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Abstract. A watershed segmentation algorithm is proposed for
automatic extraction of tree crowns from LiDAR data to support 3-d
modelling of forest stands. A relatively sparse LiDAR point cloud was
converted to a surface elevation in raster format and a canopy height
model (CHM) extracted. Then, the segmentation method was applied
on the CHM and results combined with the original point cloud to gen-
erate models of individual tree crowns. The method was tested in 200
circular plots (400 m2) located over 50 sites of a conservation area in
Mexico City. The segmentation method exhibited a moderate to perfect
detection rate on 66% of plots tested. One major factor for a poor de-
tection was identified as the relatively low sampling rate of LiDAR data
with respect to crown sizes.

Keywords: Remote sensing, LiDAR, Watershed segmentation, tree
crown detection, 3-d modelling.

1 Introduction

Three-dimensional (3-d) forest models are becoming a useful resource for a
number of applications including forest management, conservation, inventory-
ing, biophysical modelling, wild fire dynamics, habitat analysis, entertainment,
tourism, etc. Despite its importance, databases supporting 3-d models of forests
are currently limited in coverage due to lack of effective and efficient methods
for automatic extraction of tree crowns.

Airborne light detection and ranging (LiDAR) is a technology used in many
countries for ecological applications, forest inventorying, and for single tree-based
studies. The basic for modern LiDAR-based forest measurements rely on the
acquisition of three surfaces, namely canopy height model (CHM), digital terrain
model (DTM) and digital surface model (DSM) [6]. The watershed algorithm
from markers is the typical procedure applied to CHMs for extracting individual
tree crown of woody vegetation [3,7]. This approach have proved effective even
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for leaf-off canopies [2], as long as the point density of the LiDAR data is in the
order of several returns per square meters.

The present study sought to develop a simple method for extraction and
modelling of vegetation canopies from relatively sparse point clouds (less than
one return per square meter) of LiDAR altimetry data. A marker controlled
segmentation method was developed and tested for extracting tree crowns and
for building simple 3-d models of detected trees. The study built upon prior
work on ground filtering [9] and building detection methods [10]. The rest of the
paper presents the study site (Section 2), the method description (Section 3), the
results for tree-crown detection and modelling (Section 4), and major conclusions
(Section 5).

2 Study Site and Data Used

The study site corresponds to the so-called conservation ground located in the
south of Mexico City (Suelo de Conservación de la Zona Metropolitana de la
Cuidad de México). This area is perhaps the single most important element of
the water cycle in the region and provides a number of environmental services
to the inhabitant of Mexico City, including carbon sequestration, biodiversity
conservation, and recreational space. Despite its importance, this area has been
threaten by a number of factors that are consequences of an accelerated urban
growth, resulting in a significant reduction of its coverage in the recent years [5].
Continuous monitoring and quantification of the amount of vegetation are re-
quired for an effective management of the area. Furthermore, digital databases of
accurate tree models would be of great value for land managers and environmen-
tal authorities that are in charge of preserving this important area. The study
reported here aimed at providing the scientific basis for a new methodology to
build such a database based on remote sensing, pattern recognition algorithms
and geographical information systems supporting 3-d layers.

2.1 Field Campaigns

Ground reference data was acquired during a field campaign between February
and March of 2010 by people of INIFAP (Instituto Nacional de Investigaciones
Forestales, Agŕıolas y Pecuarias). Fifty forest stands in the conservation ground
were sampled at both tree- and plot-level. The sampling unit used was jointly de-
signed by SEMARNAT (Secretaŕıa del Medio Ambiente y Recursos Naturales)
and CONAFOR (Comisión Nacional Forestal) for the national forest/soil inven-
tory [4]. Each conglomerate is composed by four secondary sampling units defined
by circular plots arranged in an “upside down Y” shape. Each circular plot has an
area of 400 m2. The central plot identifies the conglomerate an the other three
plots are located at 45.14 m away from the center, at 0, +120 and −120 degrees
with respect to the north axis. The location of the central plot was recorded with
a GPS of submeter accuracy and, for each circular plot, the scientific and common
names of trees were recorded, the diameter at breast height (DBH) and tree height
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weremeasured for each tree with DBH≥ 7.5 cm. Additional qualitative and quan-
titative information was also recorded in the field (such as number of tree rings,
tree age, etc.), but not used in this study.

