
WebSelF: A Web Scraping Framework

Jakob G. Thomsen1, Erik Ernst1, Claus Brabrand2,
and Michael Schwartzbach1

1 Aarhus University
{gedefar,eernst,mis}@cs.au.dk
2 IT University of Copenhagen

brabrand@itu.dk

Abstract. We present WebSelF, a framework for web scraping which
models the process of web scraping and decomposes it into four concep-
tually independent, reusable, and composable constituents. We have vali-
dated our framework through a full parameterized implementation that is
flexible enough to capture previous work on web scraping. We conducted
an experiment that evaluated several qualitatively different web scraping
constituents (including previous work and combinations hereof) on about
11,000 HTML pages on daily versions of 17 web sites over a period of more
than one year. Our framework solves three concrete problems with cur-
rent web scraping and our experimental results indicate that composition
of previous and our new techniques achieve a higher degree of accuracy,
precision and specificity than existing techniques alone.

1 Introduction

The World Wide Web is an enormous source of information, (still) mostly rep-
resented as HTML which is designed for presenting information to humans, not
computers. Therefore, automated information extraction from the web (aka.,
web scraping) is difficult. A program for web scraping, called a web wrapper,
may be programmed manually [23,25], semi-automatically [14,22,2,11], or auto-
matically [15]. We refer to the survey by Chang et al. [6] for more information.

However, when a web page changes (and similar web pages may have sub-
stantially different structure), the extraction often fails or yields incorrect data
causing programs that depend on the scraping to malfunction. Web wrappers
use wrapper validation (aka. wrapper verification) to detect this, typically based
on the extracted text [20,10]. Updating the wrapper to recover is known as rein-
duction [10,12,13,17,8,16], and it is often based on older pages and/or user inter-
action. Validation and reinduction together constitutes wrapper maintenance.

Current approaches suffer from three problems. First, wrapper validation
based solely on the textual contents and structure of the scraped page may be
difficult or inadequate in certain cases. For some pages, it is worth also consid-
ering the context and presentation (i.e., where information is physically located
on a page after full rendering and applying stylesheets). Second, with client-side
scripting (e.g., JavaScript and AJAX) and form elements, it becomes useful to
interact with a web page beyond just extracting information. Access to selected

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 347–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

348 J.G. Thomsen et al.

elements on a page allows for subsequent manipulation of the original document
(e.g., pressing buttons, filling in text fields, submitting forms). Third, existing
wrapper techniques cannot easily be combined, which makes it hard to reuse the
vast amount of work done on selection, reinduction, and validation. There is no
general and precise signature definition of the components of the web wrapper,
how they interact or what level of automation they exhibit.

This paper presents a framework, WebSelF, that addresses these problems for
selecting elements on a web page. WebSelF is characterized and parameterized
by four scraping constituent functions, that we call framework functions: one
for selecting elements, designated as a selection function; one for validating the
selected element, designated as a validation function; and two for maintaining
each of them, designated as reinduction functions. WebSelF is novel for three
reasons. First, it supports composition and reuse of previously defined validation
functions, whereby validation can benefit from not only the textual contents of
the selected elements, but also combinations of other dimensions (in particular,
context and presentation). Secondly, the selection functions in WebSelF are able
to not just extract information, but also subsequently manipulate selected el-
ements in the presence of client-side scripting. Finally, WebSelF has a precise
model that explicitly divides the labor into a manual and an automatic part, in
which the responsibilities of the four functions are explicitly given. Furthermore
the signatures of the four functions are defined, which allows WebSelF to easily
wrap and use existing selection, validation and reinduction functions.

We have implemented WebSelF in Java, parameterized by the four framework
functions, and used the implementation to author, evaluate, and compare val-
idation functions based on different dimensions (including the influential work
of Lerman et al. [10]). The evaluation shows that presentational features of the
selected elements are beneficial for validation. Further, it shows that combining
existing validation functions (such as the previous approach by Lerman et al.)
with other orthogonal dimensions may achieve higher accuracy, precision, and
specificity (defined later) than the original approach. The validated elements in
our experimental evaluation are selected by real world web wrappers, as most of
the selection functions have been harvested from the web where they are used for
real web scraping purposes. The evaluation results have high credibility, because
every selection has been manually verified. The main contributions of this paper
is a framework, WebSelF, for web scraping including:

– a model of the process of web scraping (Section 2) explicitly dividing the
labor, by decomposing the process into a selection function, a validation
function, and reinductions of both, along with a method of composing vali-
dation functions (Section 3);

– a full implementation, parameterized by reusable composable framework
functions (available at the WebSelF site: cs.au.dk/~gedefar/webself);
and

– an experimental evaluation and comparison of qualitatively different valida-
tion functions (including previous work) based on about 11,000 HTML pages
taken from 17 web sites over a period of more than one year (Section 4).

cs.au.dk/~gedefar/webself

WebSelF: A Web Scraping Framework 349

<body>

<p>ICWE 2012 is to be held

in Berlin, Germany.</p> ...

