
An Alpha-Corecursion Principle

for the Infinitary Lambda Calculus

Alexander Kurz, Daniela Petrişan, Paula Severi, and Fer-Jan de Vries

Department of Computer Science, University of Leicester, UK

Abstract. Gabbay and Pitts proved that lambda-terms up to alpha-
equivalence constitute an initial algebra for a certain endofunctor on
the category of nominal sets. We show that the terms of the infinitary
lambda-calculus form the final coalgebra for the same functor. This al-
lows us to give a corecursion principle for alpha-equivalence classes of
finite and infinite terms. As an application, we give corecursive defini-
tions of substitution and of infinite normal forms (Böhm, Lévy-Longo
and Berarducci trees).

1 Introduction

Classical λ-calculus considers only finite terms [5]. Infinitary λ-calculus aims
to treat finite and infinite terms in one notational framework together with
finite and infinite reductions [16,17,15]. In the calculus one can express that
certain terms have an infinite normal form. We illustrate this idea with the
example of streams. We choose the standard format of the Church numerals [5]
to represent natural numbers by λ-terms. In this format n abbreviates the λ-
term λfx.fnx which represents the natural number n; the successor function is
written as succ = λyfx.f(yfx) and the pairing function as cons = λyxz.zxy.
Using the fixed point combinator fix = λf.(λx.f(xx))λx.f(xx), the function
from on streams given by

from x = cons x (from(succ x))

can now be defined in λ-calculus as follows:

from = fix(λf.cons x (f(succ x))

The infinite β-reduction sequence

from 0 →β cons 0 (from 1) →β cons 0 (cons 1 (from 2)) . . . (1)

has the infinite λ-term cons 0 (cons 1 (cons 2(. . .))) as a limit.
How are such infinite terms defined? Let Λ be the set of λ-terms over some

fixed set V of variables extended with a constant ⊥ [5]. The set Λ∞ of finite and
infinite λ-terms is defined by coinduction from the grammar:

D. Pattinson and L. Schröder (Eds.): CMCS 2012, LNCS 7399, pp. 130–149, 2012.
c© IFIP International Federation for Information Processing 2012

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus 131

M ::= ⊥ | x | (λx.M) | (MM) (2)

where x ranges over a given set V of variables.
A typical corecursive definition on the set Λ∞ is the one of substitution.

Substitution on Λ∞ is defined as for the set Λ of finite terms but using corecursion
instead of recursion. An attempt to defineM [x := N] as the result of substituting
x by N in M by corecursion is as follows.

y[x := N] =

{
N if y = x
y otherwise

(PQ)[x := N] = (P [x := N]Q[x := N])
(λy.P)[x := N] = λy.(P [x := N]) if y �∈ fv(N) ∪ {x}

(3)

However, this is only a partial map on Λ∞. As for Λ, the problem resides in the
side-condition y �∈ fv(N) ∪ {x}, which is necessary to avoid the capture of free
variables in N by the abstraction in λy.(P [x := N]). In the finitary λ-calculus,
one can define substitution as a total map on the set Λα of α-equivalence classes
of λ-terms by choosing a suitable representative λy.P such that y �∈ fv(N)∪{x}.
This approach is not immediately viable for infinitary λ-calculus, because we
may have terms (see also (4) below) that exhaust all the available variables, so
that we cannot find a fresh y.

Nominal sets [11] provide an elegant way for establishing an α-structural
recursion principle [23] that allows one to define substitution on α-equivalence
classes of finite λ-terms starting from a partial function with a side-condition
[14,23]. It is one of the aims of this paper to establish an α-corecursion principle,
which allows us to view (3) as a corecursive definition of substitution on α-
equivalence classes of terms in Λ∞.

Before starting on the details, we need to point out a subtlety that arises
when treating infinite λ-terms. An infinite term in Λ∞ may have an infinite set of
variables. Suppose that the set V of variables {x0, x1, x2, . . .} is countable. Then,
we may not be able to have ‘enough fresh variables’ to work on α-equivalence
classes. For example, consider the term allfv = x0(x1(x2(. . .)) ∈ Λ∞ which
contains all variables from V . In the following β-step

(λx0x1.x0x1)allfv →β (λx1.x0x1)[x0 := allfv] (4)

we have that x1 ∈ fv(allfv) and, therefore, x1 should be replaced by some fresh
variable, which is impossible because allfv contains all of them [24]. However,
in this paper, we will restrict our attention to the set

Λ∞
ffv = {M ∈ Λ∞ | fv(M) is finite } (5)

of λ-terms with finitely many free variables, avoiding terms such as allfv. On the
one hand, finitely many free variables are sufficient in order to capture the infinite

132 A. Kurz et al.

normal forms of terms representing programs, since the limit of an infinite β-
reduction sequence starting from a finite term has always a finite number of free
variables. As a caveat, notice that such a limit may have infinitely many bound
variables, since additional fresh variables may be needed at each reduction step
to avoid capture. On the other hand, restricting to finitely many free variables
has the advantage of allowing us to use the machinery of nominal sets [14].

To come back to α-(co)recursion, Pitts [23] derives structural recursion and
induction principles for syntax with binding by using the result from [11] that
the set Λ/=α of α-equivalence classes of finite λ-terms is the initial algebra for
the functor Lα on the category Nom of nominal sets defined by

Lα U = V + {⊥}+ [V]U + U × U (6)

where [V]U is the quotient of V ×U by α-equivalence (and we added a constant
{⊥} for reasons that will be explained after Definition 1). We will prove that
the final coalgebra of the same functor Lα is the (nominal) set Λ∞

ffv/=α of α-
equivalence classes of finite and infinite λ-terms with finitely many free variables.
Using this result we will formulate an α-corecursion principle and give corecursive
definitions of substitution and various notions of infinite normal form (Böhm,
Lévy-Longo and Berarducci trees) on α-equivalence classes of terms.

The structure of the paper is as follows. Sections 2 and 3 review preliminaries
on infinitary lambda calculus and nominal sets, respectively. Section 4 contains
our main result on the final Lα-coalgebra and Section 5 its application to substi-
tution and to the notions of Böhm, Lévy-Longo and Berarducci trees. Section 6
compares α-corecursion with α-recursion and comments on the relationship be-
tween Set- and Nom-based reasoning.

2 Preliminaries on Infinitary Lambda Calculus

We assume familiarity with basic notions and notations of the finite λ-calculus [5].
First we explain how the set Λ∞ of finite and infinite λ-terms can be constructed
as the metric completion of the set Λ of finite λ-terms. Then we will briefly recall
some notions and facts of infinitary λ-calculus [17,15]. We leave the treatment
of α-conversion for Section 4.

The idea of putting a metric on a set of terms goes at least back to Arnold
and Nivat [4]. To do so we define truncations.