2.2 LiDAR Data

The LiDAR data was acquired with the ALS50-II sensor flown by INEGI (Insti-
tuto Nacional de Estad́ıstica, Geograf́ıa e Informática) between November and
December of 2007 over the entire valley. The data had an average horizontal
distance of 2.0 m, minimum point density of 0.433 points/m2 and vertical root
mean square error of 7.3 cm. The original point cloud had four pulse returns
with intensity value attached, but the latter was not used in this study. The
original raw data was provided by INEGI in LAS format. For this study, subsets
of 25 ha were extracted around each conglomerate and rasterized at 1-m cell size.
All processing were carried out in MATLAB R2010b (The Mathworks Inc.) and
results exported to ESRI’s shapefile format for visualization in ArcScene and
statistical analysis ArcGIS (see Figure 1 for an illustration of major products).

3 Methods

3.1 Ground Filtering

In absence of non-vegetation features, the CHM is computed by simply subtract-
ing the DTM from the DSM. Otherwise, such difference is sometimes referred
to as digital height model (DHM). In turn, the DSM is the grided version of the
original point cloud, where each cell is given a value from either the maximum
elevation of points within it, or an interpolated value from neighboring points.
On the other hand, the DTM is the the interpolated surface from ground points
only. Hence, the key processing step here is the so-called filtering of ground
points from the LiDAR point cloud.

The ground filtering method used here was introduced in [9], and is based
on a wavelet-like decomposition of the DSM surface, the so-called multiscale
hermite transform. A recent summary of the theory behind this technique is
included in [10]. The product of the ground filtering method is a binary mask
indicating ground/non-ground pixels in the DSM. The ground mask is then
used to select ground points from which the DTM is interpolated using and
interpolation method, such as the cubic convolution interpolation algorithm [8].

In this study, most sites were located in non-urbanized areas. Yet a few sites
included building features, which demanded a special treatment. In such cases,
the building detection method introduced in [10] was applied to the DHM. The
main product of the building detection method is another binary mask of build-
ings in the DHM which, when combined with the ground mask led to a vegetation
mask. The later was applied to the DHM to produce the so-called CHM.
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Fig. 1. This figure illustrates major products derived from LiDAR data. Top left:
classified point cloud (green = vegetation point, brown = ground point); top right:
digital surface model (DSM); middle left: digital terrain model (DTM); middle right:
segmented crown height model (CHM); bottom: 3-d forest model.
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3.2 Tree Crown Detection

The basic idea behind the crown detection method is to build regions from the
CHM using the classic watershed by flooding approach [1]. Since, the coarse
shape of crowns is generally convex, they tend to form watersheds in the CHM
with the z-coordinate reversed. The fine details present in the CHM may, how-
ever, cause over segmentation and, therefore, a smoothing is necessary that re-
duces such an effect. Gaussian filtering has proved an effective procedure for
suppressing irrelevant local maxima in treetop detection [3,2]. A binomial filter
of order 2, which approximates a Gaussian with σ = 0.7, was used here. In ad-
dition to the smoothing, a watershed merging mechanisms was implemented so
that barriers are built only when meeting watersheds have an elevation difference
greater than a tolerance valueΔz, otherwise watershed are merged together. The
proposed algorithm can be be summarized as follows:

1. Label each minimum with a distinct label and initialize a set S with labelled
pixels, so that for any s ∈ S, the variables elev(s) and lab(s) indicate the
elevation and the label of s, respectively.

2. Let U be the set of unlabelled pixels with all its lower neighbors in S, oth-
erwise stated U = {u|∀s ∈ S ∩ Nu, elev(s) < elev(u)}. If U is empty, the
procedure ends and lab(S) gives the final segmentation. Otherwise, go to
Step 3.

3. Label members of U as follows. For each u ∈ U :
3.a. Let depthu(s)← elev(u)− elev(s) for all s ∈ S ∩ Nu,
3.b. Pick the neighbor from shallowest watershed as sshallow=mins depthu(s)
3.c. Add u to S with:

lab(u)← lab(sshallow), and
elev(u)← elev(sshallow).

4. Merge contiguous shallow watersheds as follows. For each u ∈ U :
4.a. Let Su = {s|s ∈ S ∩ Nu,depthu(s) ≤ Δz}.
4.b. If |Su| > 1,
4.b.i: Pick the neighbor from deepest watershed as sdeep=maxs depthu(s)
4.b.ii: For all s ∈ S and q ∈ Su so that q �= p and lab(s) = lab(q) set:

lab(s)← lab(sdeep) and
elev(s)← elev(sdeep).

