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Abstract. Systems-of-systems (SoS) are network-enabled synergistic 
collaborations between systems that are operationally and managerially 
independent, distributed, evolve dynamically and exhibit emergence. The 
design of dependable SoS requires model-based approaches that permit 
description of contracts between constituent systems at interfaces in a SoS 
architecture, including functionality and interaction behaviour, and that permit 
verification of global behaviours. We describe an approach to formal model-
based SoS engineering using complementary notations for functional, 
interaction and architectural aspects. A case study in modelling information 
flow in an emergency response SoS demonstrates the viability of the proposed 
approach and highlights a need for common semantic foundations.  

Keywords: Systems-of-systems, Information flow, SysML, CSP, VDM, 
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1 Introduction 

Systems-of-systems (SoS) are network-enabled integrations of heterogeneous 
systems, delivering capabilities and services which cannot be achieved by the 
constituent systems alone. Examples include enterprise information systems, 
integrated manufacturing systems, and emergency response collaborations. SoS 
technology enables the provision of holistic services such as more efficient 
management and control, more agile response or efficient energy management.  

SoS are distinguished from large monolithic systems by several characteristics [1]. 
The managerial and operational independence of the constituent systems means 
that it may be impossible to exercise centralised control over operation, or to ensure 
that goals are respected.  SoS must cope with evolution caused by changes in the 
purposes and identity of constituent systems. Their geographically distributed 
character leads to a reliance on network/Internet technologies to ensure 
communication between constituents. Emergence is central to their functioning in 
that the SoS delivers a purpose that is not explicitly present in the constituent systems.  

SoS can be viewed as Collaborative Network Organisations (CNOs) in the terms of 
the ARCON reference modelling framework [2]. SoS are classed as Virtual, 
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Collaborative, Acknowledged or Directed [3,1] based on the strength of explicit 
acknowledgement and subordination to centralized control. They thus exhibit a range 
of levels of joint endeavour [2], from simply networking to maintaining a joint 
identity.    

The engineering of SoS is challenging because of the complexity of interactions of 
constituent systems, and the need for effective communication among diverse 
stakeholders. A consistent theme of SoS research has been the role of model-based 
techniques [4,5] as it has been for CNOs in general [6]. A precise model of SoS 
architecture, constituent systems, infrastructure and environment allows early 
exploration of design alternatives and the contracts that exist between constituent 
systems. This makes it possible to validate global properties such as resilience to 
faults or attacks, liveness, safety and security, that affect the reliance that can be 
placed on a SoS. If models are defined using languages with formal semantics, it 
becomes possible to perform machine-assisted analysis of global properties, providing 
early identification and elimination of errors. Formal methods thus offer a way to 
manage risk.  

Although formal methods can be challenging to apply [6], advances in their 
automation have increased their viability, notably in software development [7]. 
However, these techniques have been applied only experimentally in SoS Engineering 
(e.g. [8]). The goal of our work, supported by the COMPASS project1, is to develop 
modelling languages that are expressive enough to model the architecture and 
behaviour of candidate SoS structures, and sufficiently rigorously defined to permit 
trustworthy machine-assisted analysis of global properties.  

This paper proposes an approach to formal model-based SoS engineering using 
complementary formalisms to describe functional and behavioural aspects of 
constituent systems, and verify global properties of the SoS. In Section 2 we describe 
this approach, and in Section 3 we describe its pilot application to a study of an 
emergency response SoS. Section 4 describes future research towards our goal.   

2 A Formal Model-Based Approach to SoS 

Model-based engineering approaches are challenged by several characteristics of SoS. 
Independence means that there can only be limited knowledge about, and control 
over, constituent systems. This suggests that models should support the recording of 
contracts that bound constituents’ behaviour without defining it completely and 
deterministically. Geographical distribution implies a need to model concurrency in 
terms of message passing between constituents. The need to manage evolution and 
structural change requires the ability to model architectural structures and particularly 
interfaces between constituents. The central role of emergence in SoS makes it 
imperative to support the verification of SoS-level properties. In addition to these 
requirements, experience in industry deployment of formal methods teaches us that it 
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is necessary to provide strong links to an accepted architectural notation, and to have 
robust tools that support both simulation and static analysis [7].  