</body>
(a) A simple web page

<body>

<p>ICWE 2012 will be

held on July 23-27.</p> ...

</body>
(b) A second version of the web page

<body>

<p>The ICWE 2012 <a..>program

is available.</p> ...

</body>
(c) The third version of the page with an
added anchor tag

<body>

<p>

</p>

<p>The ICWE 2012 conference

was a success.</p> ...

</body>
(d) A fourth version of the web page, where
an image has been added

Fig. 1. Evolution of an example web page from a conference news site over time

2 A Model of the Process of Web Scraping

In this section we introduce the basic structure of our framework by means of
a model of the process of web scraping, built from several individual framework
functions with a specific interaction. To illustrate the principles, we will use a
deliberately simple example and scrape successive evolutions of the “top story”
of a conference news site. In WebSelF, a web wrapper consists of a selection
function, a validation function and means for reinducing (learning) new versions
of both of these functions. As the selection function, the example uses an XPath
expression (which is common) with the additional convention that only the first
element is selected in case the XPath expression matches several elements. For
the validation function, the example will use structural identity with respect to
a DTD[5] in that a selected element is accepted if it conforms to a DTD inferred
over the elements selected so far (cf. Bex et al. [4]). The initial DTD is inferred
from the first example (which in this example is a p tag containing only text).

Figure 1(a) shows an excerpt from the first version of the web page, and the
interesting piece of information is the p tag and its contained text. The initial
XPath expression is //p which selects that item in this case.

The next version of the web page is shown in Fig. 1(b). The XPath expression
works here by extracting the p tag and the validation function accepts it, as the
structure has not changed.

The next version of the web page is shown in Fig. 1(c). The XPath expres-
sion still works here, but the validation function rejects the element because
an anchor tag with a link to the program has been added to the p tag. The
framework now asks the user a simple yes/no question for whether or not the
p tag is the correct element. In this case it is, so a new validation function is
reinduced (learned) to allow the new anchor tag. The new validation function
accepts p tags with an optional anchor tag as its child intermixed with the text
(remember that the DTD is inferred over the first three versions).

350 J.G. Thomsen et al.

Fig. 2. A model of the process of web scraping

In the next version, shown in figure 1(d), a new p tag with an img tag has been
added before the interesting p tag. In this case the selection function selects
the first p tag, which does not conform to the previous version of the element.
This discrepancy is detected by the validation function, and as it is in fact
not the correct element (judged by the user) the XPath expression needs to be
reinduced, i.e., a new and improved selection function must be constructed. The
framework uses the reinduction function for selection functions for this purpose,
and this function could consult the user and/or the validation function in order
to perform the task. As a result, the XPath expression is updated to select the
correct element, e.g., by becoming //p[not(./img)].

The running example illustrates different flows captured by our framework.
The general and formal flow between the states of WebSelF is shown in the
state diagram in Fig. 2 which shows a model of the web scraping process. Each
state has an abbreviated name consisting of three upper-case letters; a nearby
explanatory text motivates the choice of letters. Transitions are labeled with a
text indicating the decision criterion associated with that transition. One run
of the algorithm starts at ESF and ends in a final state—indicated by a double
ring—and yields an accepted element from the given page or aborts to indicate
that the page does not contain any acceptable elements. At the same time the
algorithm maintains the selection function and the validation function, using the
provided facilities for reinduction.

The states with a colored background may involve user-interaction and the
particular color signifies the level of complexity in the interaction. The state with
gray background (UVS) is related to the reinduction of the validation function
and is only asking a simple yes/no question. In contrast, the state with black
background (RSF) is related to the reinduction of the selection function, which
may involve the user in a much more complex manner.

