Many-Core Architectures 619

for the read and compress stages are generated in line 3 and 4. The stages are
further configured by specifying connected buffers, replication counts, and the
stage computations, as shown in line 5 to 8. After all stages have been created
and configured, stages are posted for execution to the runtime, initiating the
actual execution of the pipeline, as shown in line 9.

3.2 Task-Based Heterogeneous Runtime

The StarPU runtime system [11] utilized in our framework is based on an ab-
straction of the underlying heterogeneous many-core architecture as a set of
workers, each representing either a general purpose computing core, or an ac-
celerator (e.g., a GPU). The runtime system is responsible for selecting suitable
component implementation variants for pipeline stages and for scheduling their
execution to workers in a performance- and resource-efficient way, according to a
specific scheduling policy. StarPU manages data transfers between workers, en-
sures memory coherency, and provides support for different scheduling strategies
which may be selected at runtime.

Besides the well-known EAGER scheduling policy, StarPU also features the
Heterogeneous Earliest Finish Time (HEFT) [13] policy. The HEFT policy con-
siders inter-component data dependencies, and schedules components to workers
taking into account the current system load, available component implementa-
tion variants, and historical execution profiles, with the goal of minimizing overall
execution time by favoring implementations variants with the lowest expected
execution time.

3.3 Coordination

The coordination layer controls the execution of a pipelined application by de-
ciding when to post stage component calls to the runtime system. We utilize
a local coordination strategy where each stage is at runtime controlled by a
corresponding stage object (an instance of the Stage class). The Stage class pro-
vides two methods for coordinating the execution of a pipelined application: the
method execute() for posting a stage for execution to the runtime system and
the method callback() for transferring control back to a stage object after its
associated component has finished execution on a worker. In the following we
outline a coordination scenario for the code shown in Figure 1.

First the runtime system is initialized and the required stage and buffer objects
are instantiated. Next, the execution of all stages is initiated by invoking the
execute() method on each stage object. This method posts a stage for execution
to the runtime system provided its input buffer(s) and free slots in its output
buffer are available. In our scenario, initially only the read stage is posted to the
runtime while execution of all other stages is postponed since no input data is yet
available. The runtime system then selects a suitable component implementation
variant for the read stage and schedules it for execution onto a worker. When
the read stage finishes execution on the selected worker, the runtime system
invokes its callback method. Within the callback, first all connected buffers of

620 S. Benkner et al.

the read stage are updated and then the execute() method of the connected
compress stage is called, which results in posting the compress stage to the
runtime system. Finally, if a new data packet to be processed and a free output
buffer slot are available, the read stage re-posts itself for execution to the runtime
system. The runtime can now schedule the second instance of the read stage and
the first instance of the compress stage for parallel execution on different workers.
With this scheme, stages coordinate themselves only in combination with their
immediate neighbors, but without a central coordinator.

4 Experimental Evaluation

An initial evaluation has been performed with two real world codes, a data com-
pression application and a face detection application. We compare our approach
to Threading Building Blocks (TBB) as well as to existing parallel implemen-
tations on two different architectures. Architecture A represents a homogeneous
system with two Intel Xeon X7560 (8 cores, 2.26 GHz) running RHEL 5. Archi-
tecture B is a heterogeneous system with two Intel Xeon X5550 (4 cores, 2.67
GHz), one Nvidia GeForce GTX 480 (480 Cores, 1.5GB, 1.40GHz), and one
Nvidia GeForce GTX 285 (240 Cores, 1GB, 1.48GHz), CUDA 4.0 and RHEL
5.6. The performance numbers shown are average execution times over ten runs.

4.1 BZIP2 Compression

BZIP2 is an open-source lossless data compression tool, based on the Burrows-
Wheeler-Transformation [14]. Compared to other compression techniques, BZIP2
is embarrassingly parallel, compressing data at the granularity of blocks with a
fixed size. Since there are currently no heterogeneous implementations available,
BZIP2 cannot utilize the GPUs of architecture B.

Listing 1.3 outlines the implementation using our language constructs. We
implement a three stage pipeline with FIFO and PRIORITY buffers and utilize
the replication feature for the middle stage.