No single formalism meets all of the demanding requirements. As the ECOLEAD 
project concluded, there is no “universal language” for modelling problems for CNOs 
in general [2]. We therefore aim to define combinations of interoperable modelling 
techniques and extend them for SoS development to allow trade-off analysis and 
verification of SoS-level properties. 

Many formal languages have been developed for expressing and analysing 
particular system characteristics [9, 10, 11]. However, for a SoS, we need to cover 
functionality, concurrency, communication, inheritance, time, sharing, and mobility. 
Some languages cover a few of these features, and there are integrations of 
formalisms that cater for data, concurrency, and time [12, 13, 14, 15, 16]. The 
verification of global properties in design also suggests a need for a theory that covers 
refinement.  

Given the requirements above, our baseline technologies are SysML for 
architectural description, CSP [10] for describing concurrency and communication 
and VDM [17] for data and functionality.  We extend SysML [18] with the ability to 
express rigorous interface contracts [19], giving SoS engineers the ability to 
experiment with consequences of different architectural design decisions. SoS 
engineers may also define expected interfaces of the constituent systems, which may 
in turn be provided to developers/operators of constituent systems, or used as a basis 
of their assessment, providing greater confidence that constituent systems adhere to 
the expected properties on interfaces. We aim to allow engineers to operate either at 
the SysML graphical level or at the textual level, or at a combination of these, since 
there will be support for moving between these views. In Section 3, we explore the 
feasibility of this combination of formalisms for model-based SoS engineering via a 
case study. 

3 A Case Study in Emergency Service Co-ordination 

In this section we present a study in emergency coordination in order to evaluate the 
modelling approach proposed in Section 2. Our study is based on the London 
Emergency Services Major Incident Procedure Manual [20] which documents the 
process for identifying a major incident, initiating appropriate services (fire, police, 
ambulance etc.), and the roles and responsibilities of service members involved.  The 
coalition of services forms a SoS: the constituent systems are normally independent 
services; there is mobility and geographic distribution, and a need to evolve rapidly as 
goals or volatile conditions change. Ultimately, the SoS must provide an emergent 
service to stakeholders ranging from people involved in the incident to the media and 
authorities. This coalition was previously explored using the Event-B formalism [21]. 
However, that model does not address interaction between participants, and does not 
provide an accessible representation of the SoS architecture.  

We first introduce the application and then the formalisms SysML, CSP and VDM. 
We present models of the complementary architectural, behavioural and functional 
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aspects of the SoS (Sections 3.1-3.3). For brevity, we omit some details of the formal 
models, but give a flavour of them. In Section 4, we draw conclusions about the 
research required to develop a more integrated modelling and analytic framework. 

The response to all major incidents follows a broadly similar structure. Members of 
each service attending the scene form Bronze (operational) command.  For more 
severe incidents, a Silver (tactical) command is formed containing representatives of 
all the services involved.  For long-running incidents, a Gold (strategic) command 
may be formed at a geographically distant point. Each service has members working 
at each level, e.g. Silver Police. Each level and service has different responsibilities.  

There is a strict information flow policy in the Bronze/Silver/Gold structure, 
illustrated in Figure 1. The members of the coalition in a given service and level are 
permitted to communicate with other members and the same level, for example 
Bronze Police may communicate with other Bronze officers. The services also have 
their own communication structure which may be used between adjacent levels. For 
example, Bronze Police may communicate with Silver Police, but not directly with 
Gold Police. Communication with the media is (in this example) the sole 
responsibility of Gold Police. 

