Parallel SOR for Solving the Convection
Diffusion Equation Using GPUs with CUDA

Yiannis Cotronis, Elias Konstantinidis,
Maria A. Louka, and Nikolaos M. Missirlis

Department of Informatics and Telecommunications,
University of Athens,
Panepistimiopolis, 15784, Athens, Greece
{cotronis,ekondis,mlouka,nmis}@di.uoa.gr

Abstract. In this paper we study a parallel form of the SOR method
for the numerical solution of the Convection Diffusion equation suitable
for GPUs using CUDA. To exploit the parallelism offered by GPUs we
consider the fine grain parallelism model. This is achieved by considering
the local relaxation version of SOR. More specifically, we use SOR with
red black ordering with two sets of parameters w;; and w;j. The param-
eter w;; is associated with each red (i+j even) grid point (ij), whereas
the parameter w;j is associated with each black (i+j odd) grid point (ij).
The use of a parameter for each grid point avoids the global communi-
cation required in the adaptive determination of the best value of w and
also increases the convergence rate of the SOR method [3]. We present
our strategy and the results of our effort to exploit the computational
capabilities of GPUs under the CUDA environment. Additionally, a pro-
gram for the CPU was developed as a performance reference. Significant
performance improvement was achieved with the three developed GPU
kernel variations which proved to have different pros and cons.

Keywords: Iterative methods, SOR, R/B SOR, GPU computing, CUDA.
Subject classification: AMS(MOS), 65F10, 65N20, CR:5.13.

1 Introduction

Traditionally, conventional processors have been used to solve computational
problems. Modern graphics processors (GPUs) have become coprocessors with
significantly more computational power than general purpose processors. Their
large computational potential has turned them to a special challenge for solv-
ing general-purpose problems with large computational burden. Thus, appli-
cation programming environments have been developed like the proprietary
CUDA (Compute Unified Development Architecture) by NVidia [I6/12] and the
OpenCL (Open Computing Language) [20] which is supported by many hard-
ware vendors, including NVidia.

CUDA environment is rapidly evolving and a constantly increasing number
of researchers is adopting it in order to exploit GPU capabilities. It provides an
elegant way for writing GPU parallel programs, by using a kind of extended C

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 575-p86] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

576 Y. Cotronis et al.

language, without involving other graphics APIs. In this paper we use GPUs
for the numerical solution of Partial Differential equations. In particular, we
consider the solution of the second order convection diffusion equation

Au—f(x,y)gz —g(x,y)gz =0 (1)

on a domain 2 = {(z,y)}|0 < z < 1,0 < y < 1}, where u = u(x,y) is
prescribed on the boundary 92. The discretization of ({l) on a rectangular grid
M; x My = N unknowns within {2 leads to

wij = Lijtio1,j + Tijuitsj + tijti g + bijui g1, (2)
i=1,2,..., My, j=1,2,... M

with
k2 1 k2 1
by = 2(k? +h2)(1 + o hfi) s i = 2(k2 +h2)(1 ~ olfii)
3)
h? 1 h? 1
ij = 1- ij) » Ui — 1 7),
t] 2(k2+h2)(ng]) b] 2(k2+h2)(+ 2kgj)

where h =1/(M1 +1), k=1/(M2+1), fi; = f(ih, jk) and g;; = g(ih, jk). For
a particular ordering of the grid points (2) yield a large, sparse, linear system of
equations of order N of the form

Au =b. (4)

The Successive Overrelaxation (SOR) iterative method, which is given by the
form

((n+1) (n) (n) (n+1)

u(n+1) — (1 — w)uij;) + w(gijui—l,j + TijUiyq + tijui7j+1 + bijuivj_l) (5)

ij
is an important solver for large linear systems [I4], [I5]. It is also a robust
smoother as well as an efficient solver of the coarsest grid equations in the multi-
grid method. However, the SOR method is essentially sequential in its original
form. Several parallel versions of the SOR method have been studied by coloring
the grid points [1], [13].

