
L.M. Camarinha-Matos, L. Xu, and H. Afsarmanesh (Eds.): PRO-VE 2012, IFIP AICT 380, pp. 53–62, 2012.
© IFIP International Federation for Information Processing 2012

A Formal Model-Based Approach to Engineering
Systems-of-Systems

John Fitzgerald, Jeremy Bryans, and Richard Payne

Centre for Software Reliability, Newcastle University,
Newcastle upon Tyne NE1 7RU, United Kingdom

{John.Fitzgerald,Jeremy.Bryans,Richard.Payne}@ncl.ac.uk

Abstract. Systems-of-systems (SoS) are network-enabled synergistic
collaborations between systems that are operationally and managerially
independent, distributed, evolve dynamically and exhibit emergence. The
design of dependable SoS requires model-based approaches that permit
description of contracts between constituent systems at interfaces in a SoS
architecture, including functionality and interaction behaviour, and that permit
verification of global behaviours. We describe an approach to formal model-
based SoS engineering using complementary notations for functional,
interaction and architectural aspects. A case study in modelling information
flow in an emergency response SoS demonstrates the viability of the proposed
approach and highlights a need for common semantic foundations.

Keywords: Systems-of-systems, Information flow, SysML, CSP, VDM,
Analysis, Verification.

1 Introduction

Systems-of-systems (SoS) are network-enabled integrations of heterogeneous
systems, delivering capabilities and services which cannot be achieved by the
constituent systems alone. Examples include enterprise information systems,
integrated manufacturing systems, and emergency response collaborations. SoS
technology enables the provision of holistic services such as more efficient
management and control, more agile response or efficient energy management.

SoS are distinguished from large monolithic systems by several characteristics [1].
The managerial and operational independence of the constituent systems means
that it may be impossible to exercise centralised control over operation, or to ensure
that goals are respected. SoS must cope with evolution caused by changes in the
purposes and identity of constituent systems. Their geographically distributed
character leads to a reliance on network/Internet technologies to ensure
communication between constituents. Emergence is central to their functioning in
that the SoS delivers a purpose that is not explicitly present in the constituent systems.

SoS can be viewed as Collaborative Network Organisations (CNOs) in the terms of
the ARCON reference modelling framework [2]. SoS are classed as Virtual,

54 J. Fitzgerald, J. Bryans, and R. Payne

Collaborative, Acknowledged or Directed [3,1] based on the strength of explicit
acknowledgement and subordination to centralized control. They thus exhibit a range
of levels of joint endeavour [2], from simply networking to maintaining a joint
identity.

The engineering of SoS is challenging because of the complexity of interactions of
constituent systems, and the need for effective communication among diverse
stakeholders. A consistent theme of SoS research has been the role of model-based
techniques [4,5] as it has been for CNOs in general [6]. A precise model of SoS
architecture, constituent systems, infrastructure and environment allows early
exploration of design alternatives and the contracts that exist between constituent
systems. This makes it possible to validate global properties such as resilience to
faults or attacks, liveness, safety and security, that affect the reliance that can be
placed on a SoS. If models are defined using languages with formal semantics, it
becomes possible to perform machine-assisted analysis of global properties, providing
early identification and elimination of errors. Formal methods thus offer a way to
manage risk.

Although formal methods can be challenging to apply [6], advances in their
automation have increased their viability, notably in software development [7].
However, these techniques have been applied only experimentally in SoS Engineering
(e.g. [8]). The goal of our work, supported by the COMPASS project1, is to develop
modelling languages that are expressive enough to model the architecture and
behaviour of candidate SoS structures, and sufficiently rigorously defined to permit
trustworthy machine-assisted analysis of global properties.

This paper proposes an approach to formal model-based SoS engineering using
complementary formalisms to describe functional and behavioural aspects of
constituent systems, and verify global properties of the SoS. In Section 2 we describe
this approach, and in Section 3 we describe its pilot application to a study of an
emergency response SoS. Section 4 describes future research towards our goal.