  

Fire
Ambulance

Police

SoS Boundary

Gold

Silver

Bronze

Media

 

Fig. 1. Permitted information flows between coalition members of different levels 

We focus on the rules [20,22] for releasing casualty information to the media, and 
the requirements that these rules place on the interfaces between the emergency 
services (constituent systems). Confusion can arise if the media aggregate casualty 
figures from multiple sources (“double-counting”), leading to overestimation of the 
incident’s severity. To avoid this, all casualty details must be given to Gold 
command, which is then responsible for producing a more reliable estimate and 
passing this to the media. The previous Event-B study [21] considered the passage of 
information through the emergency response system, and sought to ensure that 
information was not released to the media without first being cleared by Gold.   
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3.1 Architectural Model in SysML 

SysML [18] is a profile for UML 2.0, developed for system engineering, but also 
supporting the modelling of SoS architectural definitions. It has wide industrial 
support and a sound tool base. SysML provides several diagram types, with “precise 
natural language” semantics, to support the description of SoS architectural structure, 
behaviour and requirements.  

A detailed SysML architectural definition of the case study is given in [22]. For 
brevity, we omit the general SoS structure. However, Figure 2, a SysML Internal 
Block Diagram, details the points of interaction between the SoS constituent systems 
relevant to casualty information clearance. Contracts between constituent systems are 
given as provided and required interfaces, containing collections of operation 
signatures.  For example, in Figure 2, the order_to_collect_info interface is 
provided by Bronze officers and required by Gold command. The interface contains a 
single operation (given in the full interface definition [22], with the signature 
collectCasualtyDetails(loc:Location), where location is an abstract 
data type) to order Bronze officers to collect casualty information. The inclusion of 
pre/postconditions on operations is optional in SysML, and rarely used in practice. 
However, in order to accommodate interface specifications rich enough for formal 
analysis of SoS, extensions to interfaces have been proposed, including more rigorous 
operation definitions, state machine diagrams defining communication protocols, and 
the means to record the rationale for contract agreement between interfaces [19].  

ibd [Major Incident Response] Casualty Info Clearance

: Major Incident Response

bronze : Fire Officerbronze : Ambulance Officerbronze : Police Officer

gold : Police Officer

silver : Ambulance Officer silver : Fire Officersilver : Police Officer

gold : Ambulance Officer

bronze : Fire Officerbronze : Ambulance Officerbronze : Police Officer

gold : Police Officer

silver : Ambulance Officer silver : Fire Officersilver : Police Officer

gold : Ambulance Officer

: Media

press_conf

info_to_silverinfo_to_silver info_to_silver

info_to_verify

info_to_verify

info_to_gold

info_to_clear

 

Fig. 2. SysML Internal Block Diagram of Major Incident Response connections 

Given a SysML architectural model, complementary CSP and VDM models may 
be defined covering the interaction behaviour and data and functionality aspects 
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respectively. The SysML model provides a basis for ensuring consistency between the 
defined SoS internal structure and the interface definitions.   

3.2 Modelling Interaction behaviour Using CSP  

The CSP [10] formalism allows the interaction behaviour of the SoS to be modelled 
as a set of processes. A process is made up of sequences of actions (or events). 
Process combinators make explicit the events shared between processes. An abstract 
model serves to specify the permitted SoS behaviours; more concrete models include 
communication and structural detail, and may be checked for conformance with the 
abstract model.  

In the abstract specification, the passage of information through the SoS is 
modelled as a process INFO(i). The variable i is parameterised over the set of all 
information Inf. A process INFO(i) is made up of three events: each information 
item i can first be learned, then cleared, and finally released to the media. No further 
activity is then possible for that process. The specification ACOAL is the combination 
(|||) of these processes for all possible values of parameter i. The interleaving 
combinator (|||) indicates that the individual processes INFO(i) do not interact with 
each other. 