In order to use a parallel form of the SOR method with fine grain parallelism
we have to color the grid points red-black [I], [13] so that sets of points of the
same color can be computed in parallel. However, the parameter w which accel-
erates the rate of convergence of SOR is computed adaptively in terms of u(*+1)
and u(™ [7]. This computation requires global communication between the pro-
cessors for each iteration. To overcome this problem local relaxation methods
are used [4], [5], [1I]. In these methods each point in the grid has its own re-
laxation parameter w;; which is determined in terms of the local coefficients of
the PDE. In [2], [], [5], the local SOR (LSOR) with different formulas for the

Parallel SOR for Solving the CD Equation Using GPUs with CUDA 577

optimum values of the relaxation parameters was studied numerically and com-
pared with the classic SOR method for the 5-point stencil. It was found that
LSOR possesses better convergence rate than SOR using only local communica-
tion. However, the first theoretical results about the convergence of LSOR were
presented in [IT] under the assumption that the coefficient matrix is symmetric
and positive definite. Following a similar approach but using two different sets of
parameters w;; and ng for the red and black points, respectively, it was proved
n [3] that the local Modified SOR method (LMSOR) possesses a better rate of
convergence than LSOR for the 5-point stencil. This comparison was carried out
in case the eigenvalues of the Jacobi matrix possesses either real (real case) or
imaginary (imaginary case) eigenvalues.

The SOR method has been implemented on GPUs as applied to medical anal-
ysis [6] as well as to computational fluid dynamics [9] problems.

Our contribution is to explore the LMSOR method for the 5-point stencil ex-
ploiting the computational capabilities of GPUs under the CUDA environment.
In our study we used three different techniques to find the one that best exploits
the capabilities of the GPU.

The remainder of the paper is organized as follows. In section 2 we present
a general description of the LMSOR method. In section 3 we present its imple-
mentation in GPUs, in section 4 we present our performance results and finally,
in section 5, we state our remarks and conclusions.

2 The Local Modified SOR Method

The LSOR method was introduced by Ehrlich [4], [5] and Botta and Veldman
[2] in an attempt to further increase the rate of convergence of SOR. The idea
is based on letting the relaxation factor w vary from equation to equation. This
means that each equation of (2) has its own relaxation parameter denoted by
wi;. Kuo et. al [II] combined LSOR with red black ordering and showed that
is suitable for parallel implementation on mesh connected processor arrays. In
[3] we generalized LSOR by letting two different sets of parameters w;;,w;; to
be used for the red (i 4+ j even) and black (i + j odd) points, respectlvely. An
application of our method to (2) can be written as follows:

(n)

E;L+1) (1 WU) ()+WU‘]ZJUZ] , red points (6)
W = (1= W)ul™ 4w Jyu black points (™)

where () (n) (n) (n)
JZJ ij lljuznl N +riju z-‘ﬁl N + tUuZZ"Fl + b”u’ =1 (8)

and J;; is called the local Jacobi operator. The parameters wij,w;» are called
local relaxation parameters and (Bl)—(8) will be referred to as the local Modified

SOR (LMSOR) method. Note that if w;; = w;j, then [@®), (@) reduce to the
LSOR method studied in [11]. Moreover, if w;; = w = w (@), @) degenerate

578 Y. Cotronis et al.

into the classical SOR method with red black ordering. Using Fourier analysis,
Boukas and Missirlis [3] proved that the optimum values of the local relaxation
parameters wy ; ; and woy; ; for the LMSOR method in case the eigenvalues p;;
of the local Jacobi operator J;; are all real or all imaginary are the following.