5. Repeat from Step 2.

3.3 Tree Modelling

Parameter Estimation. The segmentation image was used to select LiDAR
points for each tree crown detected (an example of the segmented CHM is shown
in Figure 1, middle-right). Since the original z-coordinate value of crown points
accounted for both terrain elevation and tree height, a bare terrain elevation
value (t) was attached to form 4-D points (x, y, z, t), with the t-value corre-
sponding to the sampled value of the DTM at (x, y).

In order to guide the construction of a 3-d model (like the one in Figure 1-
bottom), a number of tree parameters were estimated from the selected crown
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points. These parameters included, tree location (x0, y0), base elevation (z0),
tree height (h), crown depth (c) and crown radius (r). The tree location was
calculated as the average xy-coordinate of crown points. The base elevation
of the tree was estimated as the average of terrain elevation values (t). The
tree height was calculated by subtracting the base terrain elevation from the
maximum z-coordinate value of crown points. The crown depth was calculated
by subtracting the average z-coordinate of crown points in the 1st quartile from
the maximum z-value. Conversely, the crown radius considered points in the
4th quartile only. Although each segment was meant to represent one tree, they
were required to enclose a minimum number of points (p ≥ 3), to represent a
crown diameter under a threshold (r ≤ 10 m), and to represent a non-flat crown
(r/c ≤ 3/2). Segments that did not satisfy these constraints were neglected.

Table 1. Parametric equations of tree crown models expressed in terms of crown radius
(r), crown depth (c), and tree height (h), while tree location (x0, y0, z0) is assumed at
the origin

Model name x/r y/r z′ = (z − h)/c

cylinder cos θ sin θ −1 ≤ z′ ≤ 0
sphere cos φ cos θ cos φ sin θ −0.5 + 0.5 sinφ
cone ρ cos θ ρ sin θ −ρ
ellipsoid cos φ cos θ cos φ sin θ −0.5 + 0.5 sinφ
paraboloid ρ cos θ ρ sin θ −ρ2

z-paraboloid ρ cos θ ρ sin θ −√
ρ

hyperboloid sinhφ cos θ sinhφ sin θ (1 +
√
2)(1− cosh φ)

for θ ∈ [−π, π], φ ∈ [−π/2, π/2], and ρ ∈ [0, 1]

Tree Crown Model Selection. Once computed, tree parameters were used to
define a parametric model of the crown. The crown shape models considered in
this study are represented by the parametric equations provided in Table 1 (see
also Figure 2). The model selection was made by minimizing, over all possible
models, the total error. In turn, the total error was defined as the sum of abso-
lute distance between crown points on the convex hull and the model surface.
Hence, the key for an optimal model selection was the computation of the dis-
tance between a point and a surface. Distances to all constituent surface parts,
including bottom face (not for sphere), and top face (only for cylinder), were
computed and the minimum distance taken. For the non-flat part, the distance
was computed as follows.

Let pi be the i-th crown point, let f(p) = 0 denote the model surface, and
let ni be the normal vector at the closest point to pi in the surface. Since the
minimum distance is defined along the normal direction then

f(pi − λini) = 0 (1)

where |λi| is the minimum distance to the surface f from the point pi. Consid-
ering the convexity of surfaces, the sign of λi depends on whether the point falls
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Fig. 2. 3-d view of tree crown models in Table 1. From left to right: sphere, ellipsoid,
cylinder, paraboloid, hyperboloid, cone, and z-paraboloid.

above or below the surface . Hence, the approach adopted consisted in solving
Equation (1) for each off-ground point pi, and for each segment.

In practice, errors from competing models may be too close leading to sev-
eral equally acceptable model. In such cases, a tie-breaking scheme needs to be
implemented. The scheme adopted in this study consisted in considering all the
models with an error in the lowest quartile and picking among them the model
that defines the most common crown shape. The priority order was set as follows:
paraboloid, hyperboloid, ellipsoid, sphere, cone, z-paraboloid, cylinder. This or-
der was adopted based on the observed crown shape from common species in
the area (primarily Pinus montezumae, Alnus jorullensis, Pinus patula, Abies
religiosa, Clethra mexicana, Schinus molle and Pinus hartwegii). Thus, for in-
stance, if both hyperboloid and cone models yielded errors in the lowest quartile,
then the former model was selected as it had higher priority.

4 Results

4.1 Detection Rate

The accuracy achieved by the segmentation (with Δz = 0.5 m) was assessed
by comparing the number of trees counted in the field against the number of
detected trees from the LiDAR data. Sites were first partitioned according to
one of three levels of detection rate (percent correct): perfect detection (100%
of trees detected), moderate/high detection (more than half and less than twice
but not perfect) and low/very low detection (less than half or more than twice
detected). Results showed that 38 sites (19%) had a perfect detection rate, 68
sites (34%) had a low/very low detection rate, and the remaining 94 sites (47%)
showed moderate/high detection rate.