For a fully formalized description of WebSelF, where the precise signatures
of the involved functions and flow of data and control between the states is

WebSelF: A Web Scraping Framework 351

(a) Corresponding to Fig. 1(a): Using the
fast path, where everything is okay

(b) Corr. to Fig. 1(b): Still using the fast
path

(c) Corr. to Fig. 1(c): Using a not so fast
path, where the selection function is cor-
rect, but the validation function is not

(d) Corr. to Fig. 1(d): Using the slowest
path where the validation function is cor-
rect, but the selection function is not

Fig. 3. State model paths corresponding to the example web page evolution

specified, we refer to the accompanying technical report [18]. It contains proofs
for a preservation and a progress property; it also shows in detail how the work
by Lerman et al. [10] may be emulated in WebSelF.

In the following we just describe the information flow in terms of our four
versions in the running example. Consider the first version of our running exam-
ple, shown as Fig. 1(a). As the selection function selects an element, we go from
the initial state ESF to VSF. The selected element is accepted by the validation
function, so we continue directly to the ACC state, without reinducing a new
validation function. This path through the state diagram is illustrated by the
graph in Fig. 3(a). This is the fast path where everything works smoothly, and
hopefully it is also a very typical path. The flow of the second version (Fig. 1(b))
is completely identical to the first version’s flow, where it takes the fast path and
is likewise shown in Fig. 3(b).

For the third version, an element is likewise selected and so we go to the VSF
state. This time, however, the validation function rejects the selected element,
so we proceed to the UVS state where the user is asked. The user decides that
the element should be accepted, so we go to the RVF state. Since the validation
function made an incorrect decision we obtain an improved validation function
through reinduction. This path through the state diagram is illustrated by the
graph in Fig. 3(c). As a side note, in WebSelF we assume it’s always possible
to reinduce a validation function, as there is no requirement that the reinduced
validation function is improved compared to the previous validation function. In
fact the reinduction function is free to return the old validation function in case
it is not capable of producing an improved validation function.

352 J.G. Thomsen et al.

Finally, if we run the fourth version we still go to VSF first as an element
is selected, but from VSF we go to UVS and then in turn to RSF, because the
wrong element was selected, according to both the validation function and the
user. The selection function is reinduced as we transition to the ENS state and
on to the VVF state. The new element found by the new selection function is
accepted by the validation function, so we do not need to reinduce (learn) a new
validation function. This is shown in Fig. 3(d).

We have not covered a case where the selection fails entirely, but this could
occur if we receive, e.g., an HTTP error 505 (internal error on server). In this
case the path taken would be the uppermost path in the state diagram, from
ESF to RSF to ABT. Finally, there is a case where both reinductions occur,
which is a slight variant of Fig. 3(d).

To sum up, our framework only involves the user when the discrepancy be-
tween already learned examples and the new version is too big. What this means
will be explained in Sec. 3.2. Moreover, the user is first involved in a simple man-
ner by being asked whether a given selection should be accepted or not. If the
blame falls on the validation function it is updated automatically, and only when
the selection function is to blame does the framework proceed to involve the
user in the more complex task of reinducing (creating) a new selection function.
Other approaches [10,20,17] require a set of prelabeled examples to learn from,
and they do not support a similar division of labor between a validation function
that allows for automatic maintenance and a selection function which may be
tailored to embody an arbitrary amount of domain knowledge. Our approach
supports this division and our selection and validation functions are composable
to utilize arbitrary domain knowledge. We furthermore believe that the precise
description of WebSelF can aid in the engineering of web information extraction
software.

3 Framework Instances

There are many kinds of selection function and validation function, as well as
reinduction functions for either. This section discusses a few of these at an ab-
stract level. An important choice to make is concerned with the environment
provided for evaluation of the selection and validation functions. If a full browser
is available for rendering the page and running client side code (e.g., JavaScript
and AJAX), as opposed to working straight from the HTML source, the vali-
dation function can rely on presentational information beyond the contents and
structure of the page, e.g., screen coordinates and colors. For generality, we con-
sider below the situation where the pages are rendered in a full browser (our
framework implementation directly supports this).

3.1 Selection Functions

A selection function is responsible for choosing a piece of information (i.e. an
HTML element, a list of HTML elements, tuples of text, etc.) from a given web

WebSelF: A Web Scraping Framework 353

page and delivering the selection result in a suitable format. It can be anything
from trivial to near-impossible to specify the “correct” selection for a web page.