Case 1: p;; are real. This case applies when /;;7;; > 0 and ¢;;b;; > 0. The
optimum values of the LMSOR parameters are given by

Wii,j =

lu‘zjlu’ + \/ ,Uzz] 22])
and)
w 2
2,0,j =
L+ pigh; + \/(1 — (1 — ’u?j)
where
[ij =2 <\/£ijrijcos7rh + \/tijbijCOSﬂ'k) (10)
and ,)
1-— 1—
Py =2 (\/Eisz‘jCOSW(9) + \/tijbijCOSﬂ-(5)) . (11)

Note that p;; is the spectral radius of the local Jacobi operator J;; where

kim kom
Mg = 2 <\/€Z‘jTZ‘jCOSM1 11 + \/tijbijCOSM2 + 1) s (].2)

with k1 = 1,2,..., My, ks = 1,2,..., Ms, for periodic boundary conditions.

Case 2: j1;; are imaginary. This case applies when £;;7;; < 0 and #;;b;; < 0. The
optimum values of the LMSOR parameters are given by

2
Wiij =
L pright (1) (L p22)
and (13)
2
W2,i,5 =

L+ pgzh, JF\/(lJFszj)(lJrﬂ?j)

where p;; and p,; are computed by ([I0) and (II), respectively.

3 Parallel Implementation

Implementations for the LMSOR method were developed for both the CPU and
GPU. The CPU version is a single threaded program, used as a performance ref-
erence for our experiments. In contrast, the GPU version is a massively parallel
program. The speedup that is observed between the sequential CPU program

Parallel SOR for Solving the CD Equation Using GPUs with CUDA 579

and the parallel GPU program is a sequential versus parallel program compari-
son, although not in the strict sense due to the GPU architectural differences.

As the solution of the Laplace equation using the red/black SOR method is
memory bound [10], this problem can also be characterized as memory bound.
Inspecting the computations by (@), () and (§) we note that, in case of good
cache behavior, each element needs to access roughly 8 elements (accesses to u; ;
count as 3, 2 reads and 1 write) per iteration (either red or black). The same
computation reveals also that 11 floating point operations are needed per ele-
ment. Thus, the ratio of floating point operations per accessed elements is 11/8,
and considering the use of double precision arithmetic, the ratio of floating point
operations per byte accesses is 11/(8 x 8) a2 0.17. This ratio is quite low as the
GPUs are able to handle much more compute operations than memory access
operations [§]. For instance, the NVidia GTX480 has a double precision peak
performance of 168 GFlops and memory throughput of 177 GB/sec. Thus, a
balanced algorithm should perform at least ~ 1 double precision floating point
operation per byte accessed. It should be noted that double precision operations
were applied in all developed programs of this work.

In the implementation of the LMSOR method, the parameters w;; and w;j
are precomputed on the CPU for two of the three developed kernels.

As our program implements a red/black ordering, it is beneficial to apply
reordering by color strategy into separate matrices in order to optimize per-
formance by coalescing [10], [I7]. Points in a mesh are split into two different
matrices, one for the red points and one for the black. This strategy can improve
bandwidth utilization by improving locality and coalescing of memory accesses
and mostly, by utilizing all points contained in a memory segment, which is not
possible with a natural interleaved red/black ordering.

Moreover, our program utilizes 6 matrices during the computation procedure
(u, w, I, v, t and b) as formulae (Bl), (@) and) indicate, all of which feature a
red/black ordering. In contrast, the solution of the Laplace equation with R/B
SOR requires accessing on a single matrix [I0]. As the reordering strategy can
be applied on every red-black ordered matrix it is possible to apply it on all
6 matrices. This factor raises the importance of the use of point reordering by
color strategy.

In order to alleviate the high memory bandwidth requirements set by the
program, an alternative approach will be used. Some read-only matrices, having
their elements computed during the program initialization, can be eliminated by
replacing accesses on them with computations in the GPU kernel. As the GPU
has very high instruction throughput capability this trade-off can be beneficial.
In summary, LMSOR was implemented in three variations as three different ker-
nels. Each variation differs by the amount of redundant computations it performs
iteratively. All kernels employ the reordering by color strategy as it is expected
to be beneficial. These kernels are:

Kernel #1 - No Redundant Computations. All values required in (@),
[@) and (®) reside in matrices situated in the GPU device memory. Beyond
employing the reordering by color strategy, this kernel is the natural outcome

580 Y. Cotronis et al.

implementation as no extra computations are performed. Thus, the 6 aforemen-
tioned matrices are required in this scheme and about 8 element accesses per
computed element. As previously shown, the ratio of floating point operations
per byte accessed is 0.17, which is particularly low.