1 unsigned int N = get_max_cpu_cores();
2 #pragma pph pipeline with buffer(FIFO ,N*2)
3 while(b->iSize == bs) {
4 readBlock(ifile ,b);
5 #pragma pph stage replicate(N)
6 compress (b);
7 #pragma pph stage buffer for port(b,PRIORITY)
8 writeCompressedBlock(ofile ,b);
9 }

Listing 1.3. BZIP2 Compression Pipeline

For comparison, we have implemented bzip2 using the pipeline pattern of
TBB to create a pipeline [15] with three stages (read, compress, write) using
the utility functions provided by the bzip2 library [16]. Since in TBB stages
cannot be replicated explicitly, we have set the number of alive objects to twice
the number of cores available. This allows TBB to schedule stages in parallel if

High-Level Support for Pipeline Parallelism on Many-Core Architectures 621

Table 1. bzip2 Performance Results (execution times in s)

Architecture A Architecture B

Cores 1 2 4 8 16 1 2 4 8

TBB 248.19 133.18 64.99 32.63 19.58 201.42 103.43 52.11 28.73
pbzip2 268.88 128.20 65.86 33.75 20.16 207.57 106.52 55.28 31.83
PEPPHER 288.04 143.42 76.27 37.46 19.99 208.88 107.17 61.24 44.71

possible. For correct compression in time, we have enabled order preservation.
Moreover, we measured an existing code from the pbzip2 project [17], which
represents a manually implemented pipeline with three stages (read, compress,
and write) and priority buffers.

Table 1 shows the measured (average) execution times (wall-clock times) for
the bzip2 benchmark for compressing a file with size of 1 GB. As can be seen,
our high-level approach delivers performance results which are very similar to
the other two approaches. However, the programming effort with our approach
as well as the total lines of code required is significantly reduced.

4.2 OpenCV Image Processing

The Open Source Computer Vision (OpenCV) library provides extensive support
for the implementation of real time computer vision applications [18]. Originally
developed for homogeneous architectures, current releases offer built-in support
for GPUs based on CUDA. Using OpenCV we have implemented a face detection
application in a pipelined manner, where for the detection stage two different
implementation variants, for CPUs and GPUs, are provided.

1 unsigned int N = get_max_execution_units();
2 #pragma pph pipeline with buffer(PRIORITY ,N*2)
3 while(inputstream >> file) {
4 readImage(file ,image);
5 #pragma pph stage replicate(N) {
6 resizeAndColorConvert(image);
7 detectFace(image ,outimage);
8 }
9 writeFaceDetectedImage(file ,outimage);

10 }

Listing 1.4. OpenCV Image Processing Pipeline

Listing 1.4 sketches our implementation as a three-stage pipeline with priority
buffers. The pipelines exits once 32 images have been processed. The middle
stage, which merges two component calls, is replicated according to the available
number of execution units within the system.

For comparison, a pipelined TBB version [15] has been implemented in a
similar way. Again, instead of stage replication, we have set the number of alive
data packets to twice the number of execution units, enabling TBB to schedule
stages in parallel.

622 S. Benkner et al.

Table 2. OpenCV Performance Results (execution times in secs)

Architecture A

Image Size VGA SVGA XGA QXGA

TBB (1 Core) 15.61 23.51 41.84 170.58
PEPPHER (1 Core) 12.40 17.85 30.72 140.86

TBB (16 Core) 1.26 1.92 3.39 13.60
PEPPHER (16 Cores) 1.16 1.72 2.91 12.33

Architecture B

TBB (1 Core) 12.75 20.07 35.15 145.68
PEPPHER (1 Core) 9.62 14.33 24.94 111.45
PEPPHER (1 Core + 1 GPU) 3.94 5.91 10.35 46.30
PEPPHER (1 Core + 2 GPUs) 2.95 2.72 6.53 30.81

TBB (8 Cores) 1.47 2.29 4.13 17.4
PEPPHER (8 Cores) 1.18 1.78 3.58 13.69
PEPPHER (7 Cores + 1 GPU) 1.13 1.63 2.91 11.89
PEPPHER (6 Cores + 2 GPUs) 0.94 1.40 2.44 10.71

Table 2 shows performance results for the face detection code in comparison
to the TBB version using different image resolutions including VGA(640x480),
SVGA(800x600), XGA(1024x768), and QXGA(2048x1536). As can be seen, on
architecture A our high-level approach outperforms the TBB version by about
20%. On architecture B, when using only the CPU cores, we get similar results.
As opposed to TBB, however, our approach can take advantage of the GPUs
by utilizing the GPU implementation variant for the (merged) middle pipeline
stage. Since for each GPU an additional CPU core is required, the number of us-
able general purpose cores is reduced accordingly. As can be seen, using one CPU
core and one GPU (GTX 480) the execution time is reduced by a factor of up to
3.14 compared to the TBB version using one CPU core. Using a second GPU re-
sults in only modest further performance improvements. Again the results show
that our high-level approach to pipelining has the potential to outperform TBB,
while significantly improving programmability. Moreover, based on our concept
of multi-architectural components together with a versatile heterogeneous run-
time system, we can take advantage of a heterogeneous CPU/GPU-based archi-
tecture without modifying the high-level application code.

