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Abstract. In this paper we describe an efficient way of implementing
multi hop broadcast in ad hoc mobile networks with an online, distributed
machine intelligence solution. In our solution not just the runtime param-
eters of predefined protocols are optimized, but the decision logic itself
also emerges dynamically. The model is based on genetic programming
and natural selection: sucessive generations of protocol instances are pro-
duced to approximate optimal performance by picking certain instances
from the previous generation (natural selection) and combining them with
each other and/or mutating (genetic operators) them. We implemented
(i) a genetic programming language to describe protocols, and (ii) defined
a distributed, communication-wise non-intensive, stigmergic feed-forward
evaluation and selection mechanism over protocol instances, and (iii) a
budget based fair execution model for competing protocols. The results
indicate that online, autonomous protocol evolution outperforms tradi-
tional approaches, by adapting to the situation at hand, when used for
the multi-hop broadcast problem in ad hoc mobile networks. The evolu-
tion also protected the system from the negative effects of initially present
harmful protocols.
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1 Introduction

Choosing the right communication protocols for achieving efficient multi-hop
broadcast in a mobile ad hoc network proved to be a complex problem. While
too chatty protocols waste resources such as bandwidth and processing power,
unnecessarily tight-lipped communication strategies can impede the effective op-
eration of the system. Recent studies indicate that while there is no solution for
the riddle in general, it makes sense to evaluate the goodness of communication
protocols for a certain problem case [1,10,4,2]. The idea of protocol selection
or protocol switching has been present for many years in other areas, such as
cryptography. Our proposal goes one step further: we do not only select but cre-
ate and shape the protocols, therefore they are not static, pre-deployed parts of
the system but the protocol logic emerges dynamically and adapts online to the
current network environment. In this article we will show that the application
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of genetic programming for this task not only reduces costs, but with a suitable
model, also guarantees the emergence of successful protocols in the end. In this
article we are focusing on solving the multi-hop broadcast problem where the
network must broadcast a message to all it’s nodes while keeping resource usage
as low as possible.

1.1 Multi-hop Broadcast

It is a common task in mobile ad hoc networks to distribute messages globally
to all, or almost all participants. By it’s nature, this kind of service consumes a
significant amount of resources (channel usage, collisions, messages sent multiple
times), therefore finding an efficient solution to this problem is of high impor-
tance. Channel usage is just one of the difficulties that present themselves when
one implements global scale broadcast protocols. One dangerous phenomenon
is the so called Broadcast Storm [7] that happens when multiple nodes start
forwarding a message simultaneously after receiving it from a common source
node, leading to excessive collisions. To avoid this situation, protocols have means
to de-correlate from the traffic of their neighbors, for example by waiting for a
random time before forwarding the message (Random Assessment Delay). Multi-
hop broadcast algorithms typically exploit the local broadcast channel to reduce
channel usage and the number of collisions in the system. This way, as one trans-
mission may be overheard by multiple devices, it is possible to drastically reduce
the amount of transmissions. Efficient broadcast could be achieved by identi-
fying a Minimal Connected Dominating Set (MCDS)[5,4] in the network, and
broadcasting the message once per set. However, the identification of an MCDS
is an NP-complete problem, but even if it was not, the network is distributed
and too dynamic - changes may occur much faster than they can be discovered.
In general a centralized MCDS solver is not feasible, so instead of tackling with
real MCDSs, ad hoc broadcast protocols typically use some kind of approxima-
tion based on simple heuristics and local knowledge. These heuristics range in
sophistication from simple counter based solutions to probabilistic methods and
complex graph theoretic approximations[11,2].