Kernel #2 - Redundant Computations of ; j, r; j, t; j, b; j. The values of
the two matrices f; ; and g; ; multiplied by h, are precomputed and stored in two
matrices in the device memory. Thus, instead of 4 matrices for l; j, 745, t; ; and
b;,; we just need to keep 2 matrices only in device memory. Memory requirements
are lower since only 4 matrices are required to reside in device memory (for u; ;,
wij, fi; and g; ;). However, it comes at a cost of extra operations needed to
recompute the required terms for the formula on every iteration. In this case,
each element requires 6 accesses and at least 11+4 = 15 floating point operations,
as formula [@]) indicates. Now, the ratio is about 15/(6 x 8) = 0.31 flops per byte,
which is a more balanced ratio but still less than 1.0.

Kernel #3 - Redundant Computations of All Terms. In this implemen-
tation, recomputation is applied to the extreme point that all terms, excluding
u; 5, are recomputed in flight. The type of f and g functions is passed as a pa-
rameter to the kernel and all required terms are recomputed on every iteration.
In this case only 3 accesses per computed element are required. The required
flops are dependent on the selected f(z,y) and g(x,y) functions. A rough esti-
mate is that at least 15 + 30 = 45 flops are required plus the extra flops for the
computation of f(z,y) and g(z,y). An approximation of the least ratio value is
45/(3 x 8) &~ 1.9, which clearly exceeds 1. Thus, this kernel is compute bound,
as opposed to the previous kernels.

During computation only u; ; terms are accessed from memory and all other
terms are recomputed as required. Thus, this variation has the least memory re-
quirements of all kernels, as it requires only 1 matrix residing in device memory.
The performance of the GPU version relies on the global memory cache present
on Fermi GPU devices. As it has been shown [10] the global memory cache can
offer the potential of high performance without the need to utilize special mem-
ory types (i.e. shared memory or texture memory). Additionally, it accomodates
previously non-coalesced memory accesses with spacial locality. Therefore, the
application is not expected to run efficiently on older hardware, i.e. GT-200
based GPUs. On such architectures, an alternative approach should have been
chosen utilizing texture memory or shared memory of the device.

It should be noted that all implementations perform convergence checking on
every iteration which raises the execution overhead. Convergence checking in the
GPU kernel is implemented as a reduction of all computed maximum values. On
a production environment convergence checking should be avoided, at least on
most iterations, in order to attain peak performance.

The CPU version is a fairly straightforward implementation without employ-
ing any sophisticated access patterns. Elements are processed sequentially in
rows and no cache blocking has been employed.

Parallel SOR for Solving the CD Equation Using GPUs with CUDA 581

4 Performance Results

In order to test our theoretical results we considered the numerical solution of
(@) with v = 0 on the boundary of the unit square. The initial vector was chosen
as u(9(z,y) = zy(1 — z)(1 — y). The solution of the problem above is zero. For
the purpose of comparison we considered the application of LMSOR method
with red black ordering, on CPU and GPU. In all cases the iterative process was
terminated when the criterion |[u(™||s < 1076 was satisfied. Various functions
for the coefficients f(z,y) and g(z,y) were chosen such that the eigenvalues ;; to
be either real or imaginary. The type of eigenvalues for each case is indicated by
the tuple (# real, # imaginary) in the second row of each table. The coefficients
used in each problem are:

1. f(z,y) = Re(2x — 10)3, g(z,y) = Re(2y — 10)?
2. f(z,y) = Re(2x — 10), g(z,y) = Re(2y — 10)
3. f(xvy) = g(x,y) = Re - 10*

where the Reynold operator Re = 10™, m = 0,1,2,3 and 4.