However, a few generic possibilities do exist. In particular, XPath expressions
were specifically invented in order to be able to designate elements in an XML
tree structure. Also, regular expressions and context free parsers are commonly
used to locate specific elements by their content and structure. The work by
Lerman et al. [10] utilizes a hierarchy of token classes to select textual elements
based on sequences of token types. Finally Kushmerick et al. [9] induce selection
functions based on delimiters.

An important property of a selection function is its robustness, or its ability
to “just keep working” when it is used on evolved versions of a web page with
similar but updated content and structure. As with the structure itself, page
specific approaches and general computation may be needed to deal with such
updates. Myllymaki & Jackson [24] discuss the characteristics of robustness for
selection functions based on XPath, but they do not discuss any mechanical
way to achieve it. Lately, different mechanical techniques to ‘robustify’ XPath
expressions have been proposed [7,8,16]. Basically all the techniques rewrite the
XPath expression into a more robust expression relative to the changes seen in
a set of training web pages, and they achieve much better robustness than a
corresponding fully specified XPath expression.

Reinduction of selection functions is in general just as hard as inventing them
in the first place. For generic selection functions it may be possible to derive
the selection function from a history of positive examples; e.g., as it is done by
Lerman et al. [10]. This process may be seen as an abstraction process whereby
the desired element is described by successively more abstract and inclusive
specifications, until it matches all the positive examples. Incrementally building
a specification works well for semi-static information where only a part of an
element is changing, such as an address or a form field, where the static part
of the element can be used as an anchor. If the goal is to extract frequently
changing information, such as the top news story from a news site, then the
selection can benefit from using contextual and/or presentational information,
such as the structure of the context (e.g., a highly specific class/id attribute or
the (x, y) screen coordinates of the elements). Some reinduction approaches [12]
support manually specifying a fixed context to search for, others automatically
infer it from the history [10]. In general, reinduction of selection functions is
likely to require supervision.

3.2 Validation Functions

A validation function validates a selection result by either accepting or rejecting
the result from a web page. (In the following discussion of validation functions
we will assume for simplicity that the selection result is a single HTML element.)
Typically, validation functions utilize textual dimensions of both the selection
result along with the original web page when validating, but when the element
to be selected changes significantly from time to time, other dimensions might
be more effective. It may be more informative to investigate for instance the

354 J.G. Thomsen et al.

context (e.g., the tree structure from the grand parent of the selected element).
Furthermore, human spectators often rely strongly on the appearance of a web
site, and this realization is likewise very useful. For instance, a selection result
is likely to be rejected if it appears physically far away from its typical location
on the web page.

Validation function reinduction is the process whereby an existing validation
function is replaced by an updated one that is known to make more appropriate
judgments. In WebSelF, as in other approaches [10,20], the validation function
is reinduced with respect to a history of selection results. In the theoretic treat-
ment of WebSelF all previous selection results are available, but in a concrete
implementation this set can be a too large, so it often suffices to only use the
selection results that the validation function wrongfully rejected.

In general, validation functions can be more generic than selection functions
because they must primarily flag the occurrence of anomalies. It is our expe-
rience that a validation function can often use a generic algorithm customized
by a number of parameters, and reinduction then amounts to adjusting those
parameters so that the validation function responds more favorably to a given
selection history.

One issue to consider in connection with validation function reinduction is
whether the new validation function should learn to recognize all examples in
the given history. We may wish to suppress the consequences of processing ex-
ceptional web pages, also known as outliers. The problem is that a validation
function may become overly permissive, because a few outliers has taught it to
tolerate almost anything. It may be better to reject (or ask for explicit user
confirmation in) a few unusual cases, and then retain high selectivity. One ex-
ample of a validation reinduction function which does not learn to recognize all
examples in order to suppress outliers is the one from Lerman et al. [10], as it
only includes the examples in the history that are statistically significant.

It is possible to create composite validation functions based on existing valida-
tion functions. This is particularly interesting as we are able to logically combine
qualitatively different (and complementary) validation function strategies; ones
that work according to content, structure, presentation, and even context. If we,
for instance, want to extract the top news story from a news site, we might have
to combine looking for a styled heading (structure and presentation) placed close
to the top of the page (presentation).