A scatter plot of LiDAR-based detection against field-based measurements is
shown in Figure 3(a). The overall (n = 200) root mean square error (RMSE)
was 13.2, whereas the median absolute error (MAE) was 4. The later was less
sensitive to outliers, which occurred due to three major reasons: 1) due to the
presence of non-vegetation features, such as power lines, towers, bridges and
flying birds, 2) due to high tree density, and 3) presence of small trees. These
three causes of errors were found to be closely related. As a matter of fact, most
outliers corresponded to plots were the average DBH was under 24 cm.

The DBH is a good indicator of the size of the tree, both horizontal and
vertical. The tree density (number of trees per unit of area) is also related to the
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Fig. 3. (a) The scatterplot shows the number of trees detected through segmentation
of the CHM from LiDAR data (vertical axis) against actual trees counted in the field
(horizontal axis) per plot of 400 m2. Both vertical and horizontal axes were transformed
by a cubic root for a better distribution. The marker color indicates the number of plots
with specific values. Circled set of points identify outliers caused by distinct sources of
errors. (b) This scatterplot shows the LiDAR-based estimations of tree height (vertical
axis) against field-based measurement (horizontal axis).

DBH, as density generally decreases with the increase of tree size. Also, urban
features were present only in areas dominated by small vegetation. Then, if only
plots with average DBH over 24 cm were considered (n = 109), the RMSE and
MAE decreased to 4.8 and 3 respectively. It should be noted that the threshold
of 24 cm of average DBH is in close relation with the average point distance
of LiDAR data, which was in this case 2 m. This is reasonable since trees with
a crown diameter smaller than the average point spacing will be unlikely to be
detected. Then, it is also reasonable to think that an increase in the point density
would allow a more accurate detection of smaller trees.

4.2 3-D Modelling

The key parameters for 3-d modelling are tree height, crown diameter and crown
shape. However, only tree height was quantitatively assessed using field data.
Although the comparison on a per tree basis would had been more valuable, it
was not possible since the exact location of trees was not recorded in the field.
Hence, a comparison of the average on a per plot basis was performed instead.

Figure 3(b) shows the scatterplot of LiDAR-based estimations plotted against
ground-based measurements on a per plot basis. The expected deviation from
ground-based values is given by RMSE = 7.8 m. The scatterplot shows a bias
towards overestimation of aboveground height of trees. This was some how ex-
pected since the detection method was shown to fail for small trees, so that small
trees did not contribute to the average height, thus resulting in an overestima-
tion of average tree height per plot. The same overestimation bias was observed
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when plots with an average DBH under 24 cm were excluded. In fact, the over-
estimation bias was more pronounced for the latter case (data not shown) with
a RMSE=9.2 m, thus suggesting a substantial mixture of small and big trees in
the remaining plots.

Visual inspection of estimated crown diameters and heights on a per tree
basis showed a good agreement in general with major errors due to segmentation
errors. Figure 4 shows an example of a simulated scene (a) and a photograph of
the ground view (b). The front tree in this site was detected as two trees due to
separation of branches in the back, thus affecting the estimated crown diameter,
depth and shape.

(a) (b)

Fig. 4. (a) 3-d view of a simulated scene showing the DTM, tree models and
ground/non-ground LiDAR points, (b) photo taken during the field campaign of Febru-
ary 2010

5 Conclusions

This study proposed and tested a tree crown detection from gridded LiDAR
data and presented a simple method for generating 3-d models of forrest stands
based on the automatic crown detection method. The proposed crown detection
method consisted of a watershed by flooding algorithm, which can be efficiently
computed in raster format. Accuracy assessment results indicated that the crown
detection method is accurate for detecting relatively large trees, with the break
point between detectable and non detectable trees determined primarily by the
sampling rate of the LiDAR data (average point spacing or point density) and, to
some extent, by the tree density. Results also showed that detection can greatly
impact the estimated average height as small trees are not accurately detected.
Yet, it was recognized that an assessment at individual tree level could yield a
more objective result on the estimated tree height parameter.
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6. Hyyppä, J., Hyyppä, H., Yu, X., Kaartinen, H., Kukko, A., Holopainen, M.: Topo-
graphic Laser Ranging and Scanning. In: Forest Inventory Using Small-Footprint
Airborne LiDAR, ch. 12, pp. 335–370. CRC Press (2009)
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