2 A Formal Model-Based Approach to SoS

Model-based engineering approaches are challenged by several characteristics of SoS.
Independence means that there can only be limited knowledge about, and control
over, constituent systems. This suggests that models should support the recording of
contracts that bound constituents’ behaviour without defining it completely and
deterministically. Geographical distribution implies a need to model concurrency in
terms of message passing between constituents. The need to manage evolution and
structural change requires the ability to model architectural structures and particularly
interfaces between constituents. The central role of emergence in SoS makes it
imperative to support the verification of SoS-level properties. In addition to these
requirements, experience in industry deployment of formal methods teaches us that it

1 Comprehensive Modelling for Advanced Systems-of-Systems, EC FP7 Project 287829,

http://www.compass-research.eu

 A Formal Model-Based Approach to Engineering Systems-of-Systems 55

is necessary to provide strong links to an accepted architectural notation, and to have
robust tools that support both simulation and static analysis [7].

No single formalism meets all of the demanding requirements. As the ECOLEAD
project concluded, there is no “universal language” for modelling problems for CNOs
in general [2]. We therefore aim to define combinations of interoperable modelling
techniques and extend them for SoS development to allow trade-off analysis and
verification of SoS-level properties.

Many formal languages have been developed for expressing and analysing
particular system characteristics [9, 10, 11]. However, for a SoS, we need to cover
functionality, concurrency, communication, inheritance, time, sharing, and mobility.
Some languages cover a few of these features, and there are integrations of
formalisms that cater for data, concurrency, and time [12, 13, 14, 15, 16]. The
verification of global properties in design also suggests a need for a theory that covers
refinement.

Given the requirements above, our baseline technologies are SysML for
architectural description, CSP [10] for describing concurrency and communication
and VDM [17] for data and functionality. We extend SysML [18] with the ability to
express rigorous interface contracts [19], giving SoS engineers the ability to
experiment with consequences of different architectural design decisions. SoS
engineers may also define expected interfaces of the constituent systems, which may
in turn be provided to developers/operators of constituent systems, or used as a basis
of their assessment, providing greater confidence that constituent systems adhere to
the expected properties on interfaces. We aim to allow engineers to operate either at
the SysML graphical level or at the textual level, or at a combination of these, since
there will be support for moving between these views. In Section 3, we explore the
feasibility of this combination of formalisms for model-based SoS engineering via a
case study.

3 A Case Study in Emergency Service Co-ordination

In this section we present a study in emergency coordination in order to evaluate the
modelling approach proposed in Section 2. Our study is based on the London
Emergency Services Major Incident Procedure Manual [20] which documents the
process for identifying a major incident, initiating appropriate services (fire, police,
ambulance etc.), and the roles and responsibilities of service members involved. The
coalition of services forms a SoS: the constituent systems are normally independent
services; there is mobility and geographic distribution, and a need to evolve rapidly as
goals or volatile conditions change. Ultimately, the SoS must provide an emergent
service to stakeholders ranging from people involved in the incident to the media and
authorities. This coalition was previously explored using the Event-B formalism [21].
However, that model does not address interaction between participants, and does not
provide an accessible representation of the SoS architecture.

We first introduce the application and then the formalisms SysML, CSP and VDM.
We present models of the complementary architectural, behavioural and functional

56 J. Fitzgerald, J. Bryans, and R. Payne

aspects of the SoS (Sections 3.1-3.3). For brevity, we omit some details of the formal
models, but give a flavour of them. In Section 4, we draw conclusions about the
research required to develop a more integrated modelling and analytic framework.

The response to all major incidents follows a broadly similar structure. Members of
each service attending the scene form Bronze (operational) command. For more
severe incidents, a Silver (tactical) command is formed containing representatives of
all the services involved. For long-running incidents, a Gold (strategic) command
may be formed at a geographically distant point. Each service has members working
at each level, e.g. Silver Police. Each level and service has different responsibilities.

There is a strict information flow policy in the Bronze/Silver/Gold structure,
illustrated in Figure 1. The members of the coalition in a given service and level are
permitted to communicate with other members and the same level, for example
Bronze Police may communicate with other Bronze officers. The services also have
their own communication structure which may be used between adjacent levels. For
example, Bronze Police may communicate with Silver Police, but not directly with
Gold Police. Communication with the media is (in this example) the sole
responsibility of Gold Police.