INFO(i) = learn.i -> clear.i -> release.i -> STOP 

ACOAL = ||| i:Inf @ INFO(i) 

The more concrete model below identifies the coalition levels and the communication 
events between them. The Bronze process BR(i) begins by learning the information 
item i and then describes the passing of i to Silver. The synchronisation event 
bscomm.i describes the passing of information item i along the channel bscomm. 
The Silver process SI(i)begins with the synchronisation event bscomm.i, through 
which it learns about information item i. Silver  then passes the item to Gold, which 
clears and releases the item.   

BR(i) = learn.i -> bscomm.i -> STOP 

BRONZE = ||| i:Inf @ BR(i) 

SI(i) =  bscomm.i -> sgcomm.i ->  STOP 

SILVER = ||| i:Inf @ SI(i) 

GD(i) =  sgcomm.i -> clear.i -> release.i -> STOP 

GOLD = ||| i:Inf @ GD(i) 

The three processes are combined in the concrete specification as CCOAL, 

communicating on the events bscomm and sgcomm.  

CCOAL = BRONZE [|{|bscomm|}|] (SILVER [|{|sgcomm|}|] GOLD) 

        \ {| bscomm, sgcomm |} 

A model checker such as FDR can be used to check that this concrete SoS description 
admits only behaviours permitted by the abstract specification. The next step is to 
decompose GOLD into processes representing the emergency services. For example:  
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P(i) =  sgcomm.i -> pclear.i -> release.i -> STOP 

Police = ||| i:Inf @ P(i) 

The distributed GOLD command is the combination of these processes: 

GOLDdist = ((Police [|{| sgcomm, release |}|] Fire)  

           [|{| sgcomm, release |}|] Amb) 

The distributed SoS combines the distributed GOLD with the previous processes.  

COALdist = (BRONZE [| {|bscomm|} |] SILVER)  

           [| {|sgcomm|} |] GOLDdist  

           \ {|bscomm, sgcomm, pclear, fclear, aclear|} 

The requirement that the distributed coalition model (COALdist) respects (denoted by 
“[T=”) the behavioural constraints specified in the abstract model (ACOAL) can be 
asserted formally as follows and checked with tool support: 

assert ACOAL \ {|clear|} [T= COALdist 

3.3 Modelling Functionality Using VDM  

The VDM formal method [17] supports the description of functionality in terms of 
executable code or in terms of abstract contracts. Tool support is particularly strong 
for simulation, and there is an established coupling to UML.  

A model of the emergency response SoS is given in this section. The model 
contains two model-specific data types: Info is an abstract token type and CType is 
an enumerated type representing the coalition levels (Bronze, Silver, and Gold). The 
model focuses on recording its state in terms of the information in each state (known, 
cleared or released), and the level at which that information is known 
(coal_known).  A data type invariant records consistency restrictions on the 
allowable state. In this model, the invariant ensures that released information must 
have been cleared (released subset cleared), and all known information is 
known by allowed coalition levels (dom coal_known = coalition). 

types  

Info = token; 

CType = <Bronze> | <Silver> | <Gold> 

 

state Coal of 

      known: set of Info 

      cleared: set of Info 

      released: set of Info 

      coalition: set of CType 

      coal_known: map CType to set of Info  

inv mk_Coal(-,cleared, released, coalition, coal_known) ==  

       released subset cleared and 

       dom coal_known = coalition 
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State-changing functionality is defined in terms of operations that are specified 
contractually by means of preconditions and postconditions. Consider, for example, 
Gold command’s clear and release events, the interaction behaviours of which 
are specified in CSP in process GD(i) in Section 3.2. In VDM, the functionality is 
specified as operations parameterised over information i:Info. The ClearGold 
operation assumes in the precondition, pre i in set coal_known(<Gold>), 
that i is known to Gold command. If this assumption is satisfied, the operation 
guarantees in the postcondition, post cleared = cleared~ union {i}, to 
add it to the cleared set (where cleared~ refers to the initial value of the cleared 
state variable). The ReleaseGold operation is similar.  