Definition 1 (Truncation). The truncation of a term M ∈ Λ at depth n ∈ N

is defined by induction on n:

M0 = ⊥

Mn+1 =

⎧⎪⎪⎨
⎪⎪⎩

x if M = x ∈ V
⊥ if M = ⊥
λx.Nn if M = λx.N
NnPn if M = NP

(7)

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus 133

In this definition, we use the constant ⊥ to represent “unknown information”.
Later, in the constructions of normal forms of λ-terms we will, as it is custom-
ary in infinitary λ-calculus, use the same constant to replace computationally
meaningless terms.

Definition 2 (Metric). We define a metric d : Λ× Λ → [0, 1] by

d(M,N) = 2−m, (8)

where m = sup{n ∈ N | Mn = Nn} and we use the convention 2−∞ = 0.

In fact, (Λ, d) is an ultrametric space, since for allM,N,P ∈ Λ we have d(M,N) ≤
max{d(M,P), d(P,N)}, as one can easily check.

The set Λ∞ of finite and infinite λ-terms (with the additional constant ⊥) is
now defined as the metric completion of the set Λ of finite terms with respect to
the metric d. Alternatively, Λ∞ can be defined by interpreting (2) as a coinduc-
tive definition. The fact that both definitions coincide is a consequence of Barr’s
theorem on final coalgebras for bicontinuous Set endofunctors [6, Theorem 3.2].

Indeed, interpreting (2) coinductively amounts to taking as λ-terms the ele-
ments of the final coalgebra for the Set-endofunctor

L U = V + {⊥}+ V × U + U × U (9)

Notice that the set Λ of finite λ-terms constitutes the initial algebra for L. A
closer look at the proof of Barr [6, Theorem 3.2 and Proposition 3.1] shows now
that the metric d on Λ of Definition 2 coincides with the metric induced by
the final coalgebra. Hence, by [6, Proposition 3.1], the completion of the initial
L-algebra Λ in the metric d is the final L-coalgebra.

To summarise, the final L-coalgebra (Λ∞,unfold : Λ∞ → L(Λ∞)) is the
Cauchy completion of Λ and we have a dense inclusion map ι : Λ → Λ∞. It is
well-known that the structure map of the final coalgebra unfold : Λ∞ → L(Λ∞)
is an isomorphism, hence the set L(Λ∞) can be equipped with a complete metric.
The map unfold : Λ∞ → L(Λ∞) is the unique uniformly continuous map from
Λ∞ to L(Λ∞) making diagram (10) commutative:

Λ

ι ��

� �� L(Λ)

L(ι)��

Λ∞
unfold

�� L(Λ∞)

(10)

Having defined the set Λ∞ of finite and infinite λ-terms we now extend the
usual syntactic conventions for finite λ-calculus to infinitary λ-calculus. Terms
and variables will respectively be written with (super- and subscripted) letters
M,N and x, y, z. Terms of the form (M1M2) and (λxM) will respectively be
called applications and abstractions.

The truncation of an infinite term M ∈ Λ∞ at depth n is defined just as in
Definition 1 by induction on n. Observe that (Mn)n∈N is a Cauchy sequence in
(Λ∞, d) that converges to M .

134 A. Kurz et al.

The set of free and bound variables of a finite term M is defined as usual and
denoted by fv(M) and bv(M) respectively. We extend fv(M), bv(M) to infinite
terms M ∈ Λ∞ using truncations as below. Also, var(M) = fv(M) ∪ bv(M).

fv(M) =
⋃

n∈N
fv(Mn) bv(M) =

⋃
n∈N

bv(Mn)

We define β-reduction on Λ∞ and denote it as →β in the usual way: the smallest
relation that contains (λx.P)Q →β P [x := Q] and is closed under contexts. The
reflexive and transitive closure of →β is denoted by →→β . For the definition of
→→→β that assumes a sequence of reduction steps of any ordinal length, see for
instance [16]. Terms of the form (λx.P)Q are called redexes. Normal forms are
terms without redexes and hence cannot be changed by further computation.

The definition of infinitary λ-calculus is completed by adding ⊥-reduction,
denoted by →⊥: the smallest relation closed under context that contains M →⊥
⊥ for M belonging to some fixed set U of meaningless terms. If and only if the
set U satisfies certain properties, the resulting infinitary calculus is confluent and
normalising, in which case each term has a unique normal form [17,15].

The normal form of a λ-term can be thought to represent its meaning, the
maximal amount of information embodied in the term, stable in the sense that
it cannot be changed by further computation. Note that this concept of meaning
depends on the chosen set U of meaningless terms for which there is ample,
uncountable choice [25].

Böhm, Lévy-Longo and Berarducci Trees

For concrete sets of meaningless terms an alternative, “informal” corecursive
definition of the normal form of a term in the corresponding infinitary λ-calculus
can sometimes be given. Three of them are well known.

In his book [5], Barendregt argued that the terms without head normal forms
should be considered as meaningless terms. Any finite λ-term is either a head
normal form (hnf), that is, a term of the form λx1 . . . λxn.xN1 . . .Nm, or it is
a term of the form λx1 . . . λxn.((λy.P)Q)N1 . . .Nm where the redex (λy.P)Q
is called the head redex. Starting with a term M that is not in hnf one can
repeatedly contract the head redex. Either this will go on forever or terminate
with a hnf, which represents part of the information embodied in a term. In the
latter case one can repeat this process on the subterms Ni to try to compute
more information. This idea led Barendregt to his elegant “informal” definition
of the Böhm tree BT(M) of a term M , that we now recognise as a corecursive
definition.

BT(M) =

{
λx1 . . . λxn.yBT(M1) . . .BT(Mm)

if M →→β λx1 . . . λxn.yM1 . . .Mm

⊥ otherwise
(11)

Taking for U the set of terms without hnf, one can show using the confluence
property that the normal forms of the corresponding infinite λ-calculus satisfy

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus 135

the equations in (11). That is, the Böhm tree of a term M is the normal form of
M in the infinitary λ-calculus that equates all terms without head normal form
with ⊥ [5,17].

Alternatively, as Abramsky has forcefully argued in [1], one can take the set of
terms without weak head normal form (whnf) as set of meaningless terms. Any
finite λ-term is either a weak head normal form, that is, a term of either of the
two forms xM1 . . .Mm, or λx.N , or it is a term of the form ((λy.P)Q)M1 . . .Mm

where the redex (λy.P)Q is called the weak head redex. In perfect analogy with
before, starting with a term M that is not in whnf one can repeatedly contract
the weak head redex. Either this will go on forever or terminate with a whnf.
In the latter case one can repeat this process on the subterms Mi of the tail
of the whnf or on the subterm N of its body to try to compute more informa-
tion. This describes a lazy computation strategy, that postpones reduction under
abstractions as much as possible.

The normal forms of the corresponding infinitary λ-calculus that equates all
terms without weak head normal form with ⊥ satisfy the equations (12) that
define the Lévy-Longo tree LLT(M) of a term M corecursively [19,18,2,17].