Fire
Ambulance

Police

SoS Boundary

Gold

Silver

Bronze

Media

Fig. 1. Permitted information flows between coalition members of different levels

We focus on the rules [20,22] for releasing casualty information to the media, and
the requirements that these rules place on the interfaces between the emergency
services (constituent systems). Confusion can arise if the media aggregate casualty
figures from multiple sources (“double-counting”), leading to overestimation of the
incident’s severity. To avoid this, all casualty details must be given to Gold
command, which is then responsible for producing a more reliable estimate and
passing this to the media. The previous Event-B study [21] considered the passage of
information through the emergency response system, and sought to ensure that
information was not released to the media without first being cleared by Gold.

 A Formal Model-Based Approach to Engineering Systems-of-Systems 57

3.1 Architectural Model in SysML

SysML [18] is a profile for UML 2.0, developed for system engineering, but also
supporting the modelling of SoS architectural definitions. It has wide industrial
support and a sound tool base. SysML provides several diagram types, with “precise
natural language” semantics, to support the description of SoS architectural structure,
behaviour and requirements.

A detailed SysML architectural definition of the case study is given in [22]. For
brevity, we omit the general SoS structure. However, Figure 2, a SysML Internal
Block Diagram, details the points of interaction between the SoS constituent systems
relevant to casualty information clearance. Contracts between constituent systems are
given as provided and required interfaces, containing collections of operation
signatures. For example, in Figure 2, the order_to_collect_info interface is
provided by Bronze officers and required by Gold command. The interface contains a
single operation (given in the full interface definition [22], with the signature
collectCasualtyDetails(loc:Location), where location is an abstract
data type) to order Bronze officers to collect casualty information. The inclusion of
pre/postconditions on operations is optional in SysML, and rarely used in practice.
However, in order to accommodate interface specifications rich enough for formal
analysis of SoS, extensions to interfaces have been proposed, including more rigorous
operation definitions, state machine diagrams defining communication protocols, and
the means to record the rationale for contract agreement between interfaces [19].

ibd [Major Incident Response] Casualty Info Clearance

: Major Incident Response

bronze : Fire Officerbronze : Ambulance Officerbronze : Police Officer

gold : Police Officer

silver : Ambulance Officer silver : Fire Officersilver : Police Officer

gold : Ambulance Officer

bronze : Fire Officerbronze : Ambulance Officerbronze : Police Officer

gold : Police Officer

silver : Ambulance Officer silver : Fire Officersilver : Police Officer

gold : Ambulance Officer

: Media

press_conf

info_to_silverinfo_to_silver info_to_silver

info_to_verify

info_to_verify

info_to_gold

info_to_clear

Fig. 2. SysML Internal Block Diagram of Major Incident Response connections

Given a SysML architectural model, complementary CSP and VDM models may
be defined covering the interaction behaviour and data and functionality aspects

58 J. Fitzgerald, J. Bryans, and R. Payne

respectively. The SysML model provides a basis for ensuring consistency between the
defined SoS internal structure and the interface definitions.

3.2 Modelling Interaction behaviour Using CSP

The CSP [10] formalism allows the interaction behaviour of the SoS to be modelled
as a set of processes. A process is made up of sequences of actions (or events).
Process combinators make explicit the events shared between processes. An abstract
model serves to specify the permitted SoS behaviours; more concrete models include
communication and structural detail, and may be checked for conformance with the
abstract model.

In the abstract specification, the passage of information through the SoS is
modelled as a process INFO(i). The variable i is parameterised over the set of all
information Inf. A process INFO(i) is made up of three events: each information
item i can first be learned, then cleared, and finally released to the media. No further
activity is then possible for that process. The specification ACOAL is the combination
(|||) of these processes for all possible values of parameter i. The interleaving
combinator (|||) indicates that the individual processes INFO(i) do not interact with
each other.