All experiments were performed on a Linux environment. The CPU imple-
mentation was compiled with GCC version 4.4.4 on a 64bit environment, with
all essential optimization flags enabled (-O2 -fomit-frame-pointer -ftree-vectorize
-msse2 -msse -funroll-loops -fassociative-math -fno-signed-zeros -fno-trapping-
math -fno-signaling-nans). The GPU implementation was compiled using CUDA
Toolkit version 4.1 and GCC version 4.1.2 on a 64bit environment. The graphics
driver version was 295.53. The parameter ”—use fast math” had been used.

The hardware used for the experimental runs was an AMD Opteron 6180 SE
(2.5GHz), for the CPU executions. For the GPU executions, a Nvidia GTX-480
and a Tesla C2050 [19] were used. Both GPUs are Fermi architecture based, fea-
turing global memory cache which is essential for the performance of our kernel.

Three different series of experimental runs were performed, each investigating
the GPU and CPU implementations from a different aspect. The first series
of runs were performed in order to determine the most efficient out of the 3
developed kernels applying the LMSOR method. The second series of runs was
performed in order to compare the GPU version with the CPU version, for the
three problems, in terms of performance, on various Re values. The fluctuation
of Re values causes a varying number of required iterations to meet convergence.
The last series of runs was performed to measure the performance of the GPU
kernel and the CPU on one specific problem, on a wider range of mesh sizes
where the CPU version execution is heavily time-consuming.

In the results that follow, two different time measurements were carried out.
The first, referred as computation time, is the net computation time, without
extra overheads like the PCI-Express data transfer time overhead and, in case
of GPU kernels, the element reordering time overhead. The second, referred as
execution time, includes all the aforementioned overhead times. The function
used to measure time is the gettimeofday() function, which is available on Linux
platform.

582 Y. Cotronis et al.

4.1 Three Kernel Comparison

All kernels, of both methods, were executed in solving the three aforementioned
problems, on mesh size h = k = \/1\}+1 where VN = M, = My = {402,2002}.
The GPU used in this experiment was the GTX480. The results of the executions
are depicted on table [Il Large matrices are more important, as the GPUs are
optimized for massive parallelism and therefore suited for large array processing.
Thus, it is sensible to focus on the case where VN = 2002.

Table 1. Kernel comparison in LMSOR execution on GTX480, for v N = {402, 2002}

VN = 402 VN = 2002

f,g Experimental results #1 #2 #3 #1 #2 #3
(R,I) (0,161604) (0,4008004)

Iterations 412 412 412 1998 1998 1998

1 Computation time (secs) 0.0561 0.0503 0.1489 3.6108 2.9294 13.7794
Total execution time (secs) 0.0613 0.0541 0.1507 3.6636 2.9711 13.7940
Comp. time/iteration (msecs) 0.1361 0.1220 0.3614 1.8072 1.4662 6.8966
(R,I) (161604,0) (4008004,0)
Iterations 554 554 554 2704 2704 2704
2 Computation time (secs) 0.0752 0.0670 0.1889 4.9431 4.0572 17.4341
Total execution time (secs) 0.0812 0.0702 0.1905 4.9960 4.0987 17.4497
Comp. time/iteration (msecs) 0.1358 0.1209 0.3409 1.8281 1.5004 6.4475
(R,I) (0,161604) (0,4008004)
Iterations 1015 1015 1015 2018 2018 2018
3 Computation time (secs) 0.1372 0.1223 0.3429 3.6871 3.0273 12.9215
Total execution time (secs) 0.1418 0.1255 0.3442 3.7400 3.0668 12.9357
Comp. time/iteration (msecs) 0.1352 0.1204 0.3378 1.8271 1.5002 6.4031

As it is obvious from the results, kernel #3 presents the worst performance.
Kernel #2 seems to be the best performing of all. Although, it executes more
operations per computed element, it actually performs better (~ 22%) than the
first one, revealing the memory throughput bottleneck in this program. On the
C2050 the improvement of kernel #2 was even more notable (25 — 39%) due to
its higher double precision operation throughput.