ClearGold(i:Info)                 
pre i in set coal_known(<Gold>) 

post cleared = cleared~ union {i};  

ReleaseGold(i:Info) 
pre i in set coal_known(<Gold>) and  

    i in set cleared 

post released = released~ union {i}; 

Both operations give rise to proof obligations to ensure preservation of the state 
invariant, including that of ensuring that released information must have previously 
been cleared, and that both operations preserve this. Such obligations can be 
generated automatically, and may be discharged by inspection, testing or formal 
proof.  

Comments on the Case Study. Compared to Bryans et al.’s model in Event-B [21], 
this multi-paradigm approach more clearly shows the interfaces between constituent 
systems, and hence the points at which structural change is possible, as well as the 
interaction behaviour, which is here explicit in the CSP rather than “hidden” in event 
guards. Most importantly, it permits the verification of SoS-level properties that cut 
across multiple aspects. For example, extending the model to encompass 
communications errors entails alterations to interaction behaviour (in CSP) and 
functionality (recording “lost” messages) in the VDM model. Adding redundancy to 
manage such error would require a modification to the architectural model as well.  

Although Bryans et al.’s previous model is less transparent with respect to the SoS 
architecture and interaction behaviour, it does benefit from the specialist automated 
verification tools that can be developed for a single formalism. Currently our multiple 
formalisms do not benefit from a completely consistent semantic base, so that we are 
not yet able to automate analysis to the same extent.  

4 Conclusions and Future Work  

We have proposed a multi-paradigm modelling approach to address the particular 
challenges of SoS engineering, using baseline formalisms that cover architectural 
modelling, communication and concurrency, data and functionality. Our case study 
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suggests that it is possible to produce consistent models in such formalisms that 
describe features of a SoS sufficient to verify global properties of interest.  

Although multiple modelling techniques are required to cover the full range of 
aspects of a SoS, we note that researchers and practitioners in CNO modelling tend to 
stick with one approach even though it might not be the most appropriate for all or a 
part of the modelling effort [6]. We aim to develop a unified framework that 
integrates architectural, behavioural and functional models. Semantic interoperability 
between models is needed for verification of properties that cross aspects. A 
promising starting point is Hoare & He’s Unifying Theories of Programming [23]. 
This will be developed in a series of definitions starting with basic modelling features 
and extending these with time and object-orientation.  

While formal model-based methods are valuable in describing and verifying the 
properties of SoS configurations, the capacity exists to restructure or reconfigure 
during operation in response to faults or attacks. Indeed, a SoS architecture has been 
proposed to manage such reconfiguration [24]. The semantics and pragmatics of 
policy languages for dynamic reconfiguration remain open, including the definition 
and acquisition of metadata, and the expression and verification of policies [25].  

Feedback from practice is required in any attempt to develop any formal modelling 
framework. In the COMPASS project, our emerging methods will be evaluated 
through several industry case studies. For example, in a home audio-video ecosystem, 
networked systems such as TV, home cinema, DVD and MP3 players deliver digital 
content from internal or external sources to multiple users. Providers and integrators 
of constituent systems require the ability to verify overall performance and that the 
SoS will respect digital rights management (DRM) contracts on the content. A second 
example is dynamic coordination of healthcare services in response to an accident 
(call management, dispatching, triage, hospital management systems, etc.). As with 
the audio-video ecosystem, global properties such as confidentiality need to be 
analysed. In both cases, the ability to perform such verification is complicated by the 
need to cope with failures in infrastructure or constituents.  

In spite of the emerging potential of formal techniques, there naturally remains a 
gap between the formal “supply-side” models of SoS compositions and the users’ 
“demand-side” experience [26]. As with collaborative networked organisations more 
generally, the development of dependable SoS requires a wide range of disciplines 
and skills, both socio-technical and formal.  
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