INFO(i) = learn.i -> clear.i -> release.i -> STOP

ACOAL = ||| i:Inf @ INFO(i)

The more concrete model below identifies the coalition levels and the communication
events between them. The Bronze process BR(i) begins by learning the information
item i and then describes the passing of i to Silver. The synchronisation event
bscomm.i describes the passing of information item i along the channel bscomm.
The Silver process SI(i)begins with the synchronisation event bscomm.i, through
which it learns about information item i. Silver then passes the item to Gold, which
clears and releases the item.

BR(i) = learn.i -> bscomm.i -> STOP

BRONZE = ||| i:Inf @ BR(i)

SI(i) = bscomm.i -> sgcomm.i -> STOP

SILVER = ||| i:Inf @ SI(i)

GD(i) = sgcomm.i -> clear.i -> release.i -> STOP

GOLD = ||| i:Inf @ GD(i)

The three processes are combined in the concrete specification as CCOAL,

communicating on the events bscomm and sgcomm.

CCOAL = BRONZE [|{|bscomm|}|] (SILVER [|{|sgcomm|}|] GOLD)

 \ {| bscomm, sgcomm |}

A model checker such as FDR can be used to check that this concrete SoS description
admits only behaviours permitted by the abstract specification. The next step is to
decompose GOLD into processes representing the emergency services. For example:

 A Formal Model-Based Approach to Engineering Systems-of-Systems 59

P(i) = sgcomm.i -> pclear.i -> release.i -> STOP

Police = ||| i:Inf @ P(i)

The distributed GOLD command is the combination of these processes:

GOLDdist = ((Police [|{| sgcomm, release |}|] Fire)

 [|{| sgcomm, release |}|] Amb)

The distributed SoS combines the distributed GOLD with the previous processes.

COALdist = (BRONZE [| {|bscomm|} |] SILVER)

 [| {|sgcomm|} |] GOLDdist

 \ {|bscomm, sgcomm, pclear, fclear, aclear|}

The requirement that the distributed coalition model (COALdist) respects (denoted by
“[T=”) the behavioural constraints specified in the abstract model (ACOAL) can be
asserted formally as follows and checked with tool support:

assert ACOAL \ {|clear|} [T= COALdist

3.3 Modelling Functionality Using VDM

The VDM formal method [17] supports the description of functionality in terms of
executable code or in terms of abstract contracts. Tool support is particularly strong
for simulation, and there is an established coupling to UML.

A model of the emergency response SoS is given in this section. The model
contains two model-specific data types: Info is an abstract token type and CType is
an enumerated type representing the coalition levels (Bronze, Silver, and Gold). The
model focuses on recording its state in terms of the information in each state (known,
cleared or released), and the level at which that information is known
(coal_known). A data type invariant records consistency restrictions on the
allowable state. In this model, the invariant ensures that released information must
have been cleared (released subset cleared), and all known information is
known by allowed coalition levels (dom coal_known = coalition).

types

Info = token;

CType = <Bronze> | <Silver> | <Gold>

state Coal of

 known: set of Info

 cleared: set of Info

 released: set of Info

 coalition: set of CType

 coal_known: map CType to set of Info

inv mk_Coal(-,cleared, released, coalition, coal_known) ==

 released subset cleared and

 dom coal_known = coalition

60 J. Fitzgerald, J. Bryans, and R. Payne

State-changing functionality is defined in terms of operations that are specified
contractually by means of preconditions and postconditions. Consider, for example,
Gold command’s clear and release events, the interaction behaviours of which
are specified in CSP in process GD(i) in Section 3.2. In VDM, the functionality is
specified as operations parameterised over information i:Info. The ClearGold
operation assumes in the precondition, pre i in set coal_known(<Gold>),
that i is known to Gold command. If this assumption is satisfied, the operation
guarantees in the postcondition, post cleared = cleared~ union {i}, to
add it to the cleared set (where cleared~ refers to the initial value of the cleared
state variable). The ReleaseGold operation is similar.

ClearGold(i:Info)
pre i in set coal_known(<Gold>)

post cleared = cleared~ union {i};

ReleaseGold(i:Info)
pre i in set coal_known(<Gold>) and

 i in set cleared

post released = released~ union {i};

Both operations give rise to proof obligations to ensure preservation of the state
invariant, including that of ensuring that released information must have previously
been cleared, and that both operations preserve this. Such obligations can be
generated automatically, and may be discharged by inspection, testing or formal
proof.