1.2 Natural Selection

Various literature sources investigate possible protocols for multi-hop broad-
cast and their performance characteristics, a few examples are [10,4,2,1]. Results
suggest that there is no general winner; instead, the performance of a protocol
heavily depends on volatile attributes of the environment. These attributes in-
clude mobility patterns, node speed, node density, transmission technology, and
traffic models. Selecting the suitable protocol, therefore, requires deep and ex-
act knowledge about the actual environment. However, that is generally hard to
acquire, given the complex factors involved, such as human behavior influencing
the mobility pattern and the load characteristics. Worse, the environment will
change over time, through appearance and disappearance of nodes, technology
turnovers, or changes in the usage practice, i.e. human habits; therefore any
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static off-line design is just a compromise. The issues above raise the question
whether an automated, online, adaptive approach could solve the problem of
obtaining the best protocols for a given situation. The use of online, adaptive
techniques for protocol optimization (i.e. fine tuning of operational parameters
on-the-fly) is a known, but not widely used practice[9]. For protocols, even if
machine learning is applied, this step typically happens during the manual de-
sign phase, and not as part of the operation of the actual system. An exception
is [3], where authors used online machine learning to approximate the behav-
ior of sophisticated broadcast algorithms and found that simple heuristics were
able to approximate the sophisticated protocols with 87% accuracy. This result
indicates that in practice small but powerful heuristics could provide good ap-
proximations instead of sophisticated calculations. Note that Colagrosso’s work
uses predefined (fixed) protocol bodies, and aims to optimize the runtime pa-
rameters of these protocols. Our approach goes one step further: in our work
the protocol body itself is also an emergent, ever-changing element. In [8] we
proposed stigmergic communication and natural selection for online, automatic
protocol replacement.

2 Autonomous Online Protocol Evolution

2.1 The Overall Picture

In our proposed model each node selects and generates protocols on its own agenda,
therefore protocol evolution is a fully distributed, asynchronous mechanism. Each
protocol candidate’s performance is measured continuously by it’s node’s neigh-
bors. The evaluated protocols undergo a selection step, deciding which protocols
survive and which end their lifetime. In the next phase, genetic operators, i.e.
crossover and mutation are used in order to introduce new protocols by combin-
ing and/or modifying selected instances. Then each of the newly created protocols
is executed, using a budget-based execution scheme, giving equal opportunity to
each individual of the generation to live. Finally, the loop starts over. Protocol
evolution runs in each node of the network, in parallel, without any explicit syn-
chronization with other nodes. No global clock or database is assumed. Neighbors,
as part of the inverted decision making mechanism, discover each other’s proto-
cols; thus, successful protocol instances can spread over the network.

(a) Main loop (b) Fully distributed, autonomous
system

Fig. 1. Overall picture
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2.2 Decision Inversion

Using natural selection means we need a reliable performance metric to rank the
different protocols present in the system. Performance evaluation criterion in a
multi-hop broadcast based ad hoc network needs to meet conflicting require-
ments (maximal coverage vs. minimal number of duplicate messages) as well as
the problem of measurability. The factors we considered here are the following:

– Only the sender node is able to reliably measure the real cost of a successful
message transmission.

– Lost messages (by definition) could not be seen by other nodes.
– Only the receiver nodes are able to reliably measure the number of duplicated

messages.

Each node can measure the number of duplications they personally receive, but
they can not measure the number of total duplications in the system. Collecting
of measurement data in the network is not feasible because these messages would
use the same channel as the useful data messages, furthermore they may get lost.
These factors imply [8] that implementing a centralized (even locally centralized)
protocol selection criterion is impractical, because the reliable collection of per-
formance data is both technically challenging and wasteful in terms of channel
usage. Instead, we propose a feed-forward selection method using stigmergy and
natural selection, which is based on the idea of decision inversion.

Instead of evaluating protocols in the sender node we gave the ability of
decision making to the receivers, because they are in an optimal position to
observe the performance of a protocol. They do so by observing the received
messages and extracting sender protocol information from them. In order for
this to work, nodes in the system attach the code of their current protocol
to every message they send. Every payload that is useful to the receiver node
means a chance for the sender protocol to survive. Every unnecessary message
(duplicate) means wasted resources to the sender protocol.