The advantage of kernel #3 is its limited memory access requirements. Kernel
#1 makes use of 6 VN x /N matrices, one for each mesh. Kernel #2 makes
use of 4 matrices of the same order and kernel #3 makes use of just 1 matrix of
the same order. This makes it suitable for solving a large problem when memory
size is a critical limitation.

Due to the different memory access requirements of the 3 kernels, inspect-
ing the effective bandwidth can lead to misleading conclusions about the per-
formance of each kernel. As can be seen on table [2, some profiling data were
captured during one iteration of computation of red elements, for v N = 4002.
Bytes accessed by kernel were extrapolated by using the first two performance
counters. For kernel #1 the achieved effective bandwidth was estimated to be
almost 148GB/sec, computing about 2250 elements/sec. Kernel #2 achieved
calculating near 2800 elements by utilizing about 10GB/sec less bandwidth. In
contrast, kernel #3 suffers by low occupancy and instruction execution pressure.

Parallel SOR for Solving the CD Equation Using GPUs with CUDA 583

Table 2. Profiling on one iteration of red elements calculation on the GTX480, for
VN = 4002

kernel #1 kernel #2 kernel #3

fb subpO0 read sectors 7204214 5102010 2013049
fb subp0 write sectors 1001454 1001464 1102356
gputime 3549.952 2871.936 12671.392
registers/thread 25 25 63
occupancy 0.667 0.667 0.333
Bytes accessed (extrapolated) 525162752 390622336 199385920
Bandwidth (GB/sec) 147.94 136.01 15.74
MegaElements/sec 2253.55 2785.58 631.34

Each kernel is characterized by different memory bandwidth requirements and
thus, it cannot be used as a direct comparison measure. Thus, pure bandwidth
does not expose the actual performance of these kernels.

4.2 CPU - GPU Comparison

In this series of executions the GPU kernel #2, and the CPU program were
compared, for both methods, in executions for various Re values. Matrix or-
der VN was kept constant (v/N = 1002) and the program was executed for
Re={1000.0, 10000.0, 100000.0}. Results are depicted in table B It is worth to
note that the GPU version is constantly achieving an over x50 speed-up over the
single threaded CPU version. The GPU shows a stable performance behavior by
computing elements at a rate of less than half a millisecond per iteration.

Table 3. Kernel comparison in LMSOR execution on GTX480, for v N = 1002, for
various values of Re, for the three problems, * indicates no convergence after 20000
iterations

Re = 1000.0 Re = 10000.0 Re = 100000.0

f.g Experimental results CPU GPU CPU GPU CPU GPU
(R,I) (0,1004004) (0,1004004) (0,1004004)
Iterations 2620 2620 5394 5394 6243 6243

1 Computation time (secs) 56.7055 1.1146 118.1573 2.2959 133.6569 2.6551
Total execution time (secs) 56.7055 1.1269 118.1573 2.3082 133.6569 2.6674
Comp. time/iteration (msecs) 21.6433 0.4254 21.9053 0.4256 21.4091 0.4253

Computation speedup 1.0000 50.8773 1.0000 51.4650 1.0000 50.3394
(R,I) (0,1004004) (0,1004004) (0,1004004)
Iterations 1003 1003 1112 1112 3170 3170

2 Computation time (secs) 21.0700 0.4266 23.9960 0.4728 69.4001 1.3464
Total execution time (secs) 21.0700 0.4369 23.9960 0.4831 69.4001 1.3568
Comp. time/iteration (msecs) 21.0070 0.4253 21.5791 0.4252 21.8928 0.4247

Computation speedup 1.0000 49.3880 1.0000 50.7524 1.0000 51.5448
(R,I) (0,1004004) (0,1004004) (0,1004004)
Iterations 5514 5514 6271 6271 7034 7034

3 Computation time (secs) 118.6613 2.3459 135.8946 2.6648 154.8432 2.9918
Total execution time (secs) 118.6613 2.3562 135.8946 2.6751 154.8432 3.0027
Comp. time/iteration (msecs) 21.5200 0.4254 21.6703 0.4249 22.0135 0.4253
Computation speedup 1.000 50.5827 1.0000 50.9970 1.0000 51.7567