LLT(M) =

{
yLLT(M1) . . .LLT(Mm) if M →→β yM1 . . .Mm

λx.LLT(N) if M →→β λx.N
⊥ otherwise

(12)

The least set of meaningless terms that gives rise to a confluent and normalising
infinitary λ-calculus is the set of terms without a top normal form. Here a term
M is a top normal form (tnf) if it is either a variable, an abstraction or an
application of the form M1M2 in which M1 is a zero term, i.e. a term that
cannot reduce to an abstraction. The well-known term Ω = (λx.xx)(λx.xx) has
no tnf. The normal forms of this calculus can alternatively be characterised by
the corecursive definition of the Berarducci tree [7,17] BerT(M) of a term M :

BerT(M) =

⎧⎪⎨
⎪⎩

x if M →→β x
λx.BerT(N) if M →→β λx.N
BerT(P)BerT(Q) if M →→β NP and N is a zero term
⊥ otherwise

(13)

It is possible to formalise (11)-(13) using corecursion via the final L-coalgebra,
provided we give concrete reduction strategies to compute the various forms used
in the definitions. However, in order to take into account α-conversion, we will
prove an α-corecursion principle based on nominal sets.

3 Preliminaries on Nominal Sets

We recall basic facts on nominal sets [14]. Consider a countable infinite set V
of ‘variables’ (or ‘atoms’ or ‘names’) and the group S(V) of permutations on V
generated by transpositions, which are permutations of the form (x y) that swap
x and y. Consider a set U equipped with an action of the group S(V), denoted
by · : S(V)× U → U . We say that u ∈ U is supported by a set S ⊆ V when for

136 A. Kurz et al.

all π ∈ S(V) such that π(x) = x for all x ∈ S we have π · u = u. We say that
u ∈ U is finitely supported if there exists a finite S ⊆ V which supports u.

Definition 3 (Nominal set). A nominal set (U, ·) is set U equipped with a
S(V)-action such that all elements of U are finitely supported. Given nominal
sets (U, ·) and (V, ·), a map f : U → V is called equivariant when f(π·u) = π·f(u)
for all π ∈ S(V) and u ∈ U . The category of nominal sets and equivariant maps
is denoted by Nom.

A crucial property of nominal sets is that each element of a nominal set has a
least finite support, see [14]. Indeed, if two finite sets S1 and S2 support u, then
their intersection also supports u. The smallest finite support of u is denoted by
supp(u). If x ∈ V \ supp(u) we say that x is fresh for u, and write x#u. More
generally, given two nominal sets (U, ·) and (V, ·), u ∈ U and v ∈ V , we write
u#v for supp(u) ∩ supp(v) = ∅. An important property of supp is that for every
equivariant f : U → V and u ∈ U , we have supp(f(u)) ⊆ supp(u).

Example 4. The set of names V equipped with the evaluation action given by
π · x = π(x) is a nominal set.

Example 5. The set Λ of finite λ-terms with the action · : S(V) × Λ → Λ
inductively defined by

π · x = π(x)
π · ⊥ = ⊥

π · (λx.M) = λπ(x).(π ·M)
π · (MN) = ((π ·M)(π ·N))

(14)

is a nominal set. In this example we do not take into account α-conversion, so
the support of a λ-term M is the set of all variables occurring either bound or
free in M .

Given a S(V)-action · on a set U , let Ufs denote the set

Ufs = {u ∈ U | u is finitely supported}. (15)

Then · restricts to a S(V)-action on Ufs and (Ufs, ·) is a nominal set.

Example 6. The set Λ∞ of finite and infinite λ-terms can be equipped with the
action · : S(V)×Λ∞ → Λ∞ defined coinductively by (14). Alternatively, π · (−)
can be defined using the universal property of the metric completion, as the

unique map that extends Λ
π·(−)−→ Λ

ι−→ Λ∞. Observe that (π ·M)n = π ·Mn for
all M ∈ Λ∞ and n ∈ N. Notice that (Λ∞, ·) is not a nominal set since the set
of variables in a term, and hence its support, can be infinite. But ((Λ∞)fs, ·) is a
nominal set and supp(M) = var(M) for all M ∈ (Λ∞)fs.

Definition 7 (Abstraction). Let (U, ·) be a nominal set. One defines ∼α on
V × U by

(x1, u1) ∼α (x2, u2) ⇔ (∃ z#(x1, u1, x2, u2))(x1 z) · u1 = (x2 z) · u2 (16)

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus 137

The ∼α-equivalence class of (x, u) is denoted by 〈x〉u. The abstraction [V]U of
the nominal set U is the quotient (V × U)/∼α. The S(V)-action on [V]U is
defined by

π · 〈x〉u = 〈π · x〉π · u. (17)

Given equivariant f : (U, ·) → (V, ·), we define [V]f : [V]U → [V]V by

〈x〉u �→ 〈x〉f(u). (18)

Definition 8 (Concretion). Let (U, ·) be a nominal set. Concretion is the par-
tial function @ : [V]U×V → U with 〈y〉u@z, the ‘concretion of 〈y〉u at z’, defined
as 〈y〉u@z = (z y) · u if z ∈ V \ supp(〈y〉u).
Notice that y#〈y〉u and (〈y〉u)@y = u. Moreover, concretion is equivariant. If
z#〈y〉u then π · z#〈π · y〉π · u and π · (〈y〉u@z) = (〈π · y〉π · u)@π · z.

Further, we recall some general results form [22] that will be necessary to prove
our main result on the final Lα-coalgebra. The category Nom is complete and
cocomplete. The forgetful functor to Set creates finite products and all colimits.
For example, the product of two nominal sets (U, ·) and (V, ·) is (U ×V, ·) where

π · (u, v) = (π · u, π · v).
Arbitrary products in Nom are computed differently than in Set. Given a family
of nominal sets (Ui, ·i)i∈I , we can equip the set of all tuples {(ui)i∈I | ui ∈ Ui}
with the pointwise action given by

π · (ui)i∈I = (π · ui)i∈I . (19)

This is a S(V)-action, but some tuples may not be finitely supported. The prod-
uct of (Ui, ·i)i∈I in Nom is the nominal set (

∏
i∈I

(Ui, ·i))fs of tuples of the form

(ui)i∈I that are finitely supported with respect to the action of (19).
The abstraction functor [V](−) : Nom → Nom preserves all limits.

4 Infinitary Lambda Calculus in Nominal Sets

This section contains our main technical result, Theorem 22, which is then used
to show Theorem 23, stating that the set Λ∞

ffv/=α of finite and infinite λ-terms
up to α-equivalence is the final coalgebra for the functor Lα on Nom, see (6).

On finite terms, α-conversion can be defined inductively using the permutation
action · : S(V)× Λ → Λ of Example 5, see [14].