Comments on the Case Study. Compared to Bryans et al.’s model in Event-B [21],
this multi-paradigm approach more clearly shows the interfaces between constituent
systems, and hence the points at which structural change is possible, as well as the
interaction behaviour, which is here explicit in the CSP rather than “hidden” in event
guards. Most importantly, it permits the verification of SoS-level properties that cut
across multiple aspects. For example, extending the model to encompass
communications errors entails alterations to interaction behaviour (in CSP) and
functionality (recording “lost” messages) in the VDM model. Adding redundancy to
manage such error would require a modification to the architectural model as well.

Although Bryans et al.’s previous model is less transparent with respect to the SoS
architecture and interaction behaviour, it does benefit from the specialist automated
verification tools that can be developed for a single formalism. Currently our multiple
formalisms do not benefit from a completely consistent semantic base, so that we are
not yet able to automate analysis to the same extent.

4 Conclusions and Future Work

We have proposed a multi-paradigm modelling approach to address the particular
challenges of SoS engineering, using baseline formalisms that cover architectural
modelling, communication and concurrency, data and functionality. Our case study

 A Formal Model-Based Approach to Engineering Systems-of-Systems 61

suggests that it is possible to produce consistent models in such formalisms that
describe features of a SoS sufficient to verify global properties of interest.

Although multiple modelling techniques are required to cover the full range of
aspects of a SoS, we note that researchers and practitioners in CNO modelling tend to
stick with one approach even though it might not be the most appropriate for all or a
part of the modelling effort [6]. We aim to develop a unified framework that
integrates architectural, behavioural and functional models. Semantic interoperability
between models is needed for verification of properties that cross aspects. A
promising starting point is Hoare & He’s Unifying Theories of Programming [23].
This will be developed in a series of definitions starting with basic modelling features
and extending these with time and object-orientation.

While formal model-based methods are valuable in describing and verifying the
properties of SoS configurations, the capacity exists to restructure or reconfigure
during operation in response to faults or attacks. Indeed, a SoS architecture has been
proposed to manage such reconfiguration [24]. The semantics and pragmatics of
policy languages for dynamic reconfiguration remain open, including the definition
and acquisition of metadata, and the expression and verification of policies [25].

Feedback from practice is required in any attempt to develop any formal modelling
framework. In the COMPASS project, our emerging methods will be evaluated
through several industry case studies. For example, in a home audio-video ecosystem,
networked systems such as TV, home cinema, DVD and MP3 players deliver digital
content from internal or external sources to multiple users. Providers and integrators
of constituent systems require the ability to verify overall performance and that the
SoS will respect digital rights management (DRM) contracts on the content. A second
example is dynamic coordination of healthcare services in response to an accident
(call management, dispatching, triage, hospital management systems, etc.). As with
the audio-video ecosystem, global properties such as confidentiality need to be
analysed. In both cases, the ability to perform such verification is complicated by the
need to cope with failures in infrastructure or constituents.

In spite of the emerging potential of formal techniques, there naturally remains a
gap between the formal “supply-side” models of SoS compositions and the users’
“demand-side” experience [26]. As with collaborative networked organisations more
generally, the development of dependable SoS requires a wide range of disciplines
and skills, both socio-technical and formal.

References

1. Maier, M.W.: Architecting Principles for Systems-of-Systems. Systems Engineering 1(4),
267–284 (1998)

2. Camarinha-Matos, L.M., Afsarmanesh, H. (eds.): Collaborative Networks: Reference
Modeling. Springer (2008)

3. Dahmann, J.S., Rebovich, G., Lane, J.A.: Systems Engineering for Capabilities. CrossTalk
Journal 21(11), 4–9 (2008)

4. Maier, M.W.: Research Challenges for Systems-of-Systems. In: IEEE Intl. Conf. on
Systems, Man and Cybernetics (2005)

5. Valerdi, R., Axelbrand, E., Baehren, T., Boehm, B., et al.: A Research Agenda for System-
of-Systems Architecting. Intl. Jnl. System of Systems Engineering 1(1–2), 171–188 (2008)