584 Y. Cotronis et al.

4.3 CPU - GPU Scalability

The CPU and GPU versions were executed for a wider range of mesh sizes with
VN = {402,1002, 2002, 3002, 4002}, for the 2nd problem and Re = 10.0. The
results are depicted on table @l

The speed-up observed is further increased as v/N obtains higher values. For
mesh size with v/ N = 4002, the speed-up exceeds x110. The GTX-480 needs
just 31.16 seconds to execute 5406 iterations on that mesh which is near 150
milliseconds per iteration. This rate reaches to 2.8 Giga elements computed per
second. These numbers include the time required for checking of convergence
criterion.

The rate of computations of elements per second and the speed-up observed
for the GPU computation times can be summarized on figure [l

The C2050, although targeted to HPC environments it lacks the high band-
width of the GTX480. Additionally, as the Tesla ECC protections was enabled,
the memory bandwidth was further stressed roughly by 20% [18]. Thus, the per-
formance results are lower on C2050 than on GTX-480, which does not feature
ECC memories. The CPU version achieves about 25 MegaElements/sec which
corresponds to 8 x 8 x 25 = 1600 MB/sec bandwidth. This straightforward CPU
implementation, features strided accesses (reading red or black elements) that
avoid vectorization and data are used inefficiently as only half of them read in a
cache line are actually used in computations.

Table 4. Various executions for the 2nd problem, (a) on CPU AMD Opteron 6180 SE,
(b) on GPU NVidia GTX480 (kernel #2) and (c¢) on GPU NVidia Tesla C2050 (kernel
#2), for mesh sizes with v/ N = {402, 1002, 2002, 3002, 4002} and Re=10.0

Mega Elements

Matrix Total (R,I) Model Execution Computation computed Computation
VN x v/N Iterations time time per second Speed-up
(a) 1.54 1.54 57.55 1.00
402 x 402 554 (161604,0) (b) 0.07 0.07 1329.55 23.10
(c) 0.14 0.12 721.78 12.54
(a) 28.19 28.19 49.10 1.00
1002 x 1002 1384 (1004004,0) (b) 0.60 0.59 2354.79 47.96
(c) 0.91 0.89 1555.39 31.68
(a) 256.50 256.50 42.17 1.00
2002 x 2002 2704 (4008004,0) (b) 4.10 4.06 2665.86 63.22
(c) 6.02 5.91 1831.57 43.44
(a) 1402.17 1402.17 26.03 1.00
3002 x 3002 4055 (9012004,0) (b) 13.35 13.27 2750.96 105.69
(c) 20.43 20.05 1820.49 84.55
(a) 3473.73 3473.73 24.90 1.00
4002 x 4002 5406 (16016004,0) (b) 31.30 31.16 2776.04 111.49

(c) 46.71 46.27 1869.18 75.07

Parallel SOR for Solving the CD Equation Using GPUs with CUDA 585

120

Speedup

800.0 —o—GPU- Singe treaded
600.0 —e—cnuso ——GTs0

400.0 —e—c2050 ca0s0

82 474 866 1258 1650 2042 2434 2826 3218 3610 4002 82 474 866 1258 1650 2042 2434 2826 3218 3610 4002
N N

Fig. 1. Mega Elements computed per second on CPU & GPUs (left) and Computation
speed-up of GPUs over CPU (right) for different matrices

5 Remarks and Conclusions

GPU is a suitable platform for massive parallel computations like those provided
by the red/black ordering of iterative methods in solving systems of linear equa-
tions. In order to achieve memory coalescing, the locality of accesses must be
ensured. Thereafter, the high memory bandwidth of the GPU can be exploited
and attain high performance.