Definition 9 (α-conversion on finite λ-terms). Let M,N,M ′, N ′ ∈ Λ.

(var)
x =α x

(bot)⊥ =α ⊥
M =α N M ′ =α N ′

(app)
MM ′ =α NN ′

(x z) ·M =α (y z) ·N z#(x, y,M,N)
(abs)

λx.M =α λy.N

138 A. Kurz et al.

The relation =α is equivariant, that is, M =α N implies π ·M =α π ·N for all
π ∈ S(V). Thus we obtain a nominal set (Λ/=α, ·) where supp(M) = fv(M).

Definition 10 (Lα). We define Lα : Nom → Nom as follows.

Lα U = V + {⊥}+ [V]U + U × U

Lα(f) = [IdV , Id⊥, [V]f, f × f]

The nominal set (Λ/=α, ·) of α-equivalence classes of finite λ-terms is the initial
algebra for the functor Lα [14].

We define α-conversion on the set Λ∞ using truncations. This definition is
slightly different from, though equivalent, to those used in [16,17,15].

Definition 11 (α-conversion on finite and infinite λ-terms). We extend
the notion of α-conversion to the set Λ∞ via

M =α N iff Mn =α Nn for all n ∈ N.

If M =α N then Mn =α Nn. The notion of truncation can be extended to
Λ∞/=α via [M]nα = [Mn]α.

Notation 12 (α-equivalence classes) In this section, metavariables of ele-
ments in Λ∞/=α are denoted by X,Y . The α-equivalence class of M is denoted
by [M]α.

The reason we need to clearly distinguish between the class X and the term
M ∈ X is that in Theorem 22 we need to construct a Cauchy sequence of
representatives M1,M2, . . . from a Cauchy sequence X1, X2, . . . of α-equivalence
classes.

A second approach to define the set of α-equivalence classes of infinitary terms
is to consider the metric completion of the quotient Λ/=α.

Definition 13 (Metric on α-equivalence classes). We define dα : Λ×Λ →
[0, 1] via

dα(M,N) = 2−m, (20)

where m = sup{n ∈ N | Mn =α Nn} and we use the convention 2−∞ = 0.

We have that dα is a pseudometric on Λ and dα(M,N) = 0 if and only if
M =α N . Thus dα gives rise to a metric on Λ/=α denoted by abuse of notation
also by dα. Observe that dα extends to a pseudometric d∞α : Λ∞ × Λ∞ → [0, 1]
also given by

d∞α (M,N) = 2−m, (21)

where m = sup{n ∈ N | Mn =α Nn} with the convention 2−∞ = 0. Then
M =α N in the sense of Definition 11 if and only if d∞α (M,N) = 0. Hence we
obtain a metric, denoted also by d∞α on Λ∞/=α.

We consider the metric completion of Λ/=α with respect to dα and denote it
by (Λ/=α)

∞.

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus 139

Theorem 14. Let V be uncountable. Then, we have that (Λ∞/=α, d
∞
α) is iso-

morphic to (Λ/=α)
∞.

We do not include the proof of this theorem, since in this paper we are only
interested in the case where V is countable. The idea of the proof is to show
that (Λ∞/=α, d

∞
α) is a complete metric space and then to use the universality

property of the metric completion. This argument fails when the set of vari-
ables is at most countable. Indeed, we can show that for countable V the space
(Λ∞/=α, d

∞
α) is not complete.

Example 15. Assume that V is countable, say V = {x0, x1, . . .} and consider the
sequence ([λxn.xn(x0(. . . xn−1))]α)n≥1 in Λ∞/=α. This is a Cauchy sequence
with respect to d∞α , but has no limit in Λ∞/=α. Indeed, assume for a contra-
diction that the limit L exists. On the one hand we can prove that fv(L) = V ,
on the other hand L should be of the form λu.ux0x1.... for some variable u. But
this contradicts the fact that u is free in L.

These problems of α-equivalence in the presence of countably many variables
disappear if we consider the set Λ∞

ffv of terms with finitely many free variables
(5) discussed in the introduction.

Remark 16. Note that Λ∞
ffv is different from the set (Λ∞)fs = Λ∞

fs , defined in
(15), of λ-terms with finitely many variables, bound or free. To see this, consider
the term

allbv = λx1.x1(λx2.x1(x2(λx3.x1(x2(x3(. . .)))))).

We have that allbv ∈ Λ∞
ffv but allbv �∈ Λ∞

fs . Actually, [allbv]α ∩ Λ∞
fs = ∅ since

every term in [allbv]α has infinitely many bound variables.
Moreover, the equivalence relation =α (see Definition 11) restricts to Λ∞

ffv, but
not to Λ∞

fs . For example, we have λx1.λx2.λx3 . . . =α λx1.λx1.λx1 . . ., but only
the latter term is in Λ∞

fs .

For all M,N ∈ Λ∞
ffv we have that M =α N implies π ·M =α π ·N . Hence we can

equip Λ∞
ffv/=α with a S(V) action given by π · [M]α = [π ·M]α and we can easily

check that (Λ∞
ffv/=α, ·) is a nominal set. Indeed, [M]α ∈ Λ∞

ffv/=α is supported
by the finite set fv(M).

The permutation action on Λ/=α can be extended to (Λ/=α)
∞ as follows. For

each π ∈ S(V) we have that π · (−) : Λ/=α→ Λ/=α is a uniformly continuous
function with respect to dα, thus can be extended to a uniformly continuous
map on (Λ/=α)

∞ using the universal property of the metric completion:

Λ/=α

π · (−) ����
���

�
�� (Λ/=α)

∞

π · (−)

��

Λ/=α

�����
����

(Λ/=α)
∞

Thus we have a nominal set ((Λ/=α)
∞
fs , ·). A Cauchy sequence (Xn)n∈N in Λ/=α

is finitely supported when there exists a finite set S ⊆ V such that S supports
Xn for all n ∈ N.

140 A. Kurz et al.

Lemma 17. X ∈ (Λ/=α)
∞
fs if and only if there exists a finitely supported Cauchy

sequence of elements of Λ/=α converging to X.

Proof. The right-to-left implication is trivial. For the left-to right implication,
consider a Cauchy sequence (Xn)n∈N in Λ/=α converging to X . Then for all
k ∈ N the sequence of truncations (Xk

n)n∈N is constant from a point onwards
and let Yk denote its limit in Λ/=α. We can show that each π that fixes supp(X)
also fixes Yk. The sequence (Yk)k∈N is a finitely supported Cauchy sequence that
converges to X .

Remark 18. From the proof of Lemma 17 it follows that each X ∈ (Λ/=α)
∞ can

be expressed as the limit of a ‘canonical’ Cauchy sequence (Xn)n∈N such that
the truncation of Xn+1 at depth n is equal to Xn.