Since a validation function returns a boolean result, we can easily compose
validation functions to achieve any propositional logic formula, φ, over basic
validation functions, Q ∈ QBasic:

φ : true | false | Q ∈ QBasic | ¬φ | φ ∧ φ | φ ∨ φ

Reinduction of a composite validation function can be done in many ways, but
often it is done by delegating the reinduction to its failing constituents (according
to its constituent validation functions). Negation needs special treatment though.
Say for instance that ¬φ has wrongly rejected an element a, which means that
φ accepted a. As ¬φ is reinduced, φ should be reinduced to learn to reject a

WebSelF: A Web Scraping Framework 355

which it used to accept. Hence as φ gradually becomes more permissive when
reinduced, ¬φ will gradually become more restrictive. We will see in Sect. 4.3
that negation can be very useful, despite its somewhat counter-intuitive nature.
All of this is supported by our framework.

4 Experimental Validation

Our hypothesis is that the flexibility and composability of the validation part
of WebSelF leads to an improvement in accuracy, precision and specificity (de-
fined in Sect. 4.2). We have therefore created a concrete implementation of the
framework in Java to test this hypothesis. The implementation includes selec-
tion functions using regular expressions [1], XPath expressions, and it includes
a full browser in order to let client-side computation take place and provide
presentational information about the given web page. Furthermore automatic
reinduction of validation functions and composition of validation functions as
described in Sect. 3.2 are supported by the implementation. We have used this
implementation to perform a substantial experiment which is described in more
detail below. For details on the implementation, data set and results we refer to
the project homepage at cs.au.dk/~gedefar/webself.

4.1 Experimental Setup

In order to evaluate WebSelF in a realistic setting, we collected 30 XPath expres-
sions used as selection functions, where most of them were sufficiently successful
to be published on the Web. Some of these XPath expressions were complete,
concrete paths from the root to the target, while other expressions were more
robust paths, such as the expression //a[starts-with(., ’Next’)], which se-
lects the next button on the Yahoo Web Shop (by searching for any link starting
with “Next”). These more robust expressions used the more advanced operators
of XPath, like wildcards, descendant axes, etc. In order to do a proper compar-
ison we created robust versions of the fully concrete paths, and used FireBug1

to create fully concrete versions of the robust ones. The robust versions were
crafted using only knowledge of the first web page version and was guided by
the findings of Myllymaki & Jackson [24], meaning that the crafted expressions
typically used descendant axis and attribute filters.

For the purposes of our experiment, we normalize all XPath expressions to
have the same weight, by letting them return the first selected element if more
than one is selected. To evaluate the validation functions directly we fix the selec-
tion functions, such that they are not reinduced during the experiment. In total
we ended up with 60 XPath expressions, 30 fully specified and 30 robustified.

We have constructed 24 qualitatively different validation functions that val-
idates textual, structural, context and presentational properties of the selected
element. Eight of these validation functions use a combination of other validation

1 Available from http://getfirebug.com.

cs.au.dk/~gedefar/webself
http://getfirebug.com

356 J.G. Thomsen et al.

validation function dimension response reinduction

QRandom N/A random yes/no N/A

QLMN content text matches pattern learn token patterns
QDTD structure valid by DTD infer DTD
QBOX presentation within a rectangle learn enclosing rectangle
QDTD3 context valid by DTD infer DTD of ancestor

QBOX ∧QLMN composite conjunction
Reinduce failing

validation
function

QBOX ∧QLMN ∧QDTD3 composite conjunction
¬QLMN composite negation
QBOX ∧ ¬QLMN composite conjunction, negation

Fig. 4. The nine described validation functions

functions, such as a conjunction of presentation and content validation functions.
In this paper we have included the results from nine of them (see Sec. 4.3). The
remaining results can be found on the project web page. This section is devoted
to describe these nine validation functions.
The nine validation functions are summed up in the table of Fig. 4, where the
first column states the name of the validation function or its formula if it is
a compositional validation function; the second gives the dimension (content,
structure, presentation, or composite) of the element, which the validation func-
tion relies on; the third gives abstractly what an element is accepted according
to; and finally the fourth describes how the reinduction is done, which is of course
related to how an element is accepted.

The first five validation functions are basic validation functions that rely on
qualitatively different dimensions. Q

Random
flips a coin to decide whether an

element is accepted or not. Q
LMN

is the validation function introduced by Lerman
et al. [10] and it is based upon the textual content of the selected element.
Specifically an element is accepted if the text tokens of the selected element is
accepted by a pattern learned in the reinduction step. The used pattern is the
statistically most significant pattern over the history of examples. For details we
refer to Lerman et al. [10]. Q

DTD
accepts an element if the HTML structure of

the element is accepted by an DTD, which is inferred in the reinduction step. For
the DTD inference we use the tool by Bex et al. [4]. QBOX accepts the selected
element if the physical position of the selected element is within a rectangle.
The rectangle is constructed in the reinduction step, where it infers the smallest
enclosing rectangle, that contains all positions in the history. Q

DTD3
is similar

to Q
DTD

, except the DTD is inferred from the context of the selected element,
namely the great grand parent.