GPU recomputation can be beneficial in cases where memory accessing be-
comes a bottleneck. Instead of keeping the processing units idle, one strategy is
to recompute data in order to avoid multiple memory accesses. This is a tradeoff
and in many cases when a kernel is bandwidth limited, compute resources can
be traded for less demand in memory bandwidth. It is applicable when a few
operations at most are required for recomputation, so that computation does
not turn to a bottleneck. It can provide a performance speed-up and moreover,
it can release portions of device memory, allowing to solve larger problems.

Even in cases where recomputation is applied to the extreme, although per-
formance is worsened, there can be other benefits. Recomputation leaves more
available memory for other uses and thus a bigger problem is allowed to be solved.
The size of the problem that is to be solved can determine the appropriate kernel
to be used.

Acknowledgments. We would like to acknowledge the kind permission of the
Innovative Computing Laboratory at the University of Tennessee to use their
NVidia Tesla C2050 installation for the purpose of this work.

References

1. Adams, L.M., Leveque, R.J., Young, D.: Analysis of the SOR iteration for the
9-point Laplacian. STAM J. Num. Anal. 9, 1156-1180 (1988)

2. Botta, E.F., Veldman, A.E.P.: On local relaxation methods and their application
to convection-diffusion equations. J. Comput. Phys. 48, 127-149 (1981)

3. Boukas, L.A., Missirlis, N.M.: The Parallel Local Modified SOR for Nonsymmetric
Linear Systems. Intern. J. Computer Math. 68, 153-174 (1998)

586

10.

11.

12.

13.

14.
15.

16.
17.
18.
19.
20.

Y. Cotronis et al.

Ehrlich, L.W.: An Ad-Hoc SOR Method. J. Comput. Phys. 42, 31-45 (1981)
Ehrlich, L.W.: The Ad-Hoc SOR method: A local relaxation scheme, in elliptic
Problem Solvers II, pp. 257-269. Academic Press, New York (1984)

Ha, L., Kréger, J., Joshi, S., Silva, C.T.: Multiscale Unbiased Diffeomorphic
Atlas Construction on Multi-GPUs. GPU Computing Gems. Emerald Edition,
pp. 771-791. Morgan Kaufmann (2011)

Hageman, L.A., Young, D.M.: Applied Iterative Methods. Academic Press, New
York (1981)

Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors. Morgan
Kaufmann (2009)

Komatsu, K., Soga, T., Egawa, R., Takizawa, H., Kobayashi, H., Takahashi, S.,
Sasaki, D., Nakahashi, K.: Parallel Processing of the Building-Cube Method on
the GPU Platform. In: Computers & Fluids Special Issue “22nd International
Conference on Parallel Computational Fluid Dynamics”, vol. 45(1), pp. 122-128
(2011)

Konstantinidis, E., Cotronis, Y.: Accelerating the Red/Black SOR Method Us-
ing GPUs with CUDA. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 589-598. Springer,
Heidelberg (2012)

Kuo, C.-C.J., Levy, B.C., Musicus, B.R.: A local relaxation method for solving elliptic
PDE’s on mesh-connected arrays. STAM J. Sci. Statist. Comput. 8, 530-573 (1987)
Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable Parallel Programming
with CUDA. In: ACM SIGGRAPH 2008 Classes, vol. 16, pp. 1-14 (2008)

Ortega, J.M., Voight, R.G.: Solution of Partial Differential Equations on Vector
and Parallel Computers. STAM, Philadelphia (1985)

Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood (1962)

Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New
York (1971)

NVidia CUDA Reference Manual v. 4.0, NVidia (2011)

NVidia CUDA C Best Practices Guide Version 4.0, NVidia (2011)

Tuning CUDA Applications for Fermi, NVidia (2011)

Tesla C2050 And Tesla C2070 Computing Processor Board, NVidia (2011)

The OpenCL Specification, Khronos group (2009)

	Parallel SOR for Solving the Convection Diffusion Equation Using GPUs with CUDA
	Introduction
	The Local Modified SOR Method
	Parallel Implementation
	Performance Results
	Three Kernel Comparison
	CPU - GPU Comparison
	CPU - GPU Scalability

	Remarks and Conclusions
	References