Definition 19 (α-safe term). Let M ∈ Λ. We define the set of α-safe terms
Γ ⊆ Λ by the following inductive rules

(var)
x ∈ Γ

(bot)⊥ ∈ Γ

M ∈ Γ N ∈ Γ bv(M)#N bv(N)#M
(app)

MN ∈ Γ

M ∈ Γ x �∈ bv(M)
(abs)

λx.M ∈ Γ

Intuitively, a λ-term M is α-safe when bv(M)∩ fv(M) = ∅ and M does not have
two different λ’s with the same binding variable, i.e. if λx and λy occur in two
different positions of M then x �= y. This is slightly stronger than Barendregt’s
Variable Convention, see [5, Convention 2.1.13].

In Definition 19 we interpret the freshness relation # in the nominal set (Λ, ·)
of Example 5. So, bv(M)#N means that bv(M) ∩ (bv(N) ∪ fv(N)) = ∅.

In the next lemma, we will prove that we can always find an α-safe term in
an α-equivalence class. Note that the set of α-safe terms is not closed under β.
For example, (λx.xx)(λy.y) is α-safe but (λy.y)(λy.y) is not.

Lemma 20 (Choosing representatives). Let M ∈ Λ and a finite set S ⊆ V.
There exists an α-safe term N such that bv(N) ∩ S = ∅ and M =α N .

Proof. The proof is by induction on the structure of M . It is immediate for the
base cases M = ⊥ and M = x ∈ V .

Assume M = PQ. By the induction hypothesis there exists a α-safe term
P ′ such that bv(P ′) ∩ (fv(M) ∪ S) = ∅ and P =α P ′. Applying the induction
hypothesis again, there exists a α-safe term Q′ such that bv(Q′) ∩ (bv(P ′) ∪
fv(M) ∪ S) = ∅ and Q =α Q′. Then M =α P ′Q′ and we can check that P ′Q′ is
α-safe and bv(P ′Q′) ∩ S = ∅.

The case M = λx.P is solved similarly. By the induction hypothesis there
exists a α-safe term P ′ such that P =α P ′ and bv(P ′) ∩ (S ∪ fv(M) ∪ {x}) = ∅.
Then λx.P ′ is α-safe by Definition 19, M =α λx.P ′ and S#λx.P ′.

Lemma 21. Let M,P ∈ Λ be two α-safe terms such that Pn =α M , bv(M)#P ,
and bv(P)#M . Then there exists a α-safe term N such that

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus 141

1. N =α P ,
2. the truncation of N at depth n is exactly M in Λ,
3. bv(N) ⊆ bv(M) ∪ bv(P).

Proof. This is proved by induction on the structure ofM . We prove the case that
M = λx.M0. Then P = λy.P0. Since y#M , we have that ((y x) ·P0)

n−1 =α M0.
By induction hypothesis, there exists N0 such that N0 =α (y x) ·P0, N

n−1
0 = M0

and bv(N0) ⊆ bv(M0) ∪ bv((y x)P0). We set N = λx.N0. We can check that N
is α-safe and satisfies the required properties.

In the following theorem, we show that Theorem 14 holds for countable V if
interpreted internally in the category of nominal sets.

Theorem 22 (Completion and quotient by =α commute in Nom). Let V
be countable. The nominal sets (Λ∞

ffv/=α, ·) and ((Λ/=α)
∞
fs , ·) are isomorphic.

Proof. Define f : Λ∞
ffv/=α→ (Λ/=α)

∞
fs by

Λ∞
ffv/=α � X �→ lim

n→∞Xn ∈ (Λ/=α)
∞
fs

where Xn is the truncation of X at depth n. This is well defined by Lemma 17
and the fact that the sequence (Xn)n∈N is supported by the finite set supp(X).
It is easy to check that f is equivariant.

Next we give g : (Λ/=α)
∞
fs → Λ∞

ffv/=α. Consider X ∈ (Λ/=α)
∞
fs . By Lemma 17

we have a finitely supported Cauchy sequence (Xn)n∈N ⊆ Λ/=α converging to
X with supp(Xn) ⊆ supp(X) for all n ∈ N. Moreover we can assume that the
truncation of Xn+1 at depth n is Xn.

Claim. There exist representatives Mn ∈ Xn such that the sequence (Mn)n∈N

is Cauchy in the metric space (Λ, d).

Moreover we have that fv(Mn) ⊆ supp(X) for all n ∈ N, thus the limit M ∈ Λ∞

of the sequence (Mn)n∈N has finitely many free variables. We put g(X) = [M]α.
We can show that g is well defined, equivariant and is the inverse of f .

We now sketch the proof of the claim. The idea is to start with an arbitrary
sequence of representatives and to inductively rename the bound variables, so
that we preserve α-equivalence. In a first step, we construct a sequence of rep-
resentatives Pn ∈ Xn by induction on n ∈ N such that bv(Pn) ∩ Sn = ∅ where

Sn = supp(X)∪⋃n−1
i=1 var(Pi) and Pn is α-safe using Lemma 20. Notice that S is

finite because P1, . . . , Pn−1 are all finite. Notice that this sequence satisfies that
the truncation of Pn+1 at depth n is α-convertible to Pn.

In a second step we define a sequence (Mn)n∈N of α-safe terms by induction
that satisfy the following:

1. Mn =α Pn,
2. the truncation of Mn+1 at depth n is exactly Mn,
3. bv(Mn) ⊆

⋃n
i=1 bv(Pi).

142 A. Kurz et al.

For n = 0, set M0 = P0. For the induction step, we have that:

(Pn+1)
n =α Pn by assumption
=α Mn by induction hypothesis

Since bv(Mn) ⊆ ⋃n
i=1 bv(Pi), we have that bv(Mn) ∩ bv(Pn+1) = ∅. Since

fv(Pn+1) and fv(Mn) are subsets of supp(X) and every bv(Pi) is disjoint from
supp(X), we have that bv(Mn)∩fv(Pn+1) = ∅ and bv(Pn+1)∩fv(Mn) = ∅. There-
fore we can apply Lemma 21 to Mn and Pn+1, hence there exists Mn+1 =α Pn+1

such that the truncation of Mn+1 at depth n is exactly Mn. We also have that

bv(Mn+1) ⊆ bv(Mn) ∪ bv(Pn+1) by Lemma 21

⊆ ⋃n+1
i=1 bv(Pi) by induction hypothesis

Theorem 23 (Final Lα-coalgebra). We have that ((Λ∞
ffv/=α, ·),unfoldα) is

the final coalgebra for the functor Lα : Nom → Nom given by

Lα U = V + {⊥}+ [V]U + U × U.

Proof. The functor Lα is continuous, that is, it preserves limits of ωop-chains.
Therefore a final coalgebra for Lα is obtained as the limit of the diagram

1 Lα(1)
!�� L2α(1)

Lα(!)
�� . . .