5 Related Work

Over the last two decades design patterns as well as skeletons had a significant
impact on software development in general as well as on parallel and distributed
programming [19–22].

High-Level Support for Pipeline Parallelism on Many-Core Architectures 623

Intel Threading Building Blocks (TBB) provides direct support for pipeline
patterns. As opposed to our work, TBB targets only homogeneous architectures
and does not support stage implementation variants.

Thies at al. [23] propose StreamIt, a domain specific language (DSL) for de-
signing stream-based applications where in combination with the underlying
compiler pipeline specific optimizations [24] are applied. However, support for
heterogeneous architectures is not addressed in this work.

Schaefer at al. [25, 26], propose a language-based approach for engineering
parallel application using tunable patterns. Although different stage implemen-
tations are supported within the pipeline pattern, support for heterogeneous
architectures has not been addressed.

Suleman at al. [27], propose a feedback-directed approach with integrated sup-
port for tuning. In combination with online-monitoring, pipelined applications
are optimized on a coarse-grain level. Neither different stage implementation
variants, nor optimizations for heterogeneous architectures are supported.

There have been several proposals for extending C or Fortran in order to sup-
port programming of heterogeneous systems comprised of CPUs and GPUs in-
cluding OmpSS [28], PGI Accelerate [29], HMPP [30], and OpenACC[31]. These
approaches are based on directives for specifying regions of code in Fortran or
C programs that can be offloaded from a host CPU to an attached GPU by
the compiler. None of these approaches, however, supports pipelining or other
parallel patterns.

6 Conclusion and Future Work

We have presented high-level language annotations for C/C++ for developing
pipelined applications on heterogeneous many-core architectures without having
to deal with complex low-level architectural issues. We provided an overview
of the associated implementation framework which is currently being developed
within the European PEPPHER project. Our work relies on a component-based
approach where pipeline stages correspond to multi-architectural components
that encapsulate different implementation variants optimized by expert pro-
grammers for different execution units of a heterogeneous many-core system. A
source-to-source compiler translates pipelined applications to an object-oriented
coordination layer which is built on top of a heterogeneous task-based runtime
system. The task-based runtime system attempts to schedule the best compo-
nent implementation variants for parallel execution on the free execution units
of a many-core system such that overall performance is optimized.

Our approach enables to run the same high-level application code without
changes on homogeneous and heterogeneous multi-core architectures, delegat-
ing to the runtime system task scheduling and implementation variant selection.
Experimental results on two different architectures are encouraging and indi-
cate that a performance comparable to manual parallelization can be achieved,
despite the considerably higher level of abstraction provided by our language
features for the pipeline pattern.

624 S. Benkner et al.

For future work we plan to extend our framework with autotuning capabilities
to, for example, determine replication counts and buffer sizes for pipeline stages.
Furthermore, we plan to experiment with different runtime scheduling strategies
as supported by StarPU and to provide support for other parallel patterns.

Acknowledgment. This work was supported by the European Commission as
part of the FP7 Project PEPPHER under grant 248481.

References

1. Intel, Threading Building Blocks (2009), http://threadingbuildingblocks.org
2. Nvidia, C.: Compute Unified Device Architecture Programming Guide. NVIDIA,

Santa Clara (2007)
3. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.J.:

Introduction to the Cell Multiprocessor. IBM Journal of Research and Develop-
ment 49(4-5), 589–604 (2005)

4. Munshi, A. (ed.): OpenCL 1.0 Specification. Khronos OpenCL Working Group
(2011)

5. Pan, H., Hindman, B., Asanović, K.: Composing Parallel Software Efficiently with
Lithe. In: Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2010, pp. 376–387. ACM, New York
(2010)

6. Ansel, J., Chan, C.P., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Ama-
rasinghe, S.P.: PetaBricks: A Language and Compiler for Algorithmic Choice. In:
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 38–49 (2009)

7. Wernsing, J.R., Stitt, G.: Elastic Computing: A Framework for Transparent,
Portable, and Adaptive Multi-core Heterogeneous Computing. In: Proceedings
of the ACM SIGPLAN/SIGBED 2010 Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), pp. 115–124. ACM (2010)

8. Vandierendonck, H., Pratikakis, P., Nikolopoulos, D.S.: Parallel Programming of
General-Purpose Programs using Task-based Programming Models. In: Proceed-
ings of the 3rd USENIX Conference on Hot Topics in Parallelism, HotPar 2011,
Berkeley, CA, USA, p. 13 (2011)

9. Benkner, S., Pllana, S., Traff, J., Tsigas, P., Dolinsky, U., Augonnet, C., Bach-
mayer, B., Kessler, C., Moloney, D., Osipov, V.: PEPPHER: Efficient and Produc-
tive Usage of Hybrid Computing Systems. IEEE Micro 31(5), 28–41 (2011)