The last four validation functions are composite, as described in Sect. 3.2.
Q

BOX
∧Q

LMN
∧Q

DTD3
really showcase the flexibility of our framework as it uses

three basic validation functions that are based on three different dimensions of
the selected element.

The XPath expressions harvested data from a total of 17 web sites which ex-
hibit considerable diversity, including a TV guide, a blog, an image repository,

WebSelF: A Web Scraping Framework 357

price listings, webshops, download sites, search results, and news sites2. With
the 60 XPath expressions we thus have an average of more than three XPath
expressions per site. For each of these sites, we have systematically collected
daily versions for a period of one year (from the 24/04 2010 to 1/5 2011), and
manually provided a “perfect history” which indicates for each XPath expression
whether it selected the correct element. In total 19,664 elements are selected
by the selection functions, where 15,843 (81%) are correct selections and 3,821
(19%) are incorrect selections. This data is the starting point of our experiment.

4.2 Evaluation Metrics

When the selection function yields a particular element, there are four outcomes
when evaluating validation functions: where the validation function q as well
as the human oracle O accept that choice (true positive, TP); where q accepts
and O rejects the choice (false positive, FP); where q rejects and O accepts the
choice (false negative, FN); and where both reject it (true negative, TN).

There is an inherent asymmetry between FP and FN . Since the user never
sees an element accepted by the validation function, FP may be dangerous (the
scraping program continues with bad data without discovering it) whereas FN
is merely annoying to the user as it will ask him on an element that is really ok.
Thus, it is generally safer for a validation function to answer “too much nega-
tive” rather than “too much positive”. We will use standard pattern recognition
evaluation metrics [20] for evaluating our validation functions, focusing on the
ones that involve false positives (FP, shown in bold below):

accuracy =
TP+TN

TP+TN+FN+FP

precision =
TP

TP+FP

specificity =
TN

TN+FP
(aka. negative recall)

The accuracy measure quantifies “how often q is right”; precision is a metric
for “how often q is right, when it makes a positive prediction”; and specificity
quantifies “how often q is right, when the answer is actually negative”. (The
term specificity comes from medical diagnosis; in information extraction, it is
often referred to as negative recall.)

4.3 Results

Figure 5 shows a graphic depiction of the accumulated results of the nine valida-
tion functions applied and reinduced during the year’s worth of data. For each
validation function, each of the four outcomes (TP , FP , TN , FN) is depicted
as a sphere whose three-dimensional volume is proportional to the number of el-
ements in that category. The evaluation metrics are indicated as P for precision,
S for specificity, and A for accuracy.

2 We refer to the project homepage for more information.

358 J.G. Thomsen et al.

(a) QRandom A=50% (b) QLMN A=64% (c) QDTD A=85%

(d) QBOX A=95% (e) QDTD3 A=90% (f) QBOX ∧QLMN A=51%

(g) QBOX ∧ QLMN ∧ QDTD3

A=42%

(h) ¬QLMN A=83% (i) QBOX ∧ ¬QLMN A=95%

Fig. 5. Results of using validation functions with different characteristics

The first figure (Fig. 5(a)) shows the random validation function Q
Random

and
not surprisingly it scores 50% in accuracy. Note that in 81% of the cases where
it accepts the element it was correct, just because correctly selected elements
are common. This figure serves as a baseline for the performance of the rest of
the validation functions.

The next figure (Fig. 5(b)) depicts QLMN . The accuracy is relatively low be-
cause it is too restrictive, i.e., rejects too often. This is seen by the relatively low
amount of false positives (761) and high number of false negatives (6,285). The
latter is caused by having frequently changing content, such as news articles.