L2α(!)�� lim
n<ω

Lnα(1)�� (22)

If we think of the singleton 1 as {⊥}, we can identify elements of Lnα(1) with
truncations of elements in Λ/=α at depth n. Recall how limits are computed in
Nom. An element of lim

n<ω
Lnα(1) is a finitely supported tuple (Xn)n<ω ∈ ∏

Lnα(1)

such that for all n < ω we have

Ln+1
α (!)(Xn+1) = Xn, (23)

or equivalently, that the truncation of Xn+1 at depth n is Xn.
Then (Xn)n<ω is a finitely supported Cauchy sequence. By Lemma 17, its

limit is in (Λ/=α)
∞
fs . Conversely, by Remark 18, each X ∈ (Λ/=α)

∞
fs is the limit

of a finitely supported Cauchy sequence (Xn)n<ω ∈ ∏
Lnα(1) satisfying (23).

Thus we have an isomorphism lim
n<ω

Lnα(1) � (Λ/=α)
∞
fs , whose equivariance can

be easily checked. By Theorem 22 we have

lim
n<ω

Lnα(1) � Λ∞
ffv/=α .

Remark 24 (Alternative proof to Theorem 23). To prove Theorem 23, we could
have applied a generalisation of Barr’s theorem on the existence of final coalge-
bras to locally finitely presentable categories given by Adámek [3]. We know that
the initial algebra of Lα is the nominal set Λ/=α. To prove that (Λ/=α)

∞
fs is the

carrier of the final coalgebra amounts to showing that for all finitely presentable
nominal sets B we have that Nom(B, (Λ/=α)

∞
fs) is the metric completion of

Nom(B,Λ/=α).

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus 143

5 An α-Corecursion Principle and Applications

Using corecursion, we define an α-invariant substitution into infinitary λ-terms
and we define α-invariant notions of the infinite normal forms (Böhm, Lévy-
Longo and Berarducci) discussed in Section 2. The defined notions will arise
from a unique arrow into the final Lα-coalgebra given by the nominal set Λ∞

ffv/=α

of Theorem 23.

Notation 25 (Injections) The injections for the coproduct U +V are denoted
as inlU,V : U → U + V and inrU,V : V → U + V . But for the case of L(U) and
Lα(U), we denote them as

inbotU : {⊥} → L(U)

invarU : V → L(U)

inabsU : V × U → L(U)

inappU : U × U → L(U)

inbotUα : {⊥} → Lα(U)

invarUα : V → Lα(U)

inabsUα : [V]U → Lα(U)

inappU
α : U × U → Lα(U)

We drop the superscripts when they are clear from the context.

Notation 26 (α-equivalence classes) WewriteΛα for the (nominal) setΛ/=α

of finite λ-terms up toα-equivalence and Λ∞
α for the (nominal) setΛ∞

ffv/=α of infini-
taryλ-termswith finitelymany free variables up toα-equivalence (seeTheorem 23).
We continue to denote terms in Λ or Λ∞

ffv by M,N , but will denote terms in Λα or
Λ∞
α by M,N.

Notation 27 (Elements of Λ∞
α) Since unfoldα is an isomorphism that par-

titions its domain Λ∞
α into four disjoint components, see (6), we write typical

elements of Λ∞
α as x, ⊥, M1M2, λy.M where

x = unfold−1
α (invarαx)

⊥ = unfold−1
α (inbotα⊥)

λy.M = unfold−1
α (inabsα〈y〉M)

M1M2 = unfold−1
α (inappα (M1,M2))

(24)

We use x to denote both an element in V and also its copy in Λ∞
α .

The following lemma [21, Lemma 2.1] allows parameters in coinductive defini-
tions. It dualises the way in which primitive recursion strengthens induction. In
order to express substitution, the set U will be used for the term N in M[x := N]
which is not subject to recursion and the set V will be used for the recursion.

Lemma 28. Let δ : D → F (D) be a final coalgebra and g : U → F (U) an
arbitrary F -coalgebra. Then, there is a unique map f : V → D such that for any
h : V → F (U + V), the following diagram commutes:

V

h
��

f
�� D

δ
��

F (U + V)
F ([g∗, f])

�� F (D)

where g∗ : U → D is the unique homomorphism between (U, g) and (D, δ).

144 A. Kurz et al.

We need to fix some notation:

Notation 29 (α-corecursion) We consider the final Lα-coalgebra unfoldα :
Λ∞
α → Lα(Λ

∞
α).

1. Given g : U → Lα(U), the unique map to the final Lα-coalgebra unfoldα :
Λ∞ → Lα(Λ

∞) is denoted by corecα(g).
2. Given g : U → Lα(U) and h : V → Lα(U + V), the unique map from h to

unfoldα : Λ∞ → Lα(Λ
∞) given by Lemma 28 is denoted by corecα(g, h).

We now define substitution using the finality of unfoldα : Λ∞
α → Lα(Λ

∞
α).

Definition 30 (Substitution on α-equivalence classes). We define substi-
tution subsα : Λ∞

α × V × Λ∞
α → Λ∞

α as

subsα = corecα(unfoldα,hsubsα),

where subsα arises from the instance of Lemma 28, see the diagram below,

Λ∞
α × V × Λ∞

α

hsubsα
��

subsα �� Λ∞
α

unfoldα
��

Lα(Λ
∞
α + Λ∞

α × V × Λ∞
α)

Lα([unfold
∗
α, subsα]) �� Lα(Λ

∞
α)

(25)

where hsubsα : Λ∞
α × V × Λ∞

α → Lα(Λ
∞
α + Λ∞

α × V × Λ∞
α) is given by

hsubsα(x, x,N) = Lαinl(unfoldα(N))
hsubsα(x, y,N) = invarα x if y �= x
hsubsα(⊥, y,N) = inbotα ⊥
hsubsα(M1M2, x,N) = inappα (inr (M1, x,N), inr (M2, x,N))
hsubsα(λy.M, x,N) = inabsα 〈z〉(inr ((〈y〉M)@z, x,N)) if z#(λy.M, x,N).

The map hsubsα is well-defined since the last clause is independent of the choice
of z (which always exists due to all terms being finitely supported) and hsubsα

is equivariant since all operations involved, in particular abstraction and concre-
tion, are equivariant.

Remark 31. To see how Definition 30 captures (3), note that, by (25), we have
that subsα = unfold−1

α ◦ Lα([unfold∗
α, subsα]) ◦hsubsα , that is, using (24) and

the fact that one can choose z = y in the last clause of hsubsα ,

subsα(x, x,N) = N
subsα(x, y,N) = x if y �= x
subsα(⊥, y,N) = ⊥
subsα(M1M2, x,N) = subsα(M1, x,N)subsα(M2, x,N)
subsα(λy.M, x,N) = λy.subsα(M, x,N) if y#(x,N)

which looks indeed just like a notational variant of the Set-based (3), but is now
fully justified as a coinductive definition on α-equivalence classes of λ-terms.