The main advantage of the inverted selection is that performance results don’t
need to get back to the sender: instead, the receiver will utilize them during the
creation of its own next protocol generation (so, in the next round, the sender
may meet the offsprings of its own good protocols). This way, the measurement
overhead is minimal – result container messages are not needed–, and there is
no need for synchronization of any kind. The fitness function evaluated in every
node can be observed in figure 2.

2.3 Budget Based Protocol Execution Model

In order to keep the number of messages sent out by a protocol at bay - keeping
them from flooding the channel - we assigned a cost to each transmission. We
wanted to keep the system fully distributed and avoid expensive measurement
messages being sent, but still integrate the cost of sending messages into the
final cost function. Therefore we adopted a stigmergic solution: by assigning a
limited transmission budget to each protocol instance, which as a result forces
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Fig. 2. Protocol fitness evaluation

protocols to make good use of channel resources. Any lost or duplicate message
is a lost opportunity for reproduction, therefore transmission has an implicit cost
function, even if it is not expressed directly. Similarly, every protocol is used for a
limited amount of time, therefore they have only a small window of opportunity
to spread in the network.

2.4 A Genetic Programming Language for Protocols

Natural selection implemented by decision inversion, along with the budget based
execution model, answers the question: how protocols should be executed, eval-
uated and selected for survival in a distributed fashion. The only question re-
maining is how should we represent our protocols in order to use them in this
system. As the protocols are no longer engineered by humans, a lightweight,
flexible and robust formal description is needed which suits genetic operators.
We propose the GPDISS language, which is based on PUSH but specializes in
implementing multi hop broadcast algorithms. GPDISS is a stack based lan-
guage, which means that every type in the system has an associated stack and
every instruction gets it’s arguments from the appropriate stacks and puts the
results on these stacks too. In a GPDISS protocol definition one creates event
handlers to handle the different messages that the node receives. During the
crossover phase, only appropriate event handlers are mixed, essentially reducing
the number of useless offsprings. GPDISS has another very important property:
crossover and mutation instructions are guaranteed to produce a syntactically
correct offspring, which of course does not mean that the protocol will be se-
mantically correct too but contributes to reduce the number of useless instances
in the system.

Selection. Every protocol generation is created from the non-local protocols
that were discovered in the previous round. We used SUS (Stochastic Univer-
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sal Sampling) with a fitness function that gives priority to better performing
individuals [6]. SUS provides zero bias and minimum spread, meaning that the
actual and expected probabilities of selecting an individual are equal, and the
range in the possible number of trials that an individual can achieve is minimal.
SUS is a variant of the roulette wheel selection.

Crossover and Mutation. A modified one-point crossover is used for com-
bining two event handlers. Given that the protocol pair (A, B) is selected for
crossover, the algorithm is the following:

1. Choose an event handler from A randomly. If B has no such event handler,
then return.

2. Select a cutting point randomly in A’s handler, and another point in B’s
handler.

3. Cut the handlers along the cutting points, resulting in four fragments: A-
head, A-tail, B-head, and B-tail.

4. With 0.5 probability exchange the head and the tail fragment of the original
handlers.

5. Glue fragments together forming two new handlers, an (A-head, B-tail) and
a (B-head, A-tail).

To protect handlers from growing indefinitely, we limited the maximal size of
event handlers (measured in instruction count); bodies above the limit were
chunked. For the mutation part we use constant parameter mutation, meaning
that instead of modifying instructions in the event handler body, the mutation
affects the constants, i.e. the runtime parameters of the algorithm. For example
such a runtime parameter is the message propagation probability in a standard
Gossip protocol. When a parameterised instruction in the protocol code with
current value x is mutated, the new value is chosen from the (0, 2x] range with
a Gaussian distribution, favoring fine-tuning but also allowing larger changes.
It is important to note that only the instruction’s parameter is changed during
mutation.