Figure 5(c) shows the result for Q
DTD

. This validation function is too per-
missive as the number of false positives is high. There are several reasons for
this: Many of the elements that are selected are leaves in the HTML tree, such
as an anchor tag. If the XPath expression only selects anchor tags it can be
hard to distinguish a valid element from an invalid one, as there is no internal

WebSelF: A Web Scraping Framework 359

structure to inspect. A good example is the previous mentioned XPath ex-
pression (//a[starts-with(.,’Next’)]). Most of the time this XPath ex-
pression selects the right element, but once in a while an advertisement for
http://nextwarehouse.com/would show up on the site, and that link would be
selected instead. This could not be detected by the validation function, as both
anchor tags were anchor tags containing only text.

The following figure (Fig. 5(d)) shows the results of Q
BOX

. Compared to the
previous two validation functions it appears to be in the middle, with regard
to false positives and false negatives (presumably since screen coordinates are
predictably stable). The number of false positives is mainly caused by one of the
XPath expressions, whose purpose is to select a row in a table. The expression
uses the row number for the selection, but because the table changes frequently,
the correct row jumps up and down in the table, while the selected row is in
the same spot in the table throughout the experiment. Hence the presentational
features of the selected row is not sufficient to distinguish a correct selection
from a wrong selection and therefore the validation function accepts too many
selections.

Figure 5(e) depicts the results of Q
DTD3

. Compared to Q
DTD

it performs better
in all three metrics and this indicates that the contextual dimension is a bet-
ter guideline for structural validation functions. Still though Q

DTD3
has a high

number of false positives compared to other validation functions.
The next four figures, Fig. 5(f–i) show the different composite validation func-

tions. In Fig. 5(f) we can see that a conjunction of validation functions is, not
surprisingly, generally more restrictive than each of its operands(Fig. 5(c,e)),
yielding fewer false positives, but at the expense of producing a lot more false
negatives. Also, both precision and specificity are higher whereas accuracy suf-
fers from the many false negatives which are also likely to annoy the user. The
even more restrictive validation function (Fig. 5(g)) achieves no false positives
at all; however, it is at the expense of a very large number of false negatives.
In the last two compositional validation functions, Fig. 5(h,i), we have shown
the results of using a negation and a negation inside a conjunction. Not surpris-
ingly, using the negation alone on a too restrictive validation function such as
Lerman et al., yields a too permissive validation function(Fig. 5(h)). Interest-
ingly, if we take the conjunction of this negated validation function and Q

BOX
,

Fig. 5(i), we get a validation function that performs better than its constituents
and in general achieves a high accuracy, a low number of false positives, and a
relatively low number of false negatives. Again, like Q

BOX
, the main source of

false positives is the XPath expression using the row number for the selection.
If we were to remove that web site from the results, the precision and specificity
would become 99.8% resp. 99%. In other words, WebSelF enables significantly
improved results in terms of the most important metrics.

We have experimented with disjunction, and performed outlier disqualifica-
tion (avoiding reinduction on abnormal elements), but none of these validation
functions seem to be as promising as either Q

BOX
nor Q

BOX
∧ ¬Q

LMN
.

http://nextwarehouse.com/

360 J.G. Thomsen et al.

5 Related Work

We have already discussed several pieces of related work, so in this section we
focus on a missing perspective, which is the large number of related approaches
that would fit very well as the basis for the parameters of WebSelF, namely
selection functions, validation functions, or reinduction functions: Kushmerick et
al. [9] induce selection functions by finding landmarks in the HTML text. Kistler
& Marais [19] uses a markup algebra combining both textual and structural
features for selection functions. Cohen & Fan [3] induces selection functions by
learning page-independent heuristics and combine them with user interaction.
Kushmerick [20] uses textual features of the extracted information for validation.
Lerman et al. [10] induce selection functions and validation functions by learning
textual patterns and as mentioned in Sect. 2, WebSelF subsumes their approach.
The ANDES system [23] uses XPath and XSLT to make selections. SCRAP [8],
SG-WRAP [11] and SG-WRAM [12] utilize schemas of the output to guide the
induction of selection functions. Liu & Ling [22] extract a conceptual model
of the web page upon which the selection is done. Mohapatra et al. [13] induce
delimiter based selection functions for a series of web pages with fine grained time
resolution. Lingam & Sebastian [21] uses a visual interface to label examples,
from which they induces selection and validation functions based on different
heuristics. Finally, Dalvi et al. [7] and Parameswaran [16] use a tree edit distance
to induce selection functions and validation functions.