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus 145

Definition 32 (β-reduction on α-equivalence classes). We define
βα-reduction as the smallest relation on Λ∞

α × Λ∞
α that satisfies

(βα)
(λx.P)Q →βα subsα(P, x,N)

P →βα P′
(abs)

λx.P →βα λx.P′

P →βα P′
(appL)

PQ →βα P′Q

Q →βα Q′
(appR)

PQ →βα PQ′

The informal definitions of Böhm, Lévy-Longo and Berarducci trees given in (11),
(12) and (13) use the notion of β-reduction relation which is not a function. To
formally define the notions of trees, we need to define evaluation strategies, i.e.
some restricted notions of β-reduction which are actually partial functions.

We first define the notion of β-head reduction which contracts only the redex
at the head position and corresponds to the normalising leftmost strategy. This
reduction is used to define Böhm trees.

Definition 33 (Head β-reduction on α-equivalence classes). We define
βhα-reduction as the smallest relation on Λ∞

α × Λ∞
α closed under

(βhα)
(λx.P)Q →βhα

subsα(P, x,Q)

P →βhα
P′ P is not an abstraction

(appL)
PQ →βhα

P′Q

P →βhα
P′

(abs)
λx.P →βhα

λx.P′

A term M is in head normal form (hnf) if it is of the form λx1 . . . xn.yN1 . . .Nm.

We restrict the β-head reduction by not contracting β-redexes in the body of an
abstraction and obtain the weak head β-reduction which is needed to define the
notion of Lévy-Longo tree.

Definition 34 (Weak head β-reduction on α-equivalence classes). We
define βwhα-reduction as the smallest relation on Λ∞

α × Λ∞
α closed under

(λx.P)Q →βwhα
subsα(P, x,Q) (βwhα)

P →βhα
P′

(appL)
PQ →βwhα

P′Q

A term M is in weak head normal form (whnf) if it is either a head normal form
or an abstraction.

The reflexive, transitive closure of →βα , →βhα
and →βwhα

are denoted by →→βα ,
→→βhα

and →→βwhα
, respectively.

We now define the notion of top β-reduction which only contracts β-weak
head redexes at depth 0 and it will be used to define Berarducci trees.

146 A. Kurz et al.

Definition 35 (Top β-reduction on α-equivalence classes). We define βtα-
reduction as the smallest relation on Λ∞

α × Λ∞
α closed under

M →→βwhα
(λx.P)

(βtα)
MQ →βtα

subsα(P, x,Q)

A term M is a top normal form (tnf) if it is either a weak head normal form or
an application of the form NP where N cannot reduce to an abstraction.

The reflexive and transitive closure of →βt is denoted by →→βt .
We now define the notion of Böhm tree, Lévy-Longo tree, and Berarducci tree

using the finality of unfoldα : Λ∞
α → Lα(Λ

∞
α).

Definition 36 (Böhm tree on α-equivalence classes). We define the Böhm
tree of M as BTα(M) where BTα = corecα(gBTα) is the unique map such that

Λ∞
α

gBTα

��

BTα �� Λ∞
α

unfoldα
��

Lα(Λ
∞
α)

Lα(BTα)
�� Lα(Λ

∞
α)

commutes, with gBTα : Λ∞
α → L(Λ∞

α) being defined as

gBTα
(M) =

{
unfoldαN if M →→βhα

N and N is in hnf
inbotα ⊥ otherwise

Definition 37 (Lévy-Longo tree on α-equivalence classes). We define the
Lévy-Longo tree of M as LLTα(M) where LLTα = corecα(gLLTα

) is the unique
map such that

Λ∞
α

gLLTα

��

LLTα �� Λ∞
α

unfoldα
��

Lα(Λ
∞
α)

Lα(LLTα)
�� Lα(Λ

∞
α)

commutes, with gLLTα
: Λ∞

α → Lα(Λ
∞
α) being defined as

gLLTα
(M) =

{
unfoldαN if M →→βwhα

N and N is in whnf
inbotα ⊥ otherwise

Definition 38 (Berarducci tree on α-equivalence classes). We define the
Berarducci tree of M as BerTα(M) where BerTα = corecα(gBerTα) is the
unique map such that

Λ∞
α

gBerTα

��

BerTα �� Λ∞
α

unfoldα
��

Lα(Λ
∞
α)

Lα(BerTα)
�� Lα(Λ

∞
α)

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus 147

commutes, with gBerTα
: Λ∞

α → Lα(Λ
∞
α) being defined as follows.

gBerTα
(M) =

{
unfoldαN if M →→βtα

N and N is in tnf
inbotα ⊥ otherwise

6 Comparison of α-Recursion and Corecursion

The α-recursion principle of [23] is based on the initial Lα-algebra Λα (the prin-
ciple applies of course to general functors, but we only consider the example
Lα here). Thus, in order to make an inductive definition, that is, in order to
define an arrow from Λα into some set U , one needs, in particular, to give a map
[V]U → U . This is done in [23] by giving a map f : V ×U → U which has to sat-
isfy a certain condition, the freshness condition for binders (FCB). FCB makes
sure that f factors (uniquely) through [V]U , thus giving the required [V]U → U .

In the coinductive case, we need instead give a map U → [V]U . Note that
not every equivariant U → [V]U factors through an equivariant U → V × U . So
we could say that a not necessarily equivariant U → V × U satisfies the dual of
FCB if the composition U → V×U → [V]U is equivariant. In our examples, ‘the
dual of FCB’ is automatic because of the equivariance of the ingredients used,
see e.g. the definition of hsubsα in Definition 30.

Next we compare α-corecursion with corecursion. Duppen [9] attempts to
obtain a corecursive definition of substitution, as in (3), using the unique ar-
row into the final coalgebra for an endofunctor on the category Set of sets and
functions. However, this approach does not take into account α-conversion: (3)
defines a partial map on λ-terms which induces a total map only on ‘λ-terms up
to α-equivalence’ (as can be seen, for example, by using Barendregt’s variable
convention [5] and comparing his definition of substitution [5, 2.1.15] with (3)).

For a general introduction to the problems arising in Set-based as opposed
to Nom-based reasoning with binders, see [23, Section 1] and [22, Section 2].
Typically, Set-based induction in the presence of binders is complicated by side
conditions as in (3) which lead to partial functions with the domain of definition
restricted to ‘safe terms’ having no conflicts between free and bound variables.
But ‘safe terms’ are not closed under the operations of abstraction and binding
and so do not carry an algebra structure that can serve as a codomain U to
define an arrow Λ → U by initiality.