62 J. Fitzgerald, J. Bryans, and R. Payne

6. Camarinha-Matos, L.M., Afsarmanesh, H.: A comprehensive modelling framework for
collaborative networked organizations. J. Intell. Manuf. 18, 529–542 (2007)

7. Woodcock, J.C.P., Larsen, P.G., Bicarregui, J.C., Fitzgerald, J.S.: Formal Methods:
Practice and Experience. ACM Computing Surveys 41(4), 1–36 (2009)

8. Caffall, D.S., Michael, J.B.: Formal methods in a system-of-systems development. In:
IEEE Intl. Conf. Systems, Man and Cybernetics, pp. 1856–1863 (2005)

9. Woodcock, J.C.P., Davies, J.: Using Z Specification, Refinement, and Proof. Prentice-Hall
(1996)

10. Hoare, C.A.R.: Communicating Sequential Processes, 1st edn. Prentice Hall Intl. (1985);
New edn. Davies, J. (ed.) (2004)

11. Pnueli, A.: The temporal logic of programs. In: 18th IEEE Symp. Foundations of
Computer Science, pp. 46–57 (1977)

12. Treharne, H., Schneider, S.: Using a process algebra to control B Operations. In: 1st
International Conference on Integrated Formal Methods, IFM 1999. LNCS, pp. 437–457.
Springer (1999)

13. Fischer, C.: Combination and Implementation of Processes and Data: from CSP-OZ to
Java. PhD thesis, Fachbereich Informatik Universität Oldenburg (2000)

14. Dong, J.S., Hao, P., Qin, S.C., Sun, J., Yi, W.: Timed Patterns: TCOZ to Timed Automata.
In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 483–
498. Springer, Heidelberg (2004)

15. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations and tools
supporting detailed design in Java. In: OOPSLA 2000, pp. 105–106 (2000)

16. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software.
LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

17. Fitzgerald, J.S., Larsen, P.G., Mukherjee, P.P., Verhoef, N.M.: Validated Designs for
Object-oriented Systems. Springer (2005)

18. Object Management Group: OMG Systems Modeling Language (OMG SysML) v1.2,
OMG Document Reference: formal/2010-06-02 (2010)

19. Payne, R.J., Fitzgerald, J.S.: Interface Contracts for Architectural Specification and
Assessment: a SysML Extension. In: Proc. Workshop on Dependable Systems of Systems,
WDSoS 2011, University of York, UK (2011)

20. London Emergency Services Liaison Panel: Major Incident Procedure Manual, 7th edn.,
TSO (The Stationery Office) (2007)

21. Bryans, J.W., Fitzgerald, J.S., McCutcheon, T.: Refinement-Based Techniques in the
Analysis of Information Flow Policies for Dynamic Virtual Organisations. In: Camarinha-
Matos, L.M., Pereira-Klen, A., Afsarmanesh, H. (eds.) PRO-VE 2011. IFIP AICT,
vol. 362, pp. 314–321. Springer, Heidelberg (2011)

22. Payne, R.J., Bryans, J.W.: Modelling the Major Incident Procedure Manual: A Systems of
Systems Case Study. Tech. Rep. CS-TR-1320, School of Computing Science, Newcastle
University, UK (2012)

23. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
24. Calinescu, R., Kwiatkowska, M.: Software Engineering Techniques for the Development

of Systems of Systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008.
LNCS, vol. 6028, pp. 59–82. Springer, Heidelberg (2010)

25. Payne, R.J.: Verifiable Resilience in Architectural Reconfiguration. PhD Thesis, School of
Computing Science, Newcastle University, UK (2012)

26. Cohen, B., Boxer, P.: Why Critical Systems Need Help to Evolve. IEEE Computer 43(3),
56–63 (2010)

	A Formal Model-Based Approach to Engineering Systems-of-Systems
	Introduction
	A Formal Model-Based Approach to SoS
	A Case Study in Emergency Service Co-ordination
	Architectural Model in SysML
	Modelling Interaction behaviour Using CSP
	Modelling Functionality Using VDM

	Conclusions and Future Work
	References