6 Conclusion

We have presented WebSelF, a web selection framework that enables the use of
existing techniques for selection and validation of selection results, as well as rein-
ducing both of those functions with a carefully minimized amount of assistance
from a human being. We have furthermore shown how to compose validation
functions based on propositional logic, whereby the validation in WebSelF can
benefit from using several dimensions of the selection result. Moreover, we have
implemented the framework and performed a substantial experiment involving
11.000 web pages from several diverse web sites over a period of more than one
year, based on selection functions successful enough to be published on the web.
The experiment shows how validation functions can focus on very different di-
mensions of the selection result, including contents, structure, and presentation.
It also illustrates how the extraction behavior can be tailored according to the
needs of the situation. For instance, we may accept an increase in the number
of false negatives in order to make sure that we spot almost all false positives,
etc. The experiment also shows that by composing several validation functions
it is possible to perform better than each of the constituents, and that it is
possible to perform better than the previous approach by Lerman et al. [10]. In
summary, WebSelF provides a well-understood platform for the exploitation of
a large space of possibilities in the choice and combination of selection functions,
validation functions, and reinduction.

WebSelF: A Web Scraping Framework 361

Acknowledgments. We thank Kristina Lerman for quickly responding to our
numerous questions regarding their implementation, Mathias Schwarz for con-
structive comments on an earlier version of the paper and the anonymous re-
viewers for valuable feedback.

References

1. Brabrand, Thomsen: Typed and unambiguous pattern matching on strings using
regular expressions. In: Proc. of PPDP (2010)

2. Cohen: Recognizing structure in web pages using similarity queries. In:
AAAI/IAAI. AAAI (1999)

3. Cohen, Fan: Learning page-independent heuristics for extracting data from web
pages. CN 31(11-16) (1999)

4. Bex, et al.: Inference of concise DTDs from XML data. In: Proc. of VLDB (2006)
5. Bray, et al.: DTD: Document type definition. World Wide Web Consortium

(November 1996), http://www.w3.org/TR/xml/#sec-prolog-dtd
6. Chang, et al.: A survey of web information extraction systems. TKDE (2006)
7. Dalvi, et al.: Robust web extraction: an approach based on a probabilistic tree-edit

model. In: Proc. of SIGMOD (2009)
8. Fazzinga, et al.: Schema-based web wrapping. In: KAIS (2009)
9. Kushmerick, et al.: Wrapper induction for information extraction. In: IJCAI (1997)

10. Lerman, et al.: Wrapper maintenance: A machine learning approach. JAIR (2003)
11. Meng, et al.: Schema-guided data extraction from the web. JCST 17(4) (2002)
12. Meng, et al.: Schema-guided wrapper maintenance for web-data extraction. In:

Proc. of WIDM (2003)
13. Mohapatra, et al.: Efficient wrapper reinduction from dynamic web sources. In:

Proc. of WI. IEEE Computer Society (2004)
14. Muslea, et al: Hierarchical wrapper induction for semistructured information

sources. AAMAS 4(1) (2001)
15. Nakatoh, et al.: Automatic generation of deep web wrappers based on discovery of

repetition. In: Proc. of AIRS (2004)
16. Parameswaran et al.: Optimal schemes for robust web extraction. In: Proc. of

VLDB (2011)
17. Raposo et al.: Automatic wrapper maintenance for semi-structured web sources

using results from previous queries. In: Proc. of SAC (2005)
18. Thomsen et al.: WebSelf: A web selection framework. Tech. report, Computer Sci-

ence. Aarhus University (2012)
19. Kistler, Marais: Webl - a programming language for the web. CN 30(1-7) (1998)
20. Kushmerick: Wrapper verification. In: WWW (2000)
21. Lingam, Elbaum: Supporting end-users in the creation of dependable web clips.

In: WWW (2007)
22. Liu, Ling: A conceptual model and rule-based query language for HTML. In:

WWW (2001)
23. Myllymaki: Effective web data extraction with standard XML technologies. CN

39(5) (2002)
24. Myllymaki, Jackson: Robust web data extraction with xml path expressions. IBM

Research Report, RJ10245 (2002)
25. Sahuguet, Azavant: Building intelligent web applications using lightweight wrap-

pers. DKE 36(3) (2001)

http://www.w3.org/TR/xml/#sec-prolog-dtd

	WebSelF: A Web Scraping Framework
	Introduction
	A Model of the Process of Web Scraping
	Framework Instances
	Selection Functions
	Validation Functions

	Experimental Validation
	Experimental Setup
	Evaluation Metrics
	Results

	Related Work
	Conclusion
	References