In the coinductive case, however, we can equip the safe terms with a coalgebra
structure. The details are as follows. In analogy to Notation 29, we consider
the final L-coalgebra unfold : Λ∞ → L(Λ∞) and, given g : U → L(U) and
h : V → L(U + V), we denote the unique map from h : V → L(U + V) to
unfold : Λ∞ → L(Λ∞) by corec(g, h). The set of safe terms (with respect to
substitution) is defined as (Λ∞ × V × Λ∞)safe = {(M,x,N) ∈ Λ∞ × V × Λ∞ |
bv(M) ∩ fv(N) = ∅}. In analogy with Definition 30, we then define substitution

subs : (Λ∞ × V × Λ∞)safe → Λ∞

as corec(unfold,hsubs), where hsubs : (Λ∞ × V × Λ∞)safe → L(Λ∞ + (Λ∞ ×
V × Λ∞)safe) is as in Definition 30 but with

148 A. Kurz et al.

hsubs((λx.M), x,N) = inabs (x, inl (M,x,N))
hsubs((λy.M), x,N) = inabs (y, inr (M,x,N)) if y �= x

where we have that y �∈ fv(N) because bv(λy.M)∩ fv(N) = ∅. Although subs is
well-defined on safe tuples (M,x,N), it is not immediately clear how to extend
the definition of substitution to tuples of the form ([M]α, x, [N]α). As illustrated
by the term (λx0x1.x0x1)allfv in the introduction, finding “safe” representatives
for α-equivalence classes of arbitrary infinitary terms is problematic.

Further, the β-rule could be defined on the set (Λ∞)safe = {M ∈ Λ∞
ffv | fv(M)∩

bv(M) = ∅} using subs. Since (Λ∞)safe is closed under →→βwh
, in most lazy

functional programming languages which use βwh-reduction such as Haskell we
could work with representatives without having to consider equivalence classes.
In spite of this, to define the notion of Lévy-Longo tree, we also need to extend
the βwh-reduction to Λ∞

α because the function that computes the βwh-normal
form is not an L-coalgebra since P may not belong to (Λ∞)safe when λx.P ∈
(Λ∞)safe.

To summarize, it pays off to work in Nom from the beginning, because all
constructions are automatically invariant under α-conversion.

7 Conclusion

As far as we know this is the first paper applying nominal techniques to the
infinitary λ-calculus. In particular, we have derived a principle for making coin-
ductive definitions up to α-equivalence and applied it to fully formalising some
important concepts from infinitary λ-calculus. In the context of presheaf models
substitution into non-well founded syntax such as the infinitary lambda calculus
has been investigated in [20].

Let us emphasise that Theorem 23 extends to other signatures. Not only is the
presence of ⊥ irrelevant for Theorem 23, it also applies if we replace Lα by other
polynomial functors, for example by those that fall into the nominal (universal)
algebra of [13]. We are confident that the future will uncover more interesting
examples of α-corecursion.

In future work we will study α-corecursion for λ-terms that may contain
infinitely many free variables, for example using the generalised theory of names
[12] or the ideal-supported subsets of [8].

It will also be interesting to explore whether nominal rewriting [10] has ap-
plications in the infinitary λ-calculus.

References

1. Abramsky, S.: The lazy lambda calculus. In: Research Topics in Functional Pro-
gramming, pp. 65–116. Addison-Wesley (1990)

2. Abramsky, S., Luke Ong, C.-H.: Full abstraction in the lazy lambda calculus. In-
form. and Comput. 105(2), 159–267 (1993)

3. Adámek, J.: On final coalgebras of continuous functors. Theor. Comput.
Sci. 294(1/2), 3–29 (2003)

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus 149

4. Arnold, A., Nivat, M.: The metric space of infinite trees. algebraic and topological
properties. Fundamenta Informaticae 4, 445–476 (1980)

5. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, Revised edi-
tion. North-Holland, Amsterdam (1984)

6. Barr, M.: Terminal coalgebras for endofunctors on sets. Theor. Comp. Sci. 114(2),
299–315 (1999)

7. Berarducci, A.: Infinite λ-calculus and non-sensible models. In: Logic and Algebra
(Pontignano, 1994), pp. 339–377. Dekker, New York (1996)

8. Cheney, J.: Completeness and Herbrand theorems for nominal logic. J. Symb.
Log. 71(1), 299–320 (2006)

9. Duppen, Y.D.: A coalgebraic approach to lambda calculus. Master’s thesis, Vrije
Universiteit Amsterdam (2000)

10. Fernández, M., Gabbay, M.: Nominal rewriting. Inf. Comput. 205(6), 917–965
(2007)

11. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax involving binders. In:
LICS, pp. 214–224 (1999)

12. Gabbay, M.J.: A general mathematics of names. Inf. Comput. 205(7), 982–1011
(2007)

13. Gabbay, M.J., Mathijssen, A.: Nominal (universal) algebra: Equational logic with
names and binding. J. Log. Comput. 19(6), 1455–1508 (2009)

14. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects of Computing 13(3–5), 341–363 (2001)

15. Kennaway, J.R., de Vries, F.J.: Infinitary rewriting. In: Terese (ed.) Term Rewriting
Systems. Cambridge Tracts in Theor. Comp. Sci, vol. 55, pp. 668–711. Cambridge
University Press (2003)

16. Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Infinite Lambda Calculus
and Böhm Models. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 257–270.
Springer, Heidelberg (1995)

17. Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Infinitary lambda calculus.
Theor. Comp. Sci. 175(1), 93–125 (1997)

18. Lévy, J.-J.: An algebraic interpretation of the λβK-calculus, and an application of
a labelled λ-calculus. Theor. Comp. Sci. 2(1), 97–114 (1976)

19. Longo, G.: Set-theoretical models of λ-calculus: theories, expansions, isomorphisms.
Ann. Pure Appl. Logic 24(2), 153–188 (1983)

20. Matthes, R., Uustalu, T.: Substitution in non-wellfounded syntax with variable
binding. Theor. Comput. Sci. 327, 155–174 (2004)

21. Moss, L.S.: Parametric corecursion. Theor. Comp. Sci. 260, 139–163 (2001)
22. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information

and Computation 186, 165–193 (2003)
23. Pitts, A.M.: Alpha-Structural Recursion and Induction. In: Hurd, J., Melham, T.

(eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 17–34. Springer, Heidelberg (2005)
24. Salibra, A.: Nonmodularity results for lambda calculus. Fundamenta Informati-

cae 45, 379–392 (2001)
25. Severi, P.G., de Vries, F.J.: Weakening the axiom of overlap in the infinitary lambda

calculus. In: RTA. LIPIcs, vol. 10, pp. 313–328. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik (2011)

	An Alpha-Corecursion Principle for the Infinitary Lambda Calculus

	Introduction
	Preliminaries on Infinitary Lambda Calculus
	Preliminaries on Nominal Sets
	Infinitary Lambda Calculus in Nominal Sets
	An -Corecursion Principle and Applications
	Comparison of -Recursion and Corecursion
	Conclusion
	References