10. Sandrieser, M., Benkner, S., Pllana, S.: Using explicit platform descriptions to
support programming of heterogeneous many-core systems. Parallel Comput-
ing 38(12), 52–65 (2012),
http://www.sciencedirect.com/science/article/pii/S0167819111001396

11. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency
and Computation: Practice and Experience (23), 187–198 (2011)

12. Quinlan, D.: ROSE: Compiler Support for Object-Oriented Frameworks. Parallel
Processing Letters 49 (2005)

13. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-Effective and Low-Complexity
Task Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel and
Distributed Systems 13(3) (March 2002)

http://threadingbuildingblocks.org
http://www.sciencedirect.com/science/article/pii/S0167819111001396

High-Level Support for Pipeline Parallelism on Many-Core Architectures 625

14. Burrows, M.: A Block-Sorting Lossless Data Compression Algorithm. Research
Report 124, Digital Systems Research Center (1994)

15. Intel, Intel Threading Building Blocks - Pipeline Documentation,
http://threadingbuildingblocks.org/files/documentation/a00150.html

16. Seward, J.: BZIP2 Library Utility Function Documentation (September 2011),
http://bzip.org/1.0.5/bzip2-manual-1.0.5.html#util-fns

17. Gilchrist, J.: Parallel Data Compression with bzip2. In: Proceedings of the 16th
IASTED International Conference on Parallel and Distributed Computing and
Systems, vol. 16, pp. 559–564 (2004)

18. Gary, B.: Learning openCV: Computer Vision with the openCV Library. O’Reilly,
USA (2008)

19. Benoit, A., Robert, Y.: Mapping Pipeline Skeletons onto Heterogeneous Platforms.
In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part
I. LNCS, vol. 4487, pp. 591–598. Springer, Heidelberg (2007)

20. Cole, M.: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing (2004)

21. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming.
Addison-Wesley (2005)

22. Pop, A., Cohen, A.: A Stream-Computing Extension to OpenMP. In: Proceedings
of the 6th International Conference on High Performance and Embedded Archi-
tectures and Compilers. ACM (2011)

23. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming
Applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196.
Springer, Heidelberg (2002)

24. Sermulins, J., Thies, W., Rabbah, R., Amarasinghe, S.: Cache Aware Optimization
of Stream Programs. ACM SIGPLAN Notices 40(7) (2005)

25. Schaefer, C., Pankratius, V., Tichy, W.: Engineering Parallel Applications with
Tunable Architectures. In: ICSE 2010: Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering, vol. 1 (May 2010)

26. Otto, F., Schaefer, C.A., Dempe, M., Tichy, W.F.: A Language-Based Tuning
Mechanism for Task and Pipeline Parallelism. In: D’Ambra, P., Guarracino, M.,
Talia, D. (eds.) Euro-Par 2010, Part II. LNCS, vol. 6272, pp. 328–340. Springer,
Heidelberg (2010)

27. Suleman, M., Qureshi, M., Khubaib, Patt, Y.: Feedback-Directed Pipeline Paral-
lelism. In: PACT 2010: Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (2010)

28. Ayguade, E., Badia, R.M., Cabrera, D., Duran, A., Gonzalez, M., Igual, F.,
Jimenez, D., Labarta, J., Martorell, X., Mayo, R., Perez, J.M., Quintana-Ort́ı,
E.S.: A Proposal to Extend the OpenMP Tasking Model for Heterogeneous Ar-
chitectures. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 154–167. Springer, Heidelberg (2009)

29. Wolfe, M.: Implementing the PGI Accelerator Model. In: GPGPU 2010: Proceed-
ings of the 3rd Workshop on General-Purpose Computation on Graphics Processing
Units. ACM (March 2010)

30. Bodin, F., Bihan, S.: Heterogeneous Multicore Parallel Programming for Graphics
Processing Units. Scientific Programming 17, 325–335 (2009)

31. OpenACC. Directives for Accelerators, http://www.openacc-standard.org/

http://threadingbuildingblocks.org/files/documentation/a00150.html
http://bzip.org/1.0.5/bzip2-manual-1.0.5.html#util-fns
http://www.openacc-standard.org/

	High-Level Support for Pipeline Parallelism on Many-Core Architectures
	Introduction
	High-Level Programming Support
	The PEPPHER Component Model
	Language Support for Expressing Pipeline Patterns
	Stage Replication and Stage Merging
	Buffer Management

	Implementation
	Source-to-Source Transformation
	Task-Based Heterogeneous Runtime
	Coordination

	Experimental Evaluation
	BZIP2 Compression
	OpenCV Image Processing

	Related Work
	Conclusion and Future Work
	References