3 Experimental Evaluation

Several simulations were executed to study our system’s performance character-
istics and prove that it can improve overall performance of the network. First
we will describe the simulation environment, then we establish a baseline per-
formance and in the third part we will analyze our system’s performance in a
situation where malicious attackers try to bring down the network with flooding.
In the graphs below ever data point corresponds to a protocol instance in the
system. The data points are ordered in time.

3.1 Simulation Environment

Throughout the experiments nodes were moving in the simulation area according
to the Random Direction Mobility Model. In this mobility model nodes randomly
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choose a direction and distance and move with 1m/s speed until they reach the
desired distance. After reaching the destination, the process starts over. In the
beginning of each simulation the nodes present were placed evenly distributed in
the area by generating random starting coordinates for them. In the simulations
nodes are totally independent of each other; there were no global database or
control present. During the experiments new messages were broadcasted by the
nodes periodically. The overall goal was to broadcast the payload messages with
the possible highest total coverage and lowest duplicate count before the payload
expires. There were a variable percentage of malicious nodes in the network
for each simulation scenario. Their goal was to flood the network and decrease
performance, possibly causing a broadcast storm. Another goal was to spread
among the nodes and control the whole network. The attackers were running the
Flood protocol.The general settings were the following:

– Node count:500
– Simulation time: 1000s
– New message broadcast interval:1..20s, evenly distributed for every node
– Maximum age of broadcasted payload: 20s
– Protocol time budget: 7s
– Size of simulation area: 800m ∗ 1200m
– Wireless range: 50m
– Interference range: 70m.

3.2 Used Protocols

The initial population was selected from a small set of well-known protocols that
are simple enough to be the starting point of evolution. For example Adaptive
Periodic Flood (APF) as an optimization of blind flood: an APF node peri-
odically transmits all the messages it possesses to all neighbors it encounters,
after a random waiting period. However, when it detects that there is another
node sending the same message, it increases the waiting period to reduce the to-
tal channel usage. Another well-known protocol is Gossiping (Gos): a gossiping
node forwards the received message to its neighbors with a given probability.
Gossiping is easy to analyze mathematically, as neighboring nodes have minimal
effect each other’s operation. The last simple heuristic used was density sensitive
adaptive gossiping (AGos): in adaptive gossiping the probability of propagating
the message depends on some condition. We used a density sensitive model,
where the probability of forwarding the message decreases as the number of
neighbors gets higher. We used one more protocol in the simulations to model
a simple attack against the network. This is a simple flooding protocol (Flood):
it sends out three copies of each message immediately after receiving it. This
behavior increases the chances of causing a broadcast storm in the network.

3.3 Measurements without Evolution in the System

The first measurements serve as the baseline performance of the network. We
simulate a normal mobile ad hoc network with different protocols in the nodes
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(a) Baseline results without evolution, 5 percent of attackers

(b) Baseline results without evolution, 30 percent of attackers

(c) Baseline results without evolution, 70 percent of attackers

Fig. 3. Baseline performance metrics
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(a) Useful and duplicate message counts, using evolution,
5 percent of attackers

(b) Useful and duplicate message counts, using evolution,
30 percent of attackers

(c) Useful and duplicate message counts, using evolution,
70 percent of attackers

Fig. 4. Performance with evolution enabled
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and varying proportions of attackers. Attackers are an important part of the ex-
periment as we are interested in the effect they have on the overall performance.
In some situations flooding can be the right strategy for a node so it’s possible
that flooding protocols will survive and there is a chance that they will spread
in the network. Each run is carried out with 5, 30 and 70 percent of malicious
nodes. Other nodes in the system have APF, GOSSIP or Adaptive GOSSIP as
their initial protocol evenly distributed in the beginning of each simulation. Fig-
ure 3a shows a higher number of duplicate messages than useful ones. This is
normal for our network as it is the nature of data dissemination in mobile ad
hoc networks. We can observe the effect of flood protocols present in the system
by comparing figure 3a and figure 3b. It is clear that flooding results in overall
worse performance by increasing the number of duplicate messages in the net-
work. In figure 3c we see that as we add more flooding nodes to the network,
the efficiency of the network drops significantly. We can conclude from the above
experiments that our approach is working: the more flooding nodes present in
the network the lower the performance drops. We can also state that our network
is stable throughout the simulation in a sense that performance figures do not
vary apart from the increases and decreases resulting from the mobility and the
ever changing architecture of the network.

3.4 Measurements with Evolution

In this series of measurements we were interested in the effects of evolution in the
network. Protocols are competing with each other, their properties are mixed,
creating new protocols as time passes. Each node optimizes it’s performance over
time, therefore we are expecting that the overall performance of the network will
improve too. In figure 4a the starting numbers of duplicate and useful messages
compared to figure 3a are the same. Figure 4a shows that the number of duplicate
messages are declining over time, while the number of useful messages are nearly
the same. Generally it is not enough to just silence the inefficient nodes because
that would eliminate a lot of useful messages too. In figure 4a useful messages
are sent throughout the simulation, which is an indication that the network

(a) Proportion of flooding protocol in
other protocol instances over time, 5
percent of attackers

(b) Proportion of flooding protocol in
other protocol instances over time, 70
percent of attackers

Fig. 5. Proportion of flooding protocols over time
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preserved it’s capability to disseminate data and it’s efficiency got better over
time by eliminating duplicate messages. We see the same trend in figure 4b and
4c. That means that the system can eliminate malicious nodes even in the case
when only a small minority (30%) starts the experiment with a non-flooding
protocol. Figure 5a and 5b show the proportion of flood protocol in successive
generations of new protocols created in the system. We can observe a clear
decline in the proportion of flood but it’s much less pronounced in figure 5b
than in figure 5a. This phenomena shows that the protocol composition in the
beginning can influence the optimal solution our system generates.

4 Conclusion

Our simulations confirmed that the autonomous, online protocol evolution model
is a working approach to optimize and self-adapt multi-hop broadcast networks.
In our experiments, evolution reduced the number of sent duplicate messages
while maintaining the number of useful messages in the network. Our model
using evolution and natural selection was able to neutralize the negative effects
of a malicious protocols present in the system (Flood). However, Flood was not
simply eliminated from the system, but instead, parts of its code got incorporated
into good-performing offsprings in some cases.

Our results affirm our belief, that the demands for the new forms of network-
ing infrastructure can be effectively addressed by bio-inspired solutions. Our
focus was on presenting an evolutionary framework for the family of multi-hop
broadcast protocols in ad hoc networks, where it is usually impossible to find a
single absolute candidate, as the optimal protocol choice always depends on the
actual environment and application conditions. We introduced a novel idea in
this field: instead of human engineered static protocols, autonomous evolutionary
methods were applied to achieve dynamic emergence of new ones, driven by the
current needs and environment of the communicating nodes. We showed that the
proposed model of evolving protocols is applicable for the multi-hop broadcast
problem in ad-hoc networks: with time, evolution results in better performance
than that the initial, manually engineered, protocols could provide. The fitness
function was defined so that it used only local and quasi-local input, resulting
in a model that is applicable for fully distributed systems such as ad-hoc sensor
networks. Also, the feed-forward nature of the evaluation and selection process
eliminated most of the communication overhead needed for the calculation of
fitness values. Additionally, the process was carried out in an online manner,
that is, the evolution of protocols happened continuously during the normal op-
eration of the system. An important limitation of the model is that being based
on a quasi-random search, it cannot provide any quality guarantee on the short
term; for example, we cannot claim that the next generation of protocols will
always improve the current one. While guarantees do not exist for the quality of
protocol individuals, the overall performance of the system, especially for longer
time windows, improves with high probability.